Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 4/2021

11-02-2021 | Research Paper

Topology optimization of lattices with anisotropic struts

Authors: Hesaneh Kazemi, Julián A. Norato

Published in: Structural and Multidisciplinary Optimization | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work presents a topology optimization method for design of architected truss lattices made of anisotropic struts. Employing anisotropic materials for the lattice struts can result in better effective properties than those that can be obtained for a lattice in which each strut is made of a single isotropic material, but different struts may be made of different materials. This work focuses on lattice struts that are either hollow or fiber-reinforced, which effectively result in transverse isotropy. The proposed method simultaneously optimizes the spatial configuration of the struts and the volume fraction of the reinforcing fibers or the holes in each strut to extremize the lattice effective properties. A parametric description of the lattice struts is projected onto a density field for analysis via the geometry projection technique. The proposed method accommodates any number of specified material symmetries by performing appropriate reflections of the projected density with respect to the symmetry planes. To ensure the size variables converge to 0 or 1, we employ an explicit penalization by imposing a discreteness constraint. To improve manufacturability, a no-cut constraint is imposed to ensure that struts are not partially cut upon reflection by the symmetry planes or by the faces of the unit cell. The smallest angle at which two struts can intersect is also constrained to avoid overlaps that are difficult to manufacture. Examples of maximization of the effective bulk modulus and minimization of the effective Poisson’s ratio of the lattice demonstrate the effectiveness of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84 Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84
go back to reference Bell B, Norato J, Tortorelli D (2012) A geometry projection method for continuum-based topology optimization of structures. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p 5485 Bell B, Norato J, Tortorelli D (2012) A geometry projection method for continuum-based topology optimization of structures. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p 5485
go back to reference Bower AF (2009) Applied mechanics of solids. CRC press Bower AF (2009) Applied mechanics of solids. CRC press
go back to reference Challis V, Roberts A, Wilkins A (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45(14-15):4130–4146MATH Challis V, Roberts A, Wilkins A (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45(14-15):4130–4146MATH
go back to reference Coelho P, Fernandes P, Guedes J, Rodrigues H (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35(2):107– 115 Coelho P, Fernandes P, Guedes J, Rodrigues H (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35(2):107– 115
go back to reference Cox SJ, Dobson DC (2000) Band structure optimization of two-dimensional photonic crystals in h-polarization. J Comput Phys 158(2):214–224MATH Cox SJ, Dobson DC (2000) Band structure optimization of two-dimensional photonic crystals in h-polarization. J Comput Phys 158(2):214–224MATH
go back to reference Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597MathSciNetMATH Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597MathSciNetMATH
go back to reference Gibiansky LV, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498MathSciNetMATH Gibiansky LV, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498MathSciNetMATH
go back to reference Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1 Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1
go back to reference Groen JP, Wu J, Sigmund O (2019) Homogenization-based stiffness optimization and projection of 2d coated structures with orthotropic infill. Comput Methods Appl Mech Eng 349:722–742MathSciNetMATH Groen JP, Wu J, Sigmund O (2019) Homogenization-based stiffness optimization and projection of 2d coated structures with orthotropic infill. Comput Methods Appl Mech Eng 349:722–742MathSciNetMATH
go back to reference Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198MathSciNetMATH Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198MathSciNetMATH
go back to reference Guedes J, Lubrano E, Rodrigues H, Turteltaub S (2006) Hierarchical optimization of material and structure for thermal transient problems. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer, pp 527–536 Guedes J, Lubrano E, Rodrigues H, Turteltaub S (2006) Hierarchical optimization of material and structure for thermal transient problems. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer, pp 527–536
go back to reference Guest JK, Prévost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22-23):7028–7047MATH Guest JK, Prévost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22-23):7028–7047MATH
go back to reference Guest JK, Prévost J H (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4-6):1006–1017MathSciNetMATH Guest JK, Prévost J H (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4-6):1006–1017MathSciNetMATH
go back to reference Halmos PR (2017) Finite-dimensional vector spaces. Courier Dover Publications Halmos PR (2017) Finite-dimensional vector spaces. Courier Dover Publications
go back to reference Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140MathSciNetMATH Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140MathSciNetMATH
go back to reference Huang X, Xie Y (2008) Optimal design of periodic structures using evolutionary topology optimization. Struct Multidiscip Optim 36(6):597–606 Huang X, Xie Y (2008) Optimal design of periodic structures using evolutionary topology optimization. Struct Multidiscip Optim 36(6):597–606
go back to reference Huang X, Radman A, Xie Y (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870 Huang X, Radman A, Xie Y (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870
go back to reference Huang X, Xie YM, Jia B, Li Q, Zhou S (2012) Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct Multidiscip Optim 46 (3):385–398MathSciNetMATH Huang X, Xie YM, Jia B, Li Q, Zhou S (2012) Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct Multidiscip Optim 46 (3):385–398MathSciNetMATH
go back to reference Huang X, Zhou S, Xie Y, Li Q (2013) Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci 67:397–407 Huang X, Zhou S, Xie Y, Li Q (2013) Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci 67:397–407
go back to reference Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825MATH Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825MATH
go back to reference Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13MathSciNetMATH Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13MathSciNetMATH
go back to reference Kazemi H, Vaziri A, Norato JA (2018) Topology optimization of structures made of discrete geometric components with different materials. J Mech Des 140(11):111401 Kazemi H, Vaziri A, Norato JA (2018) Topology optimization of structures made of discrete geometric components with different materials. J Mech Des 140(11):111401
go back to reference Kazemi H, Vaziri A, Norato J (2019) Topology opti-mization of multi-material lattices for maximal bulk modulus. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers. vol 59186, p V02AT03A052 Kazemi H, Vaziri A, Norato J (2019) Topology opti-mization of multi-material lattices for maximal bulk modulus. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers. vol 59186, p V02AT03A052
go back to reference Kazemi H, Vaziri A, Norato JA (2020) Multi-material topology optimization of lattice structures using geometry projection. Comput Methods Appl Mech Eng, p 363 Kazemi H, Vaziri A, Norato JA (2020) Multi-material topology optimization of lattice structures using geometry projection. Comput Methods Appl Mech Eng, p 363
go back to reference de Kruijf N, Zhou S, Li Q, Mai YW (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 44(22-23):7092–7109MATH de Kruijf N, Zhou S, Li Q, Mai YW (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 44(22-23):7092–7109MATH
go back to reference Levengood SKL, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, Johnson AJW (2010) Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31(13):3552–3563 Levengood SKL, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, Johnson AJW (2010) Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31(13):3552–3563
go back to reference Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13-14):1417–1425 Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13-14):1417–1425
go back to reference Neves M, Rodrigues H, Guedes JM (2000) Optimal design of periodic linear elastic microstructures. Comput Struct 76(1-3):421–429 Neves M, Rodrigues H, Guedes JM (2000) Optimal design of periodic linear elastic microstructures. Comput Struct 76(1-3):421–429
go back to reference Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115 Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115
go back to reference Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327MathSciNetMATH Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327MathSciNetMATH
go back to reference Osanov M, Guest JK (2016) Topology optimization for architected materials design. Annu Rev Mater Res 46:211–233 Osanov M, Guest JK (2016) Topology optimization for architected materials design. Annu Rev Mater Res 46:211–233
go back to reference Otomori M, Yamada T, Izui K, Nishiwaki S, Kogiso N (2014) Level set-based topology optimization for the design of light-trapping structures. IEEE Trans Magn 50(2):729–732 Otomori M, Yamada T, Izui K, Nishiwaki S, Kogiso N (2014) Level set-based topology optimization for the design of light-trapping structures. IEEE Trans Magn 50(2):729–732
go back to reference Picelli R, Sivapuram R, Townsend S, Kim HA (2017) Stress topology optimisation for architected material using the level set method. In: World Congress of Structural and Multidisciplinary Optimisation. Springer, pp 1254–1269 Picelli R, Sivapuram R, Townsend S, Kim HA (2017) Stress topology optimisation for architected material using the level set method. In: World Congress of Structural and Multidisciplinary Optimisation. Springer, pp 1254–1269
go back to reference Radman A, Huang X, Xie Y (2013) Topological optimization for the design of microstructures of isotropic cellular materials. Eng Optim 45(11):1331–1348MathSciNet Radman A, Huang X, Xie Y (2013) Topological optimization for the design of microstructures of isotropic cellular materials. Eng Optim 45(11):1331–1348MathSciNet
go back to reference Rodrigues H, Guedes JM, Bendsoe M (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10 Rodrigues H, Guedes JM, Bendsoe M (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10
go back to reference Rosati L (2000) A novel approach to the solution of the tensor equation ax+ xa= h. Int J Solids Struct 37(25):3457–3477MathSciNetMATH Rosati L (2000) A novel approach to the solution of the tensor equation ax+ xa= h. Int J Solids Struct 37(25):3457–3477MathSciNetMATH
go back to reference Shapiro V (2002) Solid modeling. Handbook of computer aided geometric design 20:473–518MathSciNet Shapiro V (2002) Solid modeling. Handbook of computer aided geometric design 20:473–518MathSciNet
go back to reference Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329MathSciNetMATH Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329MathSciNetMATH
go back to reference Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368 Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368
go back to reference Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48 (6):1031–1055MathSciNet Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48 (6):1031–1055MathSciNet
go back to reference Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNet Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNet
go back to reference Sigmund O, Torquato S, Aksay IA (1998) On the design of 1–3 piezocomposites using topology optimization. J Mater Res 13(4):1038–1048 Sigmund O, Torquato S, Aksay IA (1998) On the design of 1–3 piezocomposites using topology optimization. J Mater Res 13(4):1038–1048
go back to reference Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027MATH Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027MATH
go back to reference Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573MathSciNetMATH Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573MathSciNetMATH
go back to reference Svanberg K (2007) MMA and GCMMA, versions September 2007. Optimization and systems theory, p 104 Svanberg K (2007) MMA and GCMMA, versions September 2007. Optimization and systems theory, p 104
go back to reference Torquato S, Hyun S, Donev A (2002) Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. Phys Rev Lett 89(26):266601 Torquato S, Hyun S, Donev A (2002) Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. Phys Rev Lett 89(26):266601
go back to reference Wang C, Zhu JH, Zhang WH, Li SY, Kong J (2018) Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures. Struct Multidiscip Optim 58(1):35–50MathSciNet Wang C, Zhu JH, Zhang WH, Li SY, Kong J (2018) Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures. Struct Multidiscip Optim 58(1):35–50MathSciNet
go back to reference Wang C, Gu X, Zhu J, Zhou H, Li S, Zhang W (2020) Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing. Struct Multidiscip Optim 61(3):869–894 Wang C, Gu X, Zhu J, Zhou H, Li S, Zhang W (2020) Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing. Struct Multidiscip Optim 61(3):869–894
go back to reference Watts S, Tortorelli DA (2017) A geometric projection method for designing three-dimensional open lattices with inverse homogenization. International Journal for Numerical Methods in Engineering Watts S, Tortorelli DA (2017) A geometric projection method for designing three-dimensional open lattices with inverse homogenization. International Journal for Numerical Methods in Engineering
go back to reference Yan J, Cheng G, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidiscip Des Optim 2(4):259–266 Yan J, Cheng G, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidiscip Des Optim 2(4):259–266
go back to reference Yan X, Huang X, Zha Y, Xie Y (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110 Yan X, Huang X, Zha Y, Xie Y (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110
go back to reference Zhang S, Norato JA (2018) Finding better local optima in topology optimization via tunneling. In: ASME 2018 International design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp V02BT03A014–V02BT03A014 Zhang S, Norato JA (2018) Finding better local optima in topology optimization via tunneling. In: ASME 2018 International design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp V02BT03A014–V02BT03A014
go back to reference Zhang S, Norato JA, Gain AL, Lyu N (2016) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54(5):1173–1190MathSciNet Zhang S, Norato JA, Gain AL, Lyu N (2016) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54(5):1173–1190MathSciNet
go back to reference Zhou S, Li W, Sun G, Li Q (2010) A level-set procedure for the design of electromagnetic metamaterials. Optics Express 18(7):6693–6702 Zhou S, Li W, Sun G, Li Q (2010) A level-set procedure for the design of electromagnetic metamaterials. Optics Express 18(7):6693–6702
Metadata
Title
Topology optimization of lattices with anisotropic struts
Authors
Hesaneh Kazemi
Julián A. Norato
Publication date
11-02-2021
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 4/2021
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02822-x

Other articles of this Issue 4/2021

Structural and Multidisciplinary Optimization 4/2021 Go to the issue

Premium Partners