Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 3/2021

08-11-2020 | Research Paper

TOuNN: Topology Optimization using Neural Networks

Authors: Aaditya Chandrasekhar, Krishnan Suresh

Published in: Structural and Multidisciplinary Optimization | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Neural networks, and more broadly, machine learning techniques, have been recently exploited to accelerate topology optimization through data-driven training and image processing. In this paper, we demonstrate that one can directly execute topology optimization (TO) using neural networks (NN). The primary concept is to use the NN’s activation functions to represent the popular Solid Isotropic Material with Penalization (SIMP) density field. In other words, the density function is parameterized by the weights and bias associated with the NN, and spanned by NN’s activation functions; the density representation is thus independent of the finite element mesh. Then, by relying on the NN’s built-in backpropogation, and a conventional finite element solver, the density field is optimized. Methods to impose design and manufacturing constraints within the proposed framework are described and illustrated. A byproduct of representing the density field via activation functions is that it leads to a crisp and differentiable boundary. The proposed framework is simple to implement and is illustrated through 2D and 3D examples. Some of the unresolved challenges with the proposed framework are also summarized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abadi M, et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467 Abadi M, et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.​04467
go back to reference Andreassen E, et al (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscipl Optim 43(1):1–16CrossRef Andreassen E, et al (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscipl Optim 43(1):1–16CrossRef
go back to reference Arora R, et al (2016) Understanding deep neural networks with rectified linear units. arXiv:1611.01491 Arora R, et al (2016) Understanding deep neural networks with rectified linear units. arXiv:1611.​01491
go back to reference Banga S, et al (2018) 3D topology optimization using convolutional neural networks. arXiv:1808.07440 Banga S, et al (2018) 3D topology optimization using convolutional neural networks. arXiv:1808.​07440
go back to reference Baydin AG, et al (2017) Automatic differentiation in machine learning: a survey. J Mach Learn Res 18(1):5595–5637MathSciNet Baydin AG, et al (2017) Automatic differentiation in machine learning: a survey. J Mach Learn Res 18(1):5595–5637MathSciNet
go back to reference Bendsøe MP, Sigmund O (1995) Optimization of structural topology, shape, and material, volume 414 Springer Bendsøe MP, Sigmund O (1995) Optimization of structural topology, shape, and material, volume 414 Springer
go back to reference Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, Springer Berlin Heidelberg 2 edition Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, Springer Berlin Heidelberg 2 edition
go back to reference Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications Springer Science & Business Media Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications Springer Science & Business Media
go back to reference Bendsoe MP, et al (2008) An analytical model to predict optimal material properties in the context of optimal structural design. J Appl Mech 61(4):930MathSciNetCrossRef Bendsoe MP, et al (2008) An analytical model to predict optimal material properties in the context of optimal structural design. J Appl Mech 61(4):930MathSciNetCrossRef
go back to reference Bishop CM (2006) Pattern recognition and machine learning Springer Bishop CM (2006) Pattern recognition and machine learning Springer
go back to reference Chandrasekhar A, et al (2020) Build optimization of fiber-reinforced additively manufactured components. Struct Multidiscipl Optim 61(1):77–90CrossRef Chandrasekhar A, et al (2020) Build optimization of fiber-reinforced additively manufactured components. Struct Multidiscipl Optim 61(1):77–90CrossRef
go back to reference Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals, Syst 2(4):303–314MathSciNetCrossRef Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals, Syst 2(4):303–314MathSciNetCrossRef
go back to reference Deng S, Suresh K (2015) Multi-constrained topology optimization via the topological sensitivity. Struct Multidiscipl Optim 51(5):987–1001MathSciNetCrossRef Deng S, Suresh K (2015) Multi-constrained topology optimization via the topological sensitivity. Struct Multidiscipl Optim 51(5):987–1001MathSciNetCrossRef
go back to reference Díaz A., Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45CrossRef Díaz A., Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45CrossRef
go back to reference Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp 249–256
go back to reference Goodfellow I, et al (2016) Deep learning MIT Press Goodfellow I, et al (2016) Deep learning MIT Press
go back to reference Groen JP, et al (2017) Higher-order multi-resolution topology optimization using the finite cell method. Int J Numer Methods Eng 110(10):903–920MathSciNetCrossRef Groen JP, et al (2017) Higher-order multi-resolution topology optimization using the finite cell method. Int J Numer Methods Eng 110(10):903–920MathSciNetCrossRef
go back to reference Gurney K (1997) An introduction to neural networks CRC press Gurney K (1997) An introduction to neural networks CRC press
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. preprint arXiv:1502.03167 Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. preprint arXiv:1502.​03167
go back to reference Kervadec H, et al (2019) Constrained deep networks: Lagrangian optimization via log-barrier extensions. arXiv:1904.04205 Kervadec H, et al (2019) Constrained deep networks: Lagrangian optimization via log-barrier extensions. arXiv:1904.​04205
go back to reference Kingma DP , Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR Kingma DP , Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR
go back to reference Lei X, et al (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework, journal of applied mechanics, 86, 1 Lei X, et al (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework, journal of applied mechanics, 86, 1
go back to reference Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscipl Optim 50(6):1175–1196MathSciNetCrossRef Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscipl Optim 50(6):1175–1196MathSciNetCrossRef
go back to reference Lin Q, et al (2018) Investigation into the topology optimization for conductive heat transfer based on deep learning approach, vol 97 Lin Q, et al (2018) Investigation into the topology optimization for conductive heat transfer based on deep learning approach, vol 97
go back to reference Márquez-Neila P, et al (2017) Imposing hard constraints on deep networks: promises and limitations. arXiv:1706.02025 Márquez-Neila P, et al (2017) Imposing hard constraints on deep networks: promises and limitations. arXiv:1706.​02025
go back to reference Mirzendehdel AM, Suresh K (2015a) A pareto-optimal approach to multimaterial topology optimization. J Mech Des 137(10):101701CrossRef Mirzendehdel AM, Suresh K (2015a) A pareto-optimal approach to multimaterial topology optimization. J Mech Des 137(10):101701CrossRef
go back to reference Mirzendehdel AM, Suresh K (2015b) A deflated assembly free approach to large-scale implicit structural dynamics. J Comput Nonlinear Dyn 10(6):061015CrossRef Mirzendehdel AM, Suresh K (2015b) A deflated assembly free approach to large-scale implicit structural dynamics. J Comput Nonlinear Dyn 10(6):061015CrossRef
go back to reference Mirzendehdel AM, et al (2018) Strength-based topology optimization for anisotropic parts, vol 19 Mirzendehdel AM, et al (2018) Strength-based topology optimization for anisotropic parts, vol 19
go back to reference Nie Z, et al (2020) Topology GAN: topology optimization using generative adversarial networks based on physical fields over the initial domain. arXiv:2003.04685 Nie Z, et al (2020) Topology GAN: topology optimization using generative adversarial networks based on physical fields over the initial domain. arXiv:2003.​04685
go back to reference Nguyen TH, et al (2010) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscipl Optim 41(4):525–539MathSciNetCrossRef Nguyen TH, et al (2010) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscipl Optim 41(4):525–539MathSciNetCrossRef
go back to reference Nocedal J, Wright S (2006) Numerical optimization Springer Science & Business Media Nocedal J, Wright S (2006) Numerical optimization Springer Science & Business Media
go back to reference Paszke A, et al (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems, pp 8026–8037 Paszke A, et al (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems, pp 8026–8037
go back to reference Rojas-Labanda S, Stolpe M (2015) Automatic penalty continuation in structural topology optimization. Struct Multidiscipl Optim 52(6):1205–1221MathSciNetCrossRef Rojas-Labanda S, Stolpe M (2015) Automatic penalty continuation in structural topology optimization. Struct Multidiscipl Optim 52(6):1205–1221MathSciNetCrossRef
go back to reference Rumelhart DE, et al (1986) Learning representations by back-propagating errors. Nature 323 (6088):533–536CrossRef Rumelhart DE, et al (1986) Learning representations by back-propagating errors. Nature 323 (6088):533–536CrossRef
go back to reference Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscipl Optim 21(2):120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscipl Optim 21(2):120–127CrossRef
go back to reference Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef
go back to reference Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Dec Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Dec
go back to reference Smith LN (2018) A disciplined approach to neural network hyper-parameters: part 1–learning rate, batch size, momentum, and weight decay. arXiv:1803.09820 Smith LN (2018) A disciplined approach to neural network hyper-parameters: part 1–learning rate, batch size, momentum, and weight decay. arXiv:1803.​09820
go back to reference Sontag ED (1998) Vc dimension of neural networks. NATO ASI Ser F Comput S Sci 168:69–96MATH Sontag ED (1998) Vc dimension of neural networks. NATO ASI Ser F Comput S Sci 168:69–96MATH
go back to reference Sosnovik I, Oseledets I (2019) Neural networks for topology optimization. Russ J Numer Anal Math Model 34(4):215–223MathSciNetCrossRef Sosnovik I, Oseledets I (2019) Neural networks for topology optimization. Russ J Numer Anal Math Model 34(4):215–223MathSciNetCrossRef
go back to reference Suresh K (2013) Efficient generation of large-scale pareto-optimal topologies. Struct Multidiscipl Optim 47(1):49–61MathSciNetCrossRef Suresh K (2013) Efficient generation of large-scale pareto-optimal topologies. Struct Multidiscipl Optim 47(1):49–61MathSciNetCrossRef
go back to reference Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRef Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRef
go back to reference Ulu E, et al (2016) A data-driven investigation and estimation of optimal topologies under variable loading configurations. Comput Methods Biomech Biomed Eng Imaging Vis 4(2):61–72MathSciNetCrossRef Ulu E, et al (2016) A data-driven investigation and estimation of optimal topologies under variable loading configurations. Comput Methods Biomech Biomed Eng Imaging Vis 4(2):61–72MathSciNetCrossRef
go back to reference Vatanabe SL, et al (2016) Topology optimization with manufacturing constraints: a unified projection-based approach. Adv Eng Softw 100:97–112CrossRef Vatanabe SL, et al (2016) Topology optimization with manufacturing constraints: a unified projection-based approach. Adv Eng Softw 100:97–112CrossRef
go back to reference Wang MY, et al (2003) A level set method for structural topology optimization. Comput Methods in Appl Mech Eng 192(1-2):227–246MathSciNetCrossRef Wang MY, et al (2003) A level set method for structural topology optimization. Comput Methods in Appl Mech Eng 192(1-2):227–246MathSciNetCrossRef
go back to reference Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef
go back to reference Yadav P, Suresh K (2014) Large scale finite element analysis via assembly-free deflated conjugate gradient. J Comput Inf Sci Eng 14(4):041008CrossRef Yadav P, Suresh K (2014) Large scale finite element analysis via assembly-free deflated conjugate gradient. J Comput Inf Sci Eng 14(4):041008CrossRef
go back to reference Yu Y, et al (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscipl Optim 59(3):787–799CrossRef Yu Y, et al (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscipl Optim 59(3):787–799CrossRef
go back to reference Zhang Y, et al (2019) A deep convolutional neural network for topology optimization with strong generalization ability. arXiv:1901.07761 Zhang Y, et al (2019) A deep convolutional neural network for topology optimization with strong generalization ability. arXiv:1901.​07761
Metadata
Title
TOuNN: Topology Optimization using Neural Networks
Authors
Aaditya Chandrasekhar
Krishnan Suresh
Publication date
08-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 3/2021
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02748-4

Other articles of this Issue 3/2021

Structural and Multidisciplinary Optimization 3/2021 Go to the issue

Premium Partners