Skip to main content
Top
Published in: Soft Computing 2/2024

Open Access 22-12-2023 | Foundation, algebraic, and analytical methods in soft computing

Total edge irregularity strength for special types of square snake graphs

Authors: F. Salama, H. Rafat, H. Attiya

Published in: Soft Computing | Issue 2/2024

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

One of the extremely useful branches in graph theory is the labeling of a graph. Graph labeling plays a vital role in many fields such as database management, astronomy, coding theory, X-ray crystallography, communication network addressing and radar. A labeling of a connected simple graph \(G\left( {V,E} \right)\) is a map that assign each element in \(G\) with a positive integer number. An edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling is a map \(\beta :V\left( G \right) \cup E\left( G \right) \to \left\{ 1,2,3, \ldots ,\lambda^{\!\!\!\!\!-} \right\}\) such that \(W_\beta \left( h \right) \ne W_\beta \left( z \right)\) where \(W_\beta \left( h \right)\) and \(W_\beta \left( z \right)\) are weights for any two distinct edges. In this case, \(G\) has total edge irregularity strength (TEIS) if \(\lambda^{\!\!\!\!\!-}\) is minimum. In this paper, a new family of graphs called square snake graphs is defined and denoted by \(C_{4,n}\). Moreover, we define some related graphs of square snake graphs named double square snake graph \(D\left( {C_{4,n} } \right)\), triple square snake graph \(T\left( {C_{4,n} } \right)\) and \(m\)-multiple square snake graph \(M_m \left( {C_{4,n} } \right)\). Finally, we determine TEIS for square snake graphs, double square snake graph, triple square snake graph and \(m\)-multiple square snake graph, which have many applications in coding theory and physics.
Notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

For a simple, connected and undirected graph \(G\left( {V,E} \right)\), Bača et al. (2007) have introduced the notion of an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling \(\beta :V\left( G \right) \cup E\left( G \right) \to \left\{ 1,2,3, \ldots ,\lambda^{\!\!\!\!\!-} \right\}\) to be a labeling of edges and vertices in such a way that any two edges \(pq\) and \(p^* q^*\) of a graph \(G\) have distinct weights, i.e. \(w_\beta \left( {pq} \right) \ne w_\beta \left( {p^* q^* } \right)\) where \(w_\beta \left( {pq} \right) = \beta \left( {pq} \right) + \beta \left( p \right) + \beta \left( q \right)\). The minimum \(\lambda^{\!\!\!\!\!-}\) for which \(G\left( {V,E} \right)\) has an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling is named TEIS and denoted by \(tes\left( G \right).\) Also, They have estimated the bounds of TEIS of \(tes\left( G \right)\) for a graph \(G\) in the following inequality
$$ {\text{tes}}\left( G \right) \ge \max \left\{ {\left\lceil {\frac{{\left| {E\left( G \right)} \right| + 2}}{3}} \right\rceil , \left\lceil {\frac{\Delta G + 1}{2}} \right\rceil } \right\} $$
(1)
where \(\Delta G\) is maximum degree of vertices of a graph \(G.\)
In Ivanĉo and Jendroî (2006) Ivanĉo and Jendroî introduced the conjecture which gives a TEIS for any graph \(G\), except \(K_5\), in the form
$$ {\text{tes}}\left( G \right) = \max \left\{ {\left\lceil {\frac{\Delta G + 1}{2}} \right\rceil , \left\lceil {\frac{{\left| {E\left( G \right)} \right| + 2}}{3}} \right\rceil } \right\}. $$
(2)
In addition, they have determined TEIS for a tree \(T\) as
$$ {\text{tes}}\left( T \right) = \max \left\{ {\left\lceil {\frac{k + 1}{3}} \right\rceil , \left\lceil {\frac{\Delta G + 1}{2}} \right\rceil } \right\}. $$
(3)
The conjecture of Ivanĉo and Jendroî has been verified for a heptagonal snake graph, uniform theta snake graphs, quintet snake graph, a polar grid graph and special families of graphs in Salama (2022, 2021, 2019, 2020a) and Salama and Abo Elanin (2021), for cylindrical accordion graph and spiral accordion graph in Siddiqui et al. (2017), for complete bipartite graphs and complete graphs in Jendroî et al. (2007), for corona product of a path with certain graphs in Salman and Baskoro (2008), for the categorical product of two paths \(P_n \times P_m\) in Ahmad and Bača (2014), for centralized uniform theta graphs in Putra and Susanti (2018), for zigzag graphs in Ahmad et al. (2012), for sunlet graph and the line of sunlet graph in Salama (2020b), for hexagonal grid graphs in Al-Mushayt et al. (2012), for a wheel graph, a fan graph, a triangular Book graph and a friendship graph in Tilukay et al. (2015), for generalized prism in Bača and Siddiqui (2014), for disjoint union of isomorphic copies of generalized Petersen graph in Naeem et al. (2017) and for subdivision of star graph in Siddiqui (2012), for more details see Majerski and Przybylo (2014), Rajasingh and Arockiamary (2015), Jeyanthi and Sudha (2015), Tarawneh et al. (2021), Yang et al. (2018), Ahmad et al. (2016, 2015), Jegan et al. (2022), Nurdini et al. (2020), Mary et al. (2018), Ratnasari et al. (2019) and Arockiamary and Vistthra (2022).
Motivated by the previous results, in this paper, we define some related graph of square snake graphs named double square snake graph \(D\left( {C_{4,n} } \right)\), triple square snake graph \(T\left( {C_{4,n} } \right)\) and m-multiple square snake graph Finally, we determine the exact value of the total edge irregularity strength (TEIS) for square snake graphs, double square snake graph, triple square snake graph and m-multiple square snake graph, in the form:
$$ {\text{tes}}\left( {C_{4,n} } \right) = \left\lceil {\frac{4n + 2}{3}} \right\rceil , $$
(4)
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil , $$
(5)
$$ {\text{tes}}\left( {T\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{12n + 2}{3}} \right\rceil , $$
(6)
$$ {\text{tes}}\left( {M_m \left( {C_{4,n} } \right) } \right) = \left\lceil {\frac{4mn + 2}{3}} \right\rceil . $$
(7)
Which have many applications in coding theory and physics.

2 Main results

The table of notations and acronyms is used in this paper (Table 1).
Table 1
Notations and acronyms used in this paper
Notations
Acronyms
Total edge irregularity strength
TEIS
Square snake graphs
\(C_{4,n}\)
double square snake graph
\(D\left( {C_{4,n} } \right)\)
Triple square snake graph
\(T\left( {C_{4,n} } \right)\)
m-multiple square snake graph
\(M_m \left( {C_{4,n} } \right)\)
Total edge irregularity strength of a graph \(G\)
\(tes\left( G \right)\)
The maximum degree of vertices of a graph \(G.\)
\(\Delta G\)
The number of edges of a graph \(G\)
\(\left| {E(G)} \right|\)
\(1 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{3}\quad {\text{if}}\, \lambda^{\!\!\!\!\!-} \equiv 0\left( {\bmod\,3} \right)\quad {\text{or}}\quad \lambda^{\!\!\!\!\!-} \equiv 1\left( {\bmod\,3} \right)\)
I
\(1 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{3} + 1\quad {\text{if}}\,\lambda^{\!\!\!\!\!-} \equiv 2\left( {\bmod\,3} \right)\)
II
\(\frac{\lambda^{\!\!\!\!\!-}}{3} + 1 \le i \le n\quad {\text{if}}\, \lambda^{\!\!\!\!\!-} \equiv 0\left( {\bmod\,3} \right)\quad {\text{or}}\quad \lambda^{\!\!\!\!\!-} \equiv 1\left( {\bmod\,3} \right)\)
III
\(\frac{\lambda^{\!\!\!\!\!-}}{3} + 2 \le i \le n\quad {\text{if}}\quad \lambda^{\!\!\!\!\!-} \equiv 2\left( {\bmod\,3} \right)\)
IV
\(2 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{3}\quad {\text{if}}\, \lambda^{\!\!\!\!\!-} \equiv 0\left( {\bmod\,3} \right)\quad {\text{or}}\quad \lambda^{\!\!\!\!\!-} \equiv 1\left( {\bmod\,3} \right)\)
V
\(2 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{3} + 1\quad {\text{if}}\,\lambda^{\!\!\!\!\!-} \equiv 2\left( {\bmod\,3} \right)\)
VI
In this section we define a new family of graphs and determine the exact value of TEIS for it which are used in scanner and bar code as follows:
Let the vertices \(x_1 , x_2 , x_3 , \ldots ,x_n\) be \(n\) computer scanners jointed with \(n\) automatic scanners. Let the vertices \(c_1 , c_2 , c_3 , \ldots ,c_{n + 1}\) be representing \(n + 1\) automatic scanner and item details, connected with \(n\) computer scanner and \(n\) alarm. Now, we have two options, one is an alarm system barcode-neutralized system, other is a barcode-neutralized system that is combined with an exit option (Fig. 1).
Definition 1
A square snake graph \(C_{4,n}\) is a graph obtained by replacing every edge of a path \(P_n\) by a square \(C_4\), as shown in Fig. 2.
In the following the flow chart of the steps which follow through our work,
In the following theorem, we calculate the TEIS of the square snake graph \(C_{4,n}\) by using inequality (1):
Theorem 1
For a square snake graph \(C_{4,n}\) a TEIS is given by:
$$ {\text{tes}}\left( {C_{4,n} } \right) = \left\lceil {\frac{4n + 2}{3}} \right\rceil . $$
Proof
For a square snake graph, we find \(\left| {E\left( {C_{4,n} } \right)} \right| = 4n\) and \(\Delta \left( {C_{4,n} } \right) = 4\), then from (1) we have
$$ {\text{tes}}\left( {C_{4,n} } \right) \ge \left\lceil {\frac{4n + 2}{3}} \right\rceil . $$
(8)
To prove the inverse inequality, we will show that there exists an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling for \(C_{4,n}\). Consider \(\lambda^{\!\!\!\!\!-} = \left\lceil {\frac{4n + 2}{3}} \right\rceil\) and \(\beta :V\left( {C_{4,n} } \right) \cup E\left( {C_{4,n} } \right) \to \left\{1,2,3, \ldots ,\lambda^{\!\!\!\!\!-} \right\}\) is a total \(\lambda^{\!\!\!\!\!-}\)-labeling which is defined in the following cases as:
Case 1: In this case, we will discuss an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling when the remainder of the division of \(4n + 2\) by 3 is 0 or 1 (Fig. 3).
β is defined as:
$$ \begin{aligned} \beta \left( {c_i } \right) & = \left\{ {\begin{array}{*{20}l} i \hfill & {\quad {\text{for}}\,1 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{2} } \hfill \\ \lambda^{\!\!\!\!\!-} \hfill & {\quad {\text{for}}\,\frac{\lambda^{\!\!\!\!\!-}}{2} + 1 \le i \le n + 1} \hfill \\ \end{array} } \right., \\ \beta \left( {x_i } \right) & = \beta \left( {y_i } \right) = \left\{ {\begin{array}{*{20}l} i \hfill & {\quad {\text{for}}\, 1 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{2} - 1 } \hfill \\ \lambda^{\!\!\!\!\!-} \hfill & {\quad {\text{for}}\,\frac{\lambda^{\!\!\!\!\!-}}{2} \le i \le n} \hfill \\ \end{array} } \right., \\ \beta \left( {c_i x_i } \right) & = \left\{ {\begin{array}{*{20}l} {2i - 1} \hfill & {\quad {\text{for}}\,1 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{2} - 1 } \hfill \\ {\frac{\lambda^{\!\!\!\!\!-}}{2} - 1} \hfill & { \quad {\text{for}}\,i = \frac{\lambda^{\!\!\!\!\!-}}{2} } \hfill \\ {4i - 2\lambda^{\!\!\!\!\!-} - 1} \hfill & {\quad {\text{for}}\, \frac{\lambda^{\!\!\!\!\!-}}{2} + 1 \le i \le n} \hfill \\ \end{array} ,} \right. \\ \beta \left( {c_{i + 1} x_i } \right) & = \left\{ {\begin{array}{*{20}l} {2i} \hfill & {\quad {\text{for}}\, 1 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{2} - 1 } \hfill \\ {4i - 2\lambda^{\!\!\!\!\!-} + 1} \hfill & {\quad {\text{for}}\, \frac{\lambda^{\!\!\!\!\!-}}{2} \le i \le n} \hfill \\ \end{array} } \right., \\ \beta \left( {c_i y_i } \right) & = \beta \left( {c_i x_i } \right) + 1, \\ \beta \left( {c_{i + 1} y_i } \right) & = \beta \left( {c_{i + 1} x_i } \right) + 1. \\ \end{aligned} $$
It is clear that \(\lambda^{\!\!\!\!\!-}\) is the greatest label. In addition, the weights of edges of \(C_{4,n}\) are given by:
$$ \begin{aligned} w_\beta \left( {c_i x_i } \right) & = 4i - 1\quad {\text{for}}\, 1 \le i \le n, \\ w_\beta \left( {c_{i + 1} x_i } \right) & = 4i + 1\quad {\text{for}}\,1 \le i \le n, \\ w_\beta \left( {c_i y_i } \right) & = 4i\quad {\text{for}}\,1 \le i \le n, \\ w_\beta \left( {c_{i + 1} y_i } \right) & = 4i + 2\quad {\text{for}}\,1 \le i \le n. \\ \end{aligned} $$
Obviously, the edges weights are distinct. Therefore, \(\beta\) is an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling. Hence.
$$ {\text{tes}}\left( {C_{4,n} } \right) = \left\lceil {\frac{4n + 2}{3}} \right\rceil . $$
Case 2: In this case, we will discuss an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling when the remainder of the division of \(4n + 2\) by 3 is 2.
Define \(\beta\) as:
$$ \begin{aligned} \beta \left( {c_i } \right) & = \left\{ {\begin{array}{*{20}l} i \hfill & {\quad {\text{for}}\,1 \le i \le \left\lceil {\frac{\lambda^{\!\!\!\!\!-}}{2}} \right\rceil } \hfill \\ \lambda^{\!\!\!\!\!-} \hfill & {\quad {\text{for}}\, \left\lceil {\frac{\lambda^{\!\!\!\!\!-}}{2}} \right\rceil + 1 \le i \le n + 1} \hfill \\ \end{array} } \right., \\ \beta \left( {x_i } \right) & = \beta \left( {y_i } \right) = \left\{ {\begin{array}{*{20}l} i \hfill & {\quad {\text{for}}\,1 \le i \le \left\lceil {\frac{\lambda^{\!\!\!\!\!-}}{2}} \right\rceil - 1 } \hfill \\ \lambda^{\!\!\!\!\!-} \hfill & {\quad {\text{for}}\,\left\lceil {\frac{\lambda^{\!\!\!\!\!-}}{2}} \right\rceil \le i \le n} \hfill \\ \end{array} } \right., \\ \beta \left( {c_i x_i } \right) & = \left\{ {\begin{array}{*{20}l} {2i - 1} \hfill & {\quad {\text{for}}\,1 \le i \le \left\lceil {\frac{\lambda^{\!\!\!\!\!-}}{2}} \right\rceil - 1 } \hfill \\ {\frac{\lambda^{\!\!\!\!\!-}}{2}} \hfill & { \quad {\text{for}}\, i = \left\lceil {\frac{\lambda^{\!\!\!\!\!-}}{2}} \right\rceil } \hfill \\ {4i - 4\frac{\lambda^{\!\!\!\!\!-}}{2} + 1} \hfill & { \quad {\text{for}}\,\left\lceil {\frac{\lambda^{\!\!\!\!\!-}}{2}} \right\rceil \frac{\lambda^{\!\!\!\!\!-}}{2} + 1 \le i \le n} \hfill \\ \end{array} } \right., \\ \beta \left( {c_{i + 1} x_i } \right) & = \left\{ {\begin{array}{*{20}l} {2i} \hfill & { \quad {\text{for}}\,1 \le i \le \left\lceil {\frac{\lambda^{\!\!\!\!\!-}}{2}} \right\rceil - 1 } \hfill \\ {4i - 4\frac{\lambda^{\!\!\!\!\!-}}{2} + 3} \hfill & { \quad {\text{for}}\,\left\lceil {\frac{\lambda^{\!\!\!\!\!-}}{2}} \right\rceil \le i \le n} \hfill \\ \end{array} } \right., \\ \beta \left( {c_i y_i } \right) & = \beta \left( {c_i x_i } \right) + 1, \\ \beta \left( {c_{i + 1} y_i } \right) & = \beta \left( {c_{i + 1} x_i } \right) + 1. \\ \end{aligned} $$
Clearly, \(\lambda^{\!\!\!\!\!-}\) is the most label of edges and vertices. The weights of the edges are given as follows:
$$ \begin{aligned} w_\beta \left( {c_i x_i } \right) & = \left\{ {\begin{array}{*{20}l} {4i - 1} \hfill & {\quad {\text{for}}\,~1 \le i \le \left\lceil {\frac{\lambda^{\!\!\!\!\!-} }{2}} \right\rceil ~ - 1~} \hfill \\ {2\left\lceil {\frac{\lambda^{\!\!\!\!\!-} }{2}} \right\rceil + \lambda^{\!\!\!\!\!-} } \hfill & {\quad {\text{for}}\,~i = \left\lceil {\frac{\lambda^{\!\!\!\!\!-} }{2}} \right\rceil ~} \hfill \\ {4i - 4\left\lceil {\frac{\lambda^{\!\!\!\!\!-} }{2}} \right\rceil + 2\lambda^{\!\!\!\!\!-} + 1~} \hfill & {\quad {\text{for}}\,~\left\lceil {\frac{\lambda^{\!\!\!\!\!-} }{2}} \right\rceil + 1 \le i \le n} \hfill \\ \end{array} } \right., \\ w_\beta \left( {c_{i + 1} x_i } \right) & = \left\{ {\begin{array}{*{20}l} {4i + 1} \hfill & {\quad {\text{for}}\,~1 \le i \le \left\lceil {\frac{\lambda^{\!\!\!\!\!-} }{2}} \right\rceil ~ - 1~} \hfill \\ {4i - 4\left\lceil {\frac{\lambda^{\!\!\!\!\!-} }{2}} \right\rceil + 2\lambda^{\!\!\!\!\!-} - 1} \hfill & {\quad {\text{for}}\,~\left\lceil {\frac{\lambda^{\!\!\!\!\!-} }{2}} \right\rceil \le i \le n} \hfill \\ \end{array} } \right., \\ w_\beta \left( {c_i y_i } \right) & = w_\beta \left( {c_i x_i } \right) + 1, \\ w_\beta \left( {c_{i + 1} y_i } \right) & = w_\beta \left( {c_{i + 1} x_i } \right) + 1, \\ \end{aligned} $$
From the above equations we can deduce that the weights of edges are distinct. Then \(\beta\) is an edge irregular itotal \(\lambda^{\!\!\!\!\!-}\)-labeling. Hence,
$$ {\text{tes}}\left( {C_{4,n} } \right) = \left\lceil {\frac{4n + 2}{3}} \right\rceil . $$
Definition 2
A double square snake graph \(D\left( {C_{4,n} } \right)\) consists of two square graphs that have a common path \(P_n\), see Fig. 4.
Lemma 1
For a double square snake graph \(D\left( {C_{4,n} } \right)\), where \(3 \le n \le 11\). We have
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
Proof
As \(\left| {E\left( {D\left( {C_{4,n} } \right)} \right)} \right| = 8n\), \(3 \le n \le 11\), then (1) becomes
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) \ge \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
(9)
Our aim is proving equality, so we need only to show that there exists an edge irregular total \(\hbar\)-labeling for \(D\left( {C_{4,n} } \right)\) where \(3 \le n \le 11\) with \(\hbar = \left\lceil {\frac{8n + 2}{3}} \right\rceil\). Let \(\hbar = \left\lceil {\frac{8n + 2}{3}} \right\rceil\) and a total \(\hbar\)-labeling \(\beta :V\left( {D\left( {C_{4,n} } \right)} \right) \cup E\left( {D\left( {C_{4,n} } \right)} \right) \to \left\{ {1,2, \ldots ,\hbar} \right\}\) is defined as:
$$ \begin{aligned} \beta \left( {c_i } \right) & = \left\{ {\begin{array}{*{20}l} 1 \hfill & {\quad {\text{for}}\, i = 1 } \hfill \\ {3i - 3 } \hfill & {\quad {\text{for}}\,2 \le i \le n } \hfill \\ \hbar \hfill & {\quad {\text{for}}\,i = n + 1} \hfill \\ \end{array} } \right. , \\ \beta \left( {x_{1,i} } \right) & = \left\{ {\begin{array}{*{20}l} {3i - 2} \hfill & {\quad {\text{for}}\,1 \le i \le n\quad {\text{if}}\,i \in \left\{ {3, \ldots ,7} \right\} } \hfill \\ {3i - 2 } \hfill & {\quad {\text{for}}\,1 \le i \le n - 1\quad {\text{if}}\, i \in \left\{ {8, \ldots ,11} \right\}} \hfill \\ \hbar \hfill & {\quad {\text{for}}\, i = n\quad {\text{if}}\, i \in \left\{ {8, \ldots ,11} \right\}} \hfill \\ \end{array} } \right., \\ \beta \left( {x_{2,i} } \right) & = \left\{ {\begin{array}{*{20}l} {3i - 1 } \hfill & {\quad {\text{for}}\,1 \le i \le n\quad {\text{if}}\, i \in \left\{ {3, \ldots ,7} \right\}} \hfill \\ {3i - 1 } \hfill & {\quad {\text{for}}\,1 \le i \le n - 1\quad {\text{if}}\, i \in \left\{ {8, \ldots ,11} \right\}} \hfill \\ \hbar \hfill & {\quad {\text{for}}\, i = n\quad {\text{if}}\, i \in \left\{ {8, \ldots ,11} \right\}} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{1,i} } \right) & = \left\{ {\begin{array}{*{20}l} {3i - 2 } \hfill & {\quad {\text{for}}\,1 \le i \le n\quad {\text{if}}\, i \in \left\{ {3, \ldots ,7} \right\} } \hfill \\ {3i - 2 } \hfill & {\quad {\text{for}}\,1 \le i \le n - 1\quad {\text{if}}\, i \in \left\{ {8, \ldots ,11} \right\}} \hfill \\ \hbar \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i \in \left\{ {8, \ldots ,11} \right\}} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{2,i} } \right) & = \left\{ {\begin{array}{*{20}l} {3i - 1 } \hfill & {\quad {\text{for}}\,1 \le i \le n\quad {\text{if}}\, i \in \left\{ {3, \ldots ,7} \right\} } \hfill \\ {3i - 1 } \hfill & {\quad {\text{for}}\,1 \le i \le n - 1\quad {\text{if}}\, i \in \left\{ {8, \ldots ,11} \right\}} \hfill \\ \hbar \hfill & {\quad {\text{for}}\, i = n\quad {\text{if}}\,i \in \left\{ {8, \ldots ,11} \right\}} \hfill \\ \end{array} } \right., \\ \beta \left( {c_i x_{1,i} } \right) & = \left\{ {\begin{array}{*{20}l} 1 \hfill & {\quad {\text{for}}\,i = 1 } \hfill \\ {2i} \hfill & {\quad {\text{for}}\,2 \le i \le n - 1 } \hfill \\ {2n} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\,i \in \left\{ {3, \ldots ,10} \right\}} \hfill \\ {2n + 2} \hfill & {\quad {\text{for}}\, i = n\quad {\text{if}}\, i = 11} \hfill \\ \end{array} } \right., \\ \beta \left( {c_i y_{1,i} } \right) & = \beta \left( {c_i x_{1,i} } \right) + 1, \\ \beta \left( {c_i x_{2,i} } \right) & = \left\{ {\begin{array}{*{20}l} 2 \hfill & {\quad {\text{for}}\,i = 1 } \hfill \\ {2i + 1} \hfill & {\quad {\text{for}}\, 2 \le i \le n - 1 } \hfill \\ {2n + 1} \hfill & {\quad {\text{for}}\, i = n\quad {\text{if}}\, i \in \left\{ {3, \ldots ,7} \right\}} \hfill \\ {2n + 2} \hfill & {\quad {\text{for}}\, i = n\quad {\text{if}}\, i \in \left\{ {8,9,10} \right\}} \hfill \\ {2n + 4} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i = 11} \hfill \\ \end{array} } \right., \\ \beta \left( {c_i y_{2,i} } \right) & = \beta \left( {c_i x_{2,i} } \right) + 1, \\ \beta \left( {x_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {2i + 1} \hfill & {\quad {\text{for}}\,1 \le i \le n - 1 } \hfill \\ {2n + 1} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i \in \left\{ {3,4} \right\} } \hfill \\ {2n + 2} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i \in \left\{ {5,6,7} \right\} } \hfill \\ {2n + 3} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i \in \left\{ {8,9,10} \right\} } \hfill \\ {2n + 5} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i = 11} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{1,i} c_{i + 1} } \right) & = \beta \left( {x_{1,i} c_{i + 1} } \right) + 1, \\ \beta \left( {x_{2,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {2i + 2} \hfill & {\quad {\text{for}}\,1 \le i \le n - 1 } \hfill \\ {2n + 2} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i \in \left\{ {3,4} \right\} } \hfill \\ {2n + 3} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i \in \left\{ {5,6,7} \right\} } \hfill \\ {2n + 5} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i \in \left\{ {8,9,10} \right\} } \hfill \\ {2n + 7} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\, i = 11} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{2,i} c_{i + 1} } \right) & = \beta \left( {x_{2,i} c_{i + 1} } \right) + 1. \\ \end{aligned} $$
From the previous equations we deduce that, \(\hbar\) is the greatest label of vertices and edges. We get the weights of edges as follows:
$$ \begin{aligned} W_\beta \left( {c_i x_{1,i} } \right) & = \left\{ {\left| {\begin{array}{*{20}l} 3 \hfill & {\quad {\text{for}}\, i = 1 } \hfill \\ {8i - 5 } \hfill & {\quad {\text{for}}\, 2 \le i \le n - 1 } \hfill \\ {5n + \hbar - 3 } \hfill & {\quad {\text{for}}\, i = n \quad {\text{if}}\,i \in \left\{ {3, \ldots ,10} \right\} } \hfill \\ {5n + \hbar - 1} \hfill & {\quad {\text{for}}\, i = n\quad {\text{if}}\,i = 11} \hfill \\ \end{array} } \right.} \right., \\ W_\beta \left( {c_i x_{2,i} } \right) & = \left\{ {\begin{array}{*{20}l} 5 \hfill & {\quad {\text{for}}\,i = 1 } \hfill \\ {8i - 3} \hfill & {\quad {\text{for}}\,2 \le i \le n - 1 } \hfill \\ {8n - 3} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\,i \in \left\{ {3, \ldots ,7} \right\}} \hfill \\ {5n + \hbar - 1} \hfill & {\quad {\text{for}}\, i = n\quad {\text{if}}\,i \in \left\{ {8,9,10} \right\}} \hfill \\ {5n + \hbar + 1} \hfill & {\quad {\text{for}}\, i = n\quad {\text{if}}\,i = 11} \hfill \\ \end{array} } \right., \\ W_\beta \left( {c_i y_{1,i} } \right) & = W_\beta \left( {c_i x_{1,i} } \right) + 1, \\ W_\beta \left( {c_i y_{2,i} } \right) & = W_\beta \left( {c_i x_{2,i} } \right) + 1, \\ W_\beta \left( {x_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {8i - 1} \hfill & {\quad {\text{for}}\,1 \le i \le n - 1 } \hfill \\ {5n + \hbar - 1 } \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\,i \in \left\{ {3,4} \right\} } \hfill \\ {5n + \hbar } \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\,i \in \left\{ {5,6,7} \right\} } \hfill \\ {2n + 2\hbar + 3} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\,i \in \left\{ {8,9,10} \right\} } \hfill \\ {2n + 2\hbar + 5} \hfill & {\quad {\text{for}}\,i = n\quad {\text{if}}\,i = 11 } \hfill \\ \end{array} } \right., \\ W_\beta \left( {x_{2,i} c_{i + 1} } \right) & = W_\beta \left( {x_{1,i} c_{i + 1} } \right) + 2, \\ W_\beta \left( {y_{1,i} c_{i + 1} } \right) & = W_\beta \left( {x_{1,i} c_{i + 1} } \right) + 1, \\ W_\beta \left( {y_{2,i} c_{i + 1} } \right) & = W_\beta \left( {x_{1,i} c_{i + 1} } \right) + 3. \\ \end{aligned} $$
From the above equations of weights of edges we find that they are distinct. Hence, \(\theta\) is an edge irregular total \(\hbar\)-labeling. Thus
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
Theorem 2
If \(D\left( {C_{4,n} } \right)\) is a double square snake graph, where \(n \ge 12\). Then
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
Proof
Since \(\left| {E\left( {D\left( {C_{4,n} } \right)} \right)} \right| = 8n\) and \(\Delta \left( {D\left( {C_{4,n} } \right)} \right) = 8\). Then from inequality (1) we have
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) \ge \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
In the following, we define an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling to get the upper pound. Consider a total \(\lambda^{\!\!\!\!\!-}\)-labeling is a map \(\theta :V\left( {D\left( {C_{4,n} } \right)} \right) \cup E\left( {D\left( {C_{4,n} } \right)} \right) \to \left\{ 1,2, \ldots , \lambda^{\!\!\!\!\!-} \right\},{ }\lambda^{\!\!\!\!\!-} = \left\lceil {\frac{8n + 2}{3}} \right\rceil\).
Throughout the proof we take the following notations:
  • I is the condition:
    $$ 1 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{3} \quad {\text{if}}\, \lambda^{\!\!\!\!\!-} \equiv 0\left( {\bmod\,3} \right) \quad {\text{or}}\quad \lambda^{\!\!\!\!\!-} \equiv 1\left( {\bmod\,3} \right) $$
  • II is the condition:
    $$ 1 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{3} + 1\quad {\text{if}}\, \lambda^{\!\!\!\!\!-} \equiv 2\left( {\bmod\,3} \right) $$
  • III is the condition:
    $$ \frac{\lambda^{\!\!\!\!\!-}}{3} + 1 \le i \le n\quad {\text{if}}\, \lambda^{\!\!\!\!\!-} \equiv 0\left( {\bmod\,3} \right)\quad {\text{or}}\quad \lambda^{\!\!\!\!\!-} \equiv 1\left( {\bmod\,3} \right) $$
  • IV is the condition:
    $$ \frac{\lambda^{\!\!\!\!\!-}}{3} + 2 \le i \le n\quad {\text{if}}\,\lambda^{\!\!\!\!\!-} \equiv 2\left( {\bmod\,3} \right) $$
  • V is the condition:
    $$ 2 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{3}\quad {\text{if}}\, \lambda^{\!\!\!\!\!-} \equiv 0\left( {\bmod\,3} \right)\quad {\text{or}}\quad \lambda^{\!\!\!\!\!-} \equiv 1\left( {\bmod\,3} \right) $$
  • VI is the condition:
    $$ 2 \le i \le \frac{\lambda^{\!\!\!\!\!-}}{3} + 1\quad {\text{if}}\,\lambda^{\!\!\!\!\!-} \equiv 2\left( {\bmod\,3} \right) $$
Now, we define \(\theta\) in the following three cases as:
Case 1: In this case, we will discuss an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling when the remainder of the division of \(8n + 2\) by 3 is 0.
\(\theta\) is defined as:
$$\begin{aligned} \theta \left( {c_i } \right) & = \left\{ {\begin{array}{*{20}l} 1 \hfill & {\quad {\text{for}}\,~i = 1~} \hfill \\ {3i - 3~} \hfill & {\quad {\text{for}}\,~2 \le i \le \frac{\lambda^{\!\!\!\!\!-} }{3} + 1~} \hfill \\ {~\lambda^{\!\!\!\!\!-} } \hfill & {\quad {\text{for}}\,~\frac{\lambda^{\!\!\!\!\!-} }{3} + 2 \le i \le n + 1} \hfill \\ \end{array} } \right. \\ \theta \left( {x_{1,i} } \right) & = \theta \left( {y_{1,i} } \right) = \left\{ {\begin{array}{*{20}l} {3i - 2} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{I}} \hfill \\ {{\text{II}}} \hfill \\ \end{array} } \right.} \hfill \\ \lambda^{\!\!\!\!\!-} \hfill & {\quad {\text{for}}~\left\{ {\begin{array}{*{20}c} {{\text{III}}} \\ {{\text{IV}}} \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ \theta \left( {x_{2,i} } \right) & = \theta \left( {y_{2,i} } \right)\left\{ {\begin{array}{*{20}l} {3i - 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{I}} \hfill \\ {{\text{II}}} \hfill \\ \end{array} } \right.} \hfill \\ \lambda^{\!\!\!\!\!-} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}c} {{\text{III}}} \\ {{\text{IV}}} \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ \theta \left( {c_i x_{1,i} } \right) & = ~\left\{ {\begin{array}{*{20}l} 1 \hfill & {\quad {\text{for}}\,~i = 1~} \hfill \\ {2i} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}c} {\text{V}} \\ {{\text{VI}}} \\ \end{array} } \right.~} \hfill \\ {~\lambda^{\!\!\!\!\!-} - 8\left( {n + 1 - i} \right) - 7} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}c} {{\text{III}}} \\ {{\text{IV}}} \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ \theta \left( {c_i x_{2,i} } \right) & = ~\left\{ {\begin{array}{*{20}l} 2 \hfill & {\quad {\text{for}}\,~i = 1~} \hfill \\ {2i + 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}c} {\text{V}} \\ {{\text{VI}}} \\ \end{array} } \right.~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 8\left( {n + 1 - i} \right) - 5} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}c} {{\text{III}}} \\ {{\text{IV}}} \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ \theta \left( {c_i y_{1,i} } \right) & = ~\theta \left( {c_i x_{1,i} } \right) + 1 \\ \theta \left( {c_i y_{2,i} } \right) & = \theta \left( {c_i x_{2,i} } \right) + 1 \\ \theta \left( {x_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {2i + 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}c} {\text{I}} \\ {{\text{II}}} \\ \end{array} } \right.} \hfill \\ {\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 3} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}c} {{\text{III}}} \\ {{\text{IV}}} \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ \theta \left( {x_{2,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {2i + 2} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}c} {\text{I}} \\ {{\text{II}}} \\ \end{array} } \right.} \hfill \\ {\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}c} {{\text{III}}} \\ {{\text{IV}}} \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ \theta \left( {y_{1,i} c_{i + 1} } \right) & = \theta \left( {x_{1,i} c_{i + 1} } \right) + 1 \\ \theta \left( {y_{2,i} c_{i + 1} } \right) & = \theta \left( {x_{2,i} c_{i + 1} } \right) + 1. \\ \end{aligned}$$
From the previous equations, we can say that \(\lambda^{\!\!\!\!\!-}\) is the greatest label. Now, the weights of the edge of \(D\left( {C_{4,n} } \right)\) are given by:
$$ \begin{aligned} W_\theta \left( {c_i x_{1,i} } \right) & = \left\{ {\begin{array}{*{20}l} 3 \hfill & {\quad {\text{for}}\, i = 1 } \hfill \\ {8i - 5} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{V}} \hfill \\ {{\text{VI}}} \hfill \\ \end{array} } \right.} \hfill \\ { 3\lambda^{\!\!\!\!\!-} - 8\left( {n + 1 - i} \right) + 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ W_\theta \left( {c_i x_{2,i} } \right) & = W_\theta \left( {c_i x_{1,i} } \right) + 2 \\ W_\theta \left( {c_i y_{1,i} } \right) & = W_\theta \left( {c_i x_{1,i} } \right) + 1 \\ W_\theta \left( {c_i y_{2,i} } \right) & = W_\theta \left( {c_i x_{1,i} } \right) + 3 \\ W_\theta \left( {x_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {8i - 4} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{I}} \hfill \\ {{\text{II}}} \hfill \\ \end{array} } \right.} \hfill \\ {3\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) + 5 } \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ W_\theta \left( {x_{2,i} c_{i + 1} } \right) & = W_\theta \left( {x_{1,i} c_{i + 1} } \right) + 2 \\ W_\theta \left( {y_{1,i} c_{i + 1} } \right) & = W_\theta \left( {x_{1,i} c_{i + 1} } \right) + 1 \\ W_\theta \left( {y_{2,i} c_{i + 1} } \right) & = W_\theta \left( {x_{1,i} c_{i + 1} } \right) + 3 \\ \end{aligned} $$
Therefore, \(\theta\) is an edge I irregular itotal \(\lambda^{\!\!\!\!\!-}\)-labeling. Hence
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
Case 2: In this case, we will discuss an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling when the remainder of the division of \(8n + 2\) by 3 is 1.
\(\theta\) is defined for vertices like case 1, but for edges is given by:
$$ \begin{aligned} \theta \left( {c_i x_{1,i} } \right) & = \left\{ {\begin{array}{*{20}l} 1 \hfill & {\quad {\text{for}}\, i = 1 } \hfill \\ {2i} \hfill & {\quad {\text{for}}\,\left\{ {\begin{array}{*{20}l} {\text{V}} \hfill \\ {{\text{VI}}} \hfill \\ \end{array} } \right. } \hfill \\ { \lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 9} \hfill & {\quad {\text{for}}\,\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} ,} \right. \\ \theta \left( {c_i x_{2,i} } \right) & = \left\{ {\begin{array}{*{20}l} 2 \hfill & {\quad {\text{for}}\, i = 1 } \hfill \\ {2i + 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{V}} \hfill \\ {{\text{VI}}} \hfill \\ \end{array} } \right. } \hfill \\ { \lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 7 } \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} } \right., \\ \theta \left( {c_i y_{1,i} } \right) & = \theta \left( {c_i x_{1,i} } \right) + 1, \\ \theta \left( {c_i y_{2,i} } \right) & = \theta \left( {c_i x_{2,i} } \right) + 1, \\ \theta \left( {x_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {2i + 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{I}} \hfill \\ {{\text{II}}} \hfill \\ \end{array} } \right.} \hfill \\ {\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 5} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} ,} \right. \\ \theta \left( {x_{2,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {2i + 2} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{I}} \hfill \\ {{\text{II}}} \hfill \\ \end{array} } \right.} \hfill \\ {\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 3} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} } \right., \\ \theta \left( {y_{1,i} c_{i + 1} } \right) & = \theta \left( {x_{1,i} c_{i + 1} } \right) + 1, \\ \theta \left( {y_{2,i} c_{i + 1} } \right) & = \theta \left( {x_{2,i} c_{i + 1} } \right) + 1. \\ \end{aligned} $$
From the previous equations, we can say that \(\lambda^{\!\!\!\!\!-}\) is the greatest upper bound. Now, the weights of edge of \(D(C_{4,n} )\) are given by:
$$ \begin{aligned} W_\theta \left( {c_i x_{1,i} } \right) = & \left\{ {\begin{array}{*{20}l} 3 \hfill & {\quad {\text{for}}\, i = 1 } \hfill \\ {8i - 5 } \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{V}} \hfill \\ {{\text{VI}}} \hfill \\ \end{array} } \right.} \hfill \\ {3\lambda^{\!\!\!\!\!-} - 8\left( {n + 1 - i} \right) - 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ W_\theta \left( {c_i x_{2,i} } \right) = & W_\theta \left( {c_i x_{1,i} } \right) + 2 \\ W_\theta \left( {c_i y_{1,i} } \right) & = W_\theta \left( {c_i x_{1,i} } \right) + 1 \\ W_\theta \left( {c_i y_{2,i} } \right) & = W_\theta \left( {c_i x_{1,i} } \right) + 3 \\ W_\theta \left( {x_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {8i - 4} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{I}} \hfill \\ {{\text{II}}} \hfill \\ \end{array} } \right.} \hfill \\ {3\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) + 3 } \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ W_\theta \left( {x_{2,i} c_{i + 1} } \right) & = W_\theta \left( {x_{1,i} c_{i + 1} } \right) + 2 \\ W_\theta \left( {y_{1,i} c_{i + 1} } \right) & = W_\theta \left( {x_{1,i} c_{i + 1} } \right) + 1 \\ W_\theta \left( {y_{2,i} c_{i + 1} } \right) & = W_\theta \left( {x_{1,i} c_{i + 1} } \right) + 3 \\ \end{aligned} $$
Therefore, \(\theta\) is an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling and
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
Case 3: In this case, we will discuss an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling when the remainder of the division of \(8n + 2\) by 3 is 2.
The function \(\theta\) of vertices \(c_i , x_{1,i} , x_{2,i} ,y_{1,i}\) and \(y_{2,i}\) is the same like case 1. For edges, it is given by:
$$ \begin{aligned} \theta \left( {c_i x_{1,i} } \right) & = \left\{ {\begin{array}{*{20}l} 1 \hfill & {\quad {\text{for}}\, i = 1 } \hfill \\ {2i} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{V}} \hfill \\ {{\text{VI}}} \hfill \\ \end{array} } \right. } \hfill \\ { \lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 8} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right. } \hfill \\ \end{array} } \right., \\ \theta \left( {c_i x_{2,i} } \right) & = \left\{ {\begin{array}{*{20}l} 2 \hfill & {\quad {\text{for}}\, i = 1 } \hfill \\ {2i + 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{V}} \hfill \\ {{\text{VI}}} \hfill \\ \end{array} } \right. } \hfill \\ {\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 6} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right. } \hfill \\ \end{array} } \right., \\ \theta \left( {c_i y_{1,i} } \right) = & \theta \left( {c_i x_{1,i} } \right) + 1, \\ \theta \left( {c_i y_{2,i} } \right) & = \theta \left( {c_i x_{2,i} } \right) + 1, \\ \theta \left( {x_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {2i + 1} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{I}} \hfill \\ {{\text{II}}} \hfill \\ \end{array} } \right. } \hfill \\ {\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 4} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right. } \hfill \\ \end{array} } \right., \\ \theta \left( {x_{2,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {2i + 2} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {\text{I}} \hfill \\ {{\text{II}}} \hfill \\ \end{array} } \right. } \hfill \\ {\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) - 2} \hfill & {\quad {\text{for}}\left\{ {\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \right. } \hfill \\ \end{array} } \right., \\ \theta \left( {y_{1,i} c_{i + 1} } \right) & = \theta \left( {x_{2,i} c_{i + 1} } \right) + 1, \\ \theta \left( {y_{2,i} c_{i + 1} } \right) & = \theta \left( {x_{2,i} c_{i + 1} } \right) + 1. \\ \end{aligned} $$
From the previous equations we can say that \(\lambda^{\!\!\!\!\!-}\) is the greatest upper bound. Now, the weights of edge of \(D(C_{4,n} )\) are given by:
$$ \begin{aligned} W_\theta \left( {c_i x_{1,i} } \right) & = \left\{ {\begin{array}{*{20}l} 3 \hfill & {\quad {\text{for}}\, i = 1 } \hfill \\ {8i - 5} \hfill & {\quad {\text{for}}\begin{array}{*{20}l} {\text{V}} \hfill \\ {{\text{VI}}} \hfill \\ \end{array} } \hfill \\ { 3\lambda^{\!\!\!\!\!-} - 8\left( {n + 1 - i} \right) } \hfill & {\quad {\text{for}}\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \hfill \\ \end{array} } \right. , \\ W_\theta \left( {c_i x_{2,i} } \right) & = W_\theta \left( {c_i x_{1,i} } \right) + 2 \\ W_\theta \left( {c_i y_{1,i} } \right) & = W_\theta \left( {c_i x_{1,i} } \right) + 1 \\ W_\theta \left( {c_i y_{2,i} } \right) & = W_\theta \left( {c_i x_{1,i} } \right) + 3 \\ W_\theta \left( {x_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {8i - 4} \hfill & {\quad {\text{for}}\begin{array}{*{20}l} {\text{I}} \hfill \\ {{\text{II}}} \hfill \\ \end{array} } \hfill \\ {3\lambda^{\!\!\!\!\!-} - 8\left( {n - i} \right) + 4 } \hfill & {\quad {\text{for}}\begin{array}{*{20}l} {{\text{III}}} \hfill \\ {{\text{IV}}} \hfill \\ \end{array} } \hfill \\ \end{array} } \right. \\ W_\theta \left( {x_{2,i} c_{i + 1} } \right) & = W_\theta \left( {x_{1,i} c_{i + 1} } \right) + 2 \\ W_\theta \left( {y_{1,i} c_{i + 1} } \right) & = W_\theta \left( {x_{1,i} c_{i + 1} } \right) + 1 \\ W_\theta \left( {y_{2,i} c_{i + 1} } \right) & = W_\theta \left( {x_{1,i} c_{i + 1} } \right) + 3. \\ \end{aligned} $$
Therefore, \(\theta\) is an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling and
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
Definition 3
A triple square snake graph \(T\left( {C_{4,n} } \right)\) consists of three square graphs that have a common path \(P_n\), as shown in Fig. 5.
Theorem 3
For a triple square snake graph \(T\left( {C_{4,n} } \right)\) we have
$$ {\text{tes}}\left( {T\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{12n + 2}{3}} \right\rceil . $$
Proof
Since \(\left| {E\left( {T\left( {C_{4,n} } \right)} \right))} \right| = 12n\) and \(\Delta \left( {T\left( {C_{4,n} } \right)} \right) = 12\). Then from (1) we have
$$ {\text{tes}}\left( {T\left( {C_{4,n} } \right)} \right) \ge \left\lceil {\frac{12n + 2}{3}} \right\rceil . $$
To prove the inverse inequality, we show that \(\lambda^{\!\!\!\!\!-}\)-labeling is an edge irregular total for \(T\left( {C_{4,n} } \right)\), where \(\lambda^{\!\!\!\!\!-} = \left\lceil {\frac{12n + 2}{3}} \right\rceil\). Let \(\beta :V\left( {T\left( {C_{4,n} } \right)} \right) \cup E\left( {T\left( {C_{4,n} } \right) } \right) \to \left\{ 1,2,3, \ldots ,\lambda^{\!\!\!\!\!-} \right\}\) be a total \(\lambda^{\!\!\!\!\!-}\)-labeling defined as:
$$ \begin{aligned} \beta \left( {c_i } \right) & = \left\{ {\begin{array}{*{20}l} 1 \hfill & {\quad {\text{for}}\,~i = 1} \hfill \\ {4i - 4} \hfill & {\quad {\text{for}}\,~2 \le i \le n~} \hfill \\ \lambda^{\!\!\!\!\!-} \hfill & {\quad {\text{for}}\,~i = n + 1} \hfill \\ \end{array} } \right., \\ \beta \left( {x_{1,~i} } \right) & = \left\{ {\begin{array}{*{20}l} {4i - 3} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 3} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {x_{2,~i} } \right) & = \left\{ {\begin{array}{*{20}l} {4i - 2} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1} \hfill \\ {\lambda^{\!\!\!\!\!-} - 2} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} ,} \right. \\ \beta \left( {x_{3,~i} } \right) & = \left\{ {\begin{array}{*{20}l} {4i - 1} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 1} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{1,~i} } \right) & = \left\{ {\begin{array}{*{20}l} {4i - 3} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 3} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{2,~i} } \right) & = \left\{ {\begin{array}{*{20}l} {4i - 2} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 2} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{3,~i} } \right) & = \left\{ {\begin{array}{*{20}l} {4i - 1} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 1} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {x_{1,~i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 1 \hfill & {\quad {\text{for}}\,~i = 1} \hfill \\ {4i - 2} \hfill & {\quad {\text{for}}\,~2 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 4} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {x_{2,~i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 2 \hfill & {\quad {\text{for}}\,~i = 1} \hfill \\ {4i - 1} \hfill & {\quad {\text{for}}\,~2 \le i \le n - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 3} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {x_{3,~i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 3 \hfill & {\quad {\text{for}}\,~i = 1} \hfill \\ {4i} \hfill & {\quad {\text{for}}\,~2 \le i \le n - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 2} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{1,~i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 2 \hfill & {\quad {\text{for}}\,~i = 1} \hfill \\ {4i - 1} \hfill & {\quad {\text{for}}\,~2 \le i \le n - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 3} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{2,~i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 3 \hfill & {\quad {\text{for}}\,~i = 1} \hfill \\ {4i} \hfill & {\quad {\text{for}}\,~2 \le i \le n~ - 1} \hfill \\ {\lambda^{\!\!\!\!\!-} - 2} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{3,~i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 4 \hfill & {\quad {\text{for}}\,~i = 1} \hfill \\ {4i + 1} \hfill & {\quad {\text{for}}\,~2 \le i \le n - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 1} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {x_{1,~i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {4i} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 3} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {x_{2,~i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {4i + 1} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 2} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {x_{3,~i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {4i + 2} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 1} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{1,~i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {4i + 1} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 2} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{2,~i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {4i + 2} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ {\lambda^{\!\!\!\!\!-} - 1} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right., \\ \beta \left( {y_{3,~i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {4i + 3} \hfill & {\quad {\text{for}}\,~1 \le i \le n~ - 1~} \hfill \\ \lambda^{\!\!\!\!\!-} \hfill & {\quad {\text{for}}\,~i = n} \hfill \\ \end{array} } \right.. \\ \end{aligned} $$
One can check that edges and vertices labels are at most \(\lambda^{\!\!\!\!\!-}\). For the edges weights under the labeling \(\beta\) we have
$$ \begin{aligned} W_\beta \left( {x_{1,i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 3 \hfill & {\quad {\text{for}}\, i = 1} \hfill \\ {12i - 9} \hfill & {\quad {\text{for}}\, 2 \le i \le n - 1} \hfill \\ {2\lambda^{\!\!\!\!\!-} + 4n - 11} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {x_{2,i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 5 \hfill & {\quad {\text{for}}\, i = 1} \hfill \\ {12i - 7} \hfill & {\quad {\text{for}}\, 2 \le i \le n - 1} \hfill \\ {2\lambda^{\!\!\!\!\!-} + 4n - 9} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {x_{3,i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 7 \hfill & {\quad {\text{for}}\, i = 1} \hfill \\ {12i - 5} \hfill & {\quad {\text{for}}\, 2 \le i \le n - 1} \hfill \\ {2\lambda^{\!\!\!\!\!-} + 4n - 7} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {y_{1,i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 4 \hfill & {\quad {\text{for}}\, i = 1} \hfill \\ {12i - 8} \hfill & {\quad {\text{for}}\, 2 \le i \le n - 1} \hfill \\ {2\lambda^{\!\!\!\!\!-} + 4n - 10} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {y_{2,i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 6 \hfill & {\quad {\text{for}}\, i = 1} \hfill \\ {12i - 6} \hfill & {\quad {\text{for}}\, 2 \le i \le n - 1} \hfill \\ {2\lambda^{\!\!\!\!\!-} + 4n - 8} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {y_{3,i} c_i } \right) & = \left\{ {\begin{array}{*{20}l} 8 \hfill & {\quad {\text{for}}\, i = 1} \hfill \\ {12i - 4} \hfill & {\quad {\text{for}}\, 2 \le i \le n - 1} \hfill \\ {2\lambda^{\!\!\!\!\!-} + 4n - 6} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {x_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {12i - 3} \hfill & {\quad {\text{for}}\, 1 \le i \le n - 1} \hfill \\ {3\lambda^{\!\!\!\!\!-} - 6} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {x_{2,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {12i - 1} \hfill & {\quad {\text{for}}\, 1 \le i \le n - 1} \hfill \\ {3\lambda^{\!\!\!\!\!-} - 4} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {x_{3,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {12i + 1} \hfill & {\quad {\text{for}}\, 1 \le i \le n - 1} \hfill \\ {3\lambda^{\!\!\!\!\!-} - 2} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {y_{1,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {12i - 2} \hfill & {\quad {\text{for}}\, 1 \le i \le n - 1} \hfill \\ {3\lambda^{\!\!\!\!\!-} - 5} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {y_{2,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {12i} \hfill & {\quad {\text{for}}\, 1 \le i \le n - 1} \hfill \\ {3\lambda^{\!\!\!\!\!-} - 3} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right., \\ W_\beta \left( {y_{3,i} c_{i + 1} } \right) & = \left\{ {\begin{array}{*{20}l} {12i + 2} \hfill & {\quad {\text{for}}\, 1 \le i \le n - 1} \hfill \\ {3\lambda^{\!\!\!\!\!-} - 1} \hfill & {\quad {\text{for}}\, i = n} \hfill \\ \end{array} } \right.. \\ \end{aligned} $$
We deduced from the previous equations that edges’ weights consist of different numbers. Hence, \(\beta\) is an edge irregular total \(\lambda^{\!\!\!\!\!-}\)-labeling of \(T\left( {C_{4,n} } \right)\) and
$$ {\text{tes}}\left( {T(C_{4,n} )} \right) = \left\lceil {\frac{12n + 2}{3}} \right\rceil = 4n + 1. $$
Definition 4
If we replaced every edge in the path Pn by m-multiple square graphs we have which called m-multiple square snake graph \(M\left( {C_{4,n} } \right)\), see Fig. 6.
Theorem 4
Let \(M_m \left( {C_{4,n} } \right)\) be m-multiple square snake graph. Then
$$ {\text{tes}}\left( {M_m \left( {C_{4,n} } \right) } \right) = \left\lceil {\frac{4mn + 2}{3}} \right\rceil $$
(10)
where \(M_1 \left( {C_{4,n} } \right) = C_{4,n}\), \(M_2 \left( {C_{4,n} } \right) = D(C_{4,n} )\) and \(M_3 \left( {C_{4,n} } \right) = T(C_{4,n} )\).
Proof
We will use a proof by induction. To prove the relation (10), for \(m = 1\), we have by definition
$$ M_1 \left( {C_{4,n} } \right) = C_{4,n} , $$
And from Theorem 1, we find that
$$ {\text{tes}}\left( {C_{4,n} } \right) = \left\lceil {\frac{4n + 2}{3}} \right\rceil . $$
For \(m = 2\) from Theorem 2, we get
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
On the other hand, we have
$$ M_2 \left( {C_{4,n} } \right) = D\left( {C_{4,n} } \right) $$
Therefore,
$$ {\text{tes}}\left( {M_2 \left( {C_{4,n} } \right)} \right) = tes\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil = \left\lceil {\frac{4n + 2}{3} + \frac{4n}{3}} \right\rceil $$
where \(\left\lceil {\frac{4n + 2}{3}} \right\rceil\) is TEIS for \(M_1 \left( {C_{4,n} } \right) = C_{4,n}\) from Theorem 1. Then the relation (10) is true for \(m = 2\).
Assume that the relation (10) is true for \(m = k\) i.e.
$$ {\text{tes}}\left( {M_k \left( {C_{4,n} } \right){ }} \right) = \left\lceil {\frac{4kn + 2}{3}} \right\rceil = \left\lceil {\frac{4(k - 1)n + 2}{3} + \frac{4n}{3}} \right\rceil $$
Now, we will prove that the relation (10) is true for \(m = k + 1\) i.e.
$$ {\text{tes}}\left( {M_k \left( {C_{4,n} } \right){ }} \right) = \left\lceil {\frac{{4\left( {k + 1} \right)n + 2}}{3}} \right\rceil = \left\lceil {\frac{4kn + 2}{3} + \frac{4n}{3}} \right\rceil . $$
Since \(\left\lceil {\frac{4kn + 2}{3}} \right\rceil\) is TEIS for \(M_k \left( {C_{4,n} } \right)\). Then, the relation (10) is true for \(m = k + 1\). Hence, \(tes\left( {M_m \left( {C_{4,n} } \right){ }} \right) = \left\lceil {\frac{4mn + 2}{3}} \right\rceil\) for any \(m\).

3 Conclusion

In this paper, a new family of graphs called square snake graph has been defined and denoted by \(C_{4,n}\). After that, we deduced the exact value of TEISs for a square snake graph \(C_{4,n}\), double square snake graph \(D(C_{4,n} )\), triple square snake graph \(T(C_{4,n} )\) and m-multiple square snake graph \(M(C_{4,n} )\).
The main findings and major contributions of the present work are
1.
Square snake graph was defined.
 
2.
Related graphs of square snake graph, like double square snake graph, triple square snake graph and m-multiple square snake graph, were defined.
 
3.
The exact values of TERS for a square snake graph \(C_{4,n}\) was calculated in the form
$$ {\text{tes}}\left( {C_{4,n} } \right) = \left\lceil {\frac{4n + 2}{3}} \right\rceil . $$
 
4.
The exact values of TERS for double square snake graph \(D\left( {C_{4,n} } \right)\) was deduced and given by
$$ {\text{tes}}\left( {D\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{8n + 2}{3}} \right\rceil . $$
 
5.
The exact values of TERS for triple square snake graph \(T(C_{4,n} )\) was calculated and given in the form
$$ {\text{tes}}\left( {T\left( {C_{4,n} } \right)} \right) = \left\lceil {\frac{12n + 2}{3}} \right\rceil . $$
 
6.
The exact values of TERS for m-multiple square snake graph \(M(C_{4,n} )\) was deduced in the form
$$ {\text{tes}}\left( {M_m \left( {C_{4,n} } \right)~} \right) = \left\lceil {\frac{{4mn + 2}}{3}} \right\rceil.$$
 

Acknowledgements

We are so grateful to the reviewer for his many valuable suggestions and comments that significantly improved the paper.

Declarations

Conflict of interest

The authors declare that they have no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
go back to reference Ahmad A, Bača M (2014) Total edge irregularity strength of a categorical product of two paths. Ars Combin 114:203–212MathSciNet Ahmad A, Bača M (2014) Total edge irregularity strength of a categorical product of two paths. Ars Combin 114:203–212MathSciNet
go back to reference Ahmad A, Siddiqui MK, Afzal D (2012) On the total edge irregularity strength of zigzag graphs. Aust J Comb 54:141–149MathSciNet Ahmad A, Siddiqui MK, Afzal D (2012) On the total edge irregularity strength of zigzag graphs. Aust J Comb 54:141–149MathSciNet
go back to reference Ahmad A, Arshad M, Ižaríková G (2015) Irregular labelings of helm and sun graphs. AKCE Int J Graphs Combin 12:161–168MathSciNetCrossRef Ahmad A, Arshad M, Ižaríková G (2015) Irregular labelings of helm and sun graphs. AKCE Int J Graphs Combin 12:161–168MathSciNetCrossRef
go back to reference Ahmad A, Siddiqui MK, Ibrahim M, Asif M (2016) On the total irregularity strength of generalized Petersen graph. Math Rep 18:197–204MathSciNet Ahmad A, Siddiqui MK, Ibrahim M, Asif M (2016) On the total irregularity strength of generalized Petersen graph. Math Rep 18:197–204MathSciNet
go back to reference Al-Mushayt O, Ahmad A, Siddiqui MK (2012) On the total edge irregularity strength of hexagonal grid graphs. Australas J Comb 53:263–271MathSciNet Al-Mushayt O, Ahmad A, Siddiqui MK (2012) On the total edge irregularity strength of hexagonal grid graphs. Australas J Comb 53:263–271MathSciNet
go back to reference Arockiamary ST, Vistthra JM (2022) Total edge irregularity strength of some polytope structures. Adv Appl Math Sci 2022:5841–5852 Arockiamary ST, Vistthra JM (2022) Total edge irregularity strength of some polytope structures. Adv Appl Math Sci 2022:5841–5852
go back to reference Bača M, Siddiqui MK (2014) Total edge irregularity strength of generalized prism. Appl Math Comput 235:168–173MathSciNet Bača M, Siddiqui MK (2014) Total edge irregularity strength of generalized prism. Appl Math Comput 235:168–173MathSciNet
go back to reference Jegan R, Uijayakumar P, Thirusangu K (2022) On total edge irregularity strength of certain classes of extended duplicate graphs. J Algebraic Stat 13:634–647 Jegan R, Uijayakumar P, Thirusangu K (2022) On total edge irregularity strength of certain classes of extended duplicate graphs. J Algebraic Stat 13:634–647
go back to reference Jendroî S, Miŝkuf J, Soták R (2007) Total edge irregularity strength of complete and complete bipartite graphs. Electron Notes Discrete Math 28:281–285MathSciNetCrossRef Jendroî S, Miŝkuf J, Soták R (2007) Total edge irregularity strength of complete and complete bipartite graphs. Electron Notes Discrete Math 28:281–285MathSciNetCrossRef
go back to reference Jeyanthi P, Sudha A (2015) Total edge irregularity strength of disjoint union of wheel graphs. Electron Notes Discrete Math 48:175–182MathSciNetCrossRef Jeyanthi P, Sudha A (2015) Total edge irregularity strength of disjoint union of wheel graphs. Electron Notes Discrete Math 48:175–182MathSciNetCrossRef
go back to reference Mary VC, Suresh D, Thirusangu K (2018) Some graph labeling on the inflation of alternate triangular snake graph of odd length. Int J Math Trends Technol 2018:134–139 Mary VC, Suresh D, Thirusangu K (2018) Some graph labeling on the inflation of alternate triangular snake graph of odd length. Int J Math Trends Technol 2018:134–139
go back to reference Naeem M, Siddiqui MK (2017) Total irregularity strength of disjoint union of isomorphic copies of Generalized Petersen graph. Discrete Math Algorithms Appl 9:1750071MathSciNetCrossRef Naeem M, Siddiqui MK (2017) Total irregularity strength of disjoint union of isomorphic copies of Generalized Petersen graph. Discrete Math Algorithms Appl 9:1750071MathSciNetCrossRef
go back to reference Putra RW, Susanti Y (2018) On total edge irregularity strength of centralized uniform theta Graphs. AKCE Inter J Graphs and Comb 15:7–13MathSciNet Putra RW, Susanti Y (2018) On total edge irregularity strength of centralized uniform theta Graphs. AKCE Inter J Graphs and Comb 15:7–13MathSciNet
go back to reference Rajasingh I, Arockiamary ST (2015) Total edge irregularity strength of series parallel graphs. Int J Pure Appl Math 99:11–21CrossRef Rajasingh I, Arockiamary ST (2015) Total edge irregularity strength of series parallel graphs. Int J Pure Appl Math 99:11–21CrossRef
go back to reference Salama F (2019) On the total irregularity strength of polar grid graph. J Taibah Univ Sci 13:912–916CrossRef Salama F (2019) On the total irregularity strength of polar grid graph. J Taibah Univ Sci 13:912–916CrossRef
go back to reference Salama F (2020a) Exact value of total edge irregularity strength for special families of graphs. Ann Univ Oradea Fasc Math 27:123–130MathSciNet Salama F (2020a) Exact value of total edge irregularity strength for special families of graphs. Ann Univ Oradea Fasc Math 27:123–130MathSciNet
go back to reference Salama F (2020b) Exact value of total edge irregularity strength for special families of graphs. Ann Univ Oradea Fasc Math 2020:26MathSciNet Salama F (2020b) Exact value of total edge irregularity strength for special families of graphs. Ann Univ Oradea Fasc Math 2020:26MathSciNet
go back to reference Salama F (2022) Computing total edge irregularity strength for heptagonal snake graph and related graphs. Soft Comput 26:155–164CrossRef Salama F (2022) Computing total edge irregularity strength for heptagonal snake graph and related graphs. Soft Comput 26:155–164CrossRef
go back to reference Salama F, Abo Elanin RM (2021) On total edge irregularity strength for some special types of uniform theta snake graphs. AIMS Math 6(8):8127–8148MathSciNetCrossRef Salama F, Abo Elanin RM (2021) On total edge irregularity strength for some special types of uniform theta snake graphs. AIMS Math 6(8):8127–8148MathSciNetCrossRef
go back to reference Salman ANM, Baskoro ET (2008) The total edge-irregular strengths of the corona product of paths with some graphs. J Comb Math Comb Comput 65:163–175MathSciNet Salman ANM, Baskoro ET (2008) The total edge-irregular strengths of the corona product of paths with some graphs. J Comb Math Comb Comput 65:163–175MathSciNet
go back to reference Siddiqui MK (2012) On edge irregularity strength of subdivision of star. Int J Math Soft Comput 2:75–82CrossRef Siddiqui MK (2012) On edge irregularity strength of subdivision of star. Int J Math Soft Comput 2:75–82CrossRef
go back to reference Siddiqui MK, Afzal D, Faisal MR (2017) Total edge irregularity strength of accordion graphs. J Comb Optim 34:534–544MathSciNetCrossRef Siddiqui MK, Afzal D, Faisal MR (2017) Total edge irregularity strength of accordion graphs. J Comb Optim 34:534–544MathSciNetCrossRef
go back to reference Tarawneh I, Hasni R, Ahmad A, Asim MA (2021) On the edge irregularity strength for some classes of plane graphs. AIMS Math 6:2724–2731MathSciNetCrossRef Tarawneh I, Hasni R, Ahmad A, Asim MA (2021) On the edge irregularity strength for some classes of plane graphs. AIMS Math 6:2724–2731MathSciNetCrossRef
go back to reference Tilukay MI, Salman ANM, Persulessy ER (2015) On the total irregularity strength of fan, wheel, triangular book, and friendship graphs. Proc Comput Sci 74:124–131CrossRef Tilukay MI, Salman ANM, Persulessy ER (2015) On the total irregularity strength of fan, wheel, triangular book, and friendship graphs. Proc Comput Sci 74:124–131CrossRef
go back to reference Yang H, Siddiqui MK, Ibrahim M, Ahmad S, Ahmad A (2018) Computing the irregularity strength of planar graphs. Mathematics 6:150CrossRef Yang H, Siddiqui MK, Ibrahim M, Ahmad S, Ahmad A (2018) Computing the irregularity strength of planar graphs. Mathematics 6:150CrossRef
Metadata
Title
Total edge irregularity strength for special types of square snake graphs
Authors
F. Salama
H. Rafat
H. Attiya
Publication date
22-12-2023
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 2/2024
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-023-09447-4

Other articles of this Issue 2/2024

Soft Computing 2/2024 Go to the issue

Foundation, algebraic, and analytical methods in soft computing

Coloring in essential annihilating-ideal graphs of commutative rings

Premium Partner