Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 3/2018

27-02-2018 | RESEARCH PAPER

Topology optimization of density type for a linear elastic body by using the second derivative of a KS function with respect to von Mises stress

Authors: Wares Chancharoen, Hideyuki Azegami

Published in: Structural and Multidisciplinary Optimization | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study demonstrates the use of Newton method to solve topology optimization problems of density type for linear elastic bodies to minimize the maximum von Mises stress. We use the Kreisselmeier–Steinhauser (KS) function with respect to von Mises stress as a cost function to avoid the non-differentiability of the maximum von Mises stress. For the design variable, we use a function defined in the domain of a linear elastic body with no restriction on the range and assume that a density is given by a sigmoid function of the function of design variable. The main aim of this study involves evaluating the second derivative of the KS function with respect to variation of the design variable and to propose an iterative scheme based on an H1 Newton method as opposed to the H1 gradient method that was presented in previous studies. The effectiveness of the scheme is demonstrated by numerical results for several linear elastic problems. The numerical results show that the speed of the proposed H1 Newton method exceeds that of the H1 gradient method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Allaire G, Caccès E, Vié J L (2016) Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations. Struct Multidiscip Optim 54:1245–1266MathSciNetCrossRef Allaire G, Caccès E, Vié J L (2016) Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations. Struct Multidiscip Optim 54:1245–1266MathSciNetCrossRef
go back to reference Azegami H (2016) Shape optimization problems (in Japanese). Morikita Publishing, TokyoMATH Azegami H (2016) Shape optimization problems (in Japanese). Morikita Publishing, TokyoMATH
go back to reference Azegami H (2017) Second derivatives of cost functions and H 1 Newton method in shape optimization problems. In: Kimura M, Notsu H, van Meurs P (eds) Mathematical analysis of continuum mechanics and industrial applications II, proceedings of the international conference CoMFoS16. Mathematics for Industry. Springer, Singapore, pp 61–72 Azegami H (2017) Second derivatives of cost functions and H 1 Newton method in shape optimization problems. In: Kimura M, Notsu H, van Meurs P (eds) Mathematical analysis of continuum mechanics and industrial applications II, proceedings of the international conference CoMFoS16. Mathematics for Industry. Springer, Singapore, pp 61–72
go back to reference Bendsøe MP (1995) Optimization of structural topology, shape and material. Springer, BerlinCrossRefMATH Bendsøe MP (1995) Optimization of structural topology, shape and material. Springer, BerlinCrossRefMATH
go back to reference Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46:369–384MathSciNetCrossRefMATH Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46:369–384MathSciNetCrossRefMATH
go back to reference Cheng GD, Guo X (1997) 𝜖-relaxed approach in structural topology optimization. Struct Optim 13:258–266CrossRef Cheng GD, Guo X (1997) 𝜖-relaxed approach in structural topology optimization. Struct Optim 13:258–266CrossRef
go back to reference Diaz A R, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10:40–45CrossRef Diaz A R, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10:40–45CrossRef
go back to reference Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478MathSciNetCrossRefMATH Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478MathSciNetCrossRefMATH
go back to reference Guest J K, Prévost J H, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH Guest J K, Prévost J H, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH
go back to reference Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44:19–24CrossRefMATH Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44:19–24CrossRefMATH
go back to reference Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: International federation of active controls symposium on computer-aided design of control systems. Zurich, pp 29–31 Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: International federation of active controls symposium on computer-aided design of control systems. Zurich, pp 29–31
go back to reference Kreisselmeier G, Steinhauser R (1983) Application of vector performance optimization to a robust control design for a fighter aircraft. Int J Control 37:251–284CrossRefMATH Kreisselmeier G, Steinhauser R (1983) Application of vector performance optimization to a robust control design for a fighter aircraft. Int J Control 37:251–284CrossRefMATH
go back to reference Lazarov B S, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781MathSciNetCrossRefMATH Lazarov B S, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781MathSciNetCrossRefMATH
go back to reference Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef
go back to reference Liu Y, Shimoda M, Shibutani Y (2015) Parameter-free method for the shape optimization of stiffeners on thin-walled structures to minimize stress concentration. J Mech Sci Technol 29(4):1383–1390CrossRef Liu Y, Shimoda M, Shibutani Y (2015) Parameter-free method for the shape optimization of stiffeners on thin-walled structures to minimize stress concentration. J Mech Sci Technol 29(4):1383–1390CrossRef
go back to reference París J, Navarrina F, Colominas I, Casteleiro M (2010) Stress constraints sensitivity analysis in structural topology optimization. Comput Methods Appl Mech Eng 199(33–36):2110–2122MathSciNetCrossRefMATH París J, Navarrina F, Colominas I, Casteleiro M (2010) Stress constraints sensitivity analysis in structural topology optimization. Comput Methods Appl Mech Eng 199(33–36):2110–2122MathSciNetCrossRefMATH
go back to reference Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254CrossRef Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254CrossRef
go back to reference Shimoda M, Azegami H, Sakurai T (1998) Numerical solution for min-max problems in shape optimization: Minimum design of maximum stress and displacement. JSME Int J Series A 41(1):1–9CrossRef Shimoda M, Azegami H, Sakurai T (1998) Numerical solution for min-max problems in shape optimization: Minimum design of maximum stress and displacement. JSME Int J Series A 41(1):1–9CrossRef
go back to reference Shintani K, Azegami H (2013) Construction method of the cost function for the minimax shape optimization problem. JSIAM Lett 5:61–64MathSciNetCrossRef Shintani K, Azegami H (2013) Construction method of the cost function for the minimax shape optimization problem. JSIAM Lett 5:61–64MathSciNetCrossRef
go back to reference Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48:1031–1055MathSciNetCrossRef Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48:1031–1055MathSciNetCrossRef
go back to reference Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75CrossRef
go back to reference Wang M Y, Li L (2013) Shape equilibrium constraint: a strategy for stressconstrained structural topology optimization. Struct Multidiscip Optim 47:335–352MathSciNetCrossRefMATH Wang M Y, Li L (2013) Shape equilibrium constraint: a strategy for stressconstrained structural topology optimization. Struct Multidiscip Optim 47:335–352MathSciNetCrossRefMATH
go back to reference Yang R J, Chen C J (1996) Stress-based topology optimization. Struct Optim 12:98–105CrossRef Yang R J, Chen C J (1996) Stress-based topology optimization. Struct Optim 12:98–105CrossRef
go back to reference Zhang W S, Guo X, Wang M Y, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Methods Eng 93(9):942–959MathSciNetCrossRefMATH Zhang W S, Guo X, Wang M Y, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Methods Eng 93(9):942–959MathSciNetCrossRefMATH
Metadata
Title
Topology optimization of density type for a linear elastic body by using the second derivative of a KS function with respect to von Mises stress
Authors
Wares Chancharoen
Hideyuki Azegami
Publication date
27-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 3/2018
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-1937-z

Other articles of this Issue 3/2018

Structural and Multidisciplinary Optimization 3/2018 Go to the issue

Premium Partners