Skip to main content
Top
Published in: Telecommunication Systems 1/2017

18-08-2016

Towards the fulfillment of 5G network requirements: technologies and challenges

Authors: Ali Alnoman, Alagan Anpalagan

Published in: Telecommunication Systems | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Future 5G networks are expected to have the capabilities of providing extremely high data rates, seamless coverage, massive number of connected devices, low latency, etc., in order to support the internet of things era. The dynamic performance of 5G networks is a key feature for controlling the dense and rapidly changing communication environment. Technical issues such as limited frequency resources, interference, energy consumption, and network management are the main challenges facing 5G networks. This article presents a comprehensive study of 5G networks architecture, technologies, challenges, and possible solutions based on recent advances in technology and research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pierucci, L. (2015). The quality of experience perspective toward 5G technology. IEEE Wireless Communications, 22(4), 10–16.CrossRef Pierucci, L. (2015). The quality of experience perspective toward 5G technology. IEEE Wireless Communications, 22(4), 10–16.CrossRef
2.
go back to reference Liu, Y., Zhang, Y., Yu, R., & Xie, S. (2016). Integrated energy and spectrum harvesting for 5G wireless communications. IEEE Network, 29(3), 75–81.CrossRef Liu, Y., Zhang, Y., Yu, R., & Xie, S. (2016). Integrated energy and spectrum harvesting for 5G wireless communications. IEEE Network, 29(3), 75–81.CrossRef
3.
go back to reference Liu, Y., She, X., Chen, P., Zhu, J., & Yang, F. (2015). The easy network: the way to go for 5G. China Communications, 12, 113–120.CrossRef Liu, Y., She, X., Chen, P., Zhu, J., & Yang, F. (2015). The easy network: the way to go for 5G. China Communications, 12, 113–120.CrossRef
4.
go back to reference Palattella, M. R., et al. (2016). Internet of things in the 5G era: enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510–527.CrossRef Palattella, M. R., et al. (2016). Internet of things in the 5G era: enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510–527.CrossRef
5.
go back to reference Muirhead, D., Imran, M. A., & Arshad, K. (2015). Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks. IEEE Access, 3, 1562–1572.CrossRef Muirhead, D., Imran, M. A., & Arshad, K. (2015). Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks. IEEE Access, 3, 1562–1572.CrossRef
6.
go back to reference Demestichas, P., Georgakopoulos, A., Tsagkaris, K., & Kotrotsos, S. (2015). Intelligent 5G networks: managing 5G wireless/mobile broadband. IEEE Vehicular Technology Magazine, 10(3), 41–50.CrossRef Demestichas, P., Georgakopoulos, A., Tsagkaris, K., & Kotrotsos, S. (2015). Intelligent 5G networks: managing 5G wireless/mobile broadband. IEEE Vehicular Technology Magazine, 10(3), 41–50.CrossRef
7.
go back to reference Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136–143.CrossRef Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136–143.CrossRef
8.
go back to reference Wang, J., Lv, Z., Ma, Z., Sun, L., & Sheng, Y. (2015). I-net: new network architecture for 5G networks. Communications Magazine, 53(6), 44–51.CrossRef Wang, J., Lv, Z., Ma, Z., Sun, L., & Sheng, Y. (2015). I-net: new network architecture for 5G networks. Communications Magazine, 53(6), 44–51.CrossRef
9.
go back to reference Wang, H., Ni, J., Pan, Z., Sun, J., Pan, C., & Chih-Lin, I. (2014). Perspectives on new waveform design for 5G small cell. In General Assembly and Scientific Symposium (URSI GASS) (pp. 1–4). Wang, H., Ni, J., Pan, Z., Sun, J., Pan, C., & Chih-Lin, I. (2014). Perspectives on new waveform design for 5G small cell. In General Assembly and Scientific Symposium (URSI GASS) (pp. 1–4).
10.
go back to reference Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: a radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49.CrossRef Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: a radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49.CrossRef
11.
go back to reference Kela, P., Turkka, J., & Costa, M. (2015). Borderless mobility in 5G outdoor ultra-dense networks. IEEE Access, 3, 1462–1476.CrossRef Kela, P., Turkka, J., & Costa, M. (2015). Borderless mobility in 5G outdoor ultra-dense networks. IEEE Access, 3, 1462–1476.CrossRef
12.
go back to reference Gupta, A., & Jha, R. K. (2015). A survey of 5G network: architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef Gupta, A., & Jha, R. K. (2015). A survey of 5G network: architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef
13.
go back to reference Jungnickel, V., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.CrossRef Jungnickel, V., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.CrossRef
14.
go back to reference Galinina, O., Pyattaev, A., Andreev, S., Dohler, M., & Koucheryavy, Y. (2015). 5G multi-RAT LTE-WiFi ultra-dense small cells: performance dynamics, architecture, and trends. IEEE Journal on Selected Areas in Communications, 33(6), 1224–1240.CrossRef Galinina, O., Pyattaev, A., Andreev, S., Dohler, M., & Koucheryavy, Y. (2015). 5G multi-RAT LTE-WiFi ultra-dense small cells: performance dynamics, architecture, and trends. IEEE Journal on Selected Areas in Communications, 33(6), 1224–1240.CrossRef
15.
go back to reference Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377.CrossRef Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377.CrossRef
16.
go back to reference Hossain, E., & Hasan, M. (2015). 5G cellular: key enabling technologies and research challenges. IEEE Instrumentation and Measurement Magazine, 18(5), 11–21.CrossRef Hossain, E., & Hasan, M. (2015). 5G cellular: key enabling technologies and research challenges. IEEE Instrumentation and Measurement Magazine, 18(5), 11–21.CrossRef
17.
go back to reference Wang, W., & Zhang, Q. (2014). Local cooperation architecture for self-healing femtocell networks. IEEE Wireless Communications, 21(2), 42–49.CrossRef Wang, W., & Zhang, Q. (2014). Local cooperation architecture for self-healing femtocell networks. IEEE Wireless Communications, 21(2), 42–49.CrossRef
18.
go back to reference Chuang, M.-C., Chen, M. C., & Sun, Y. S. (2015). Resource management issues in 5G ultra dense smallcell networks. In International Conference on Information networking (ICOIN) (pp. 159–1640). Chuang, M.-C., Chen, M. C., & Sun, Y. S. (2015). Resource management issues in 5G ultra dense smallcell networks. In International Conference on Information networking (ICOIN) (pp. 159–1640).
19.
go back to reference Ge, X., Tu, S., Mao, G., Wang, C. X., & Han, T. (2016). The 5G ultra dense cellular networks. Wireless Communications, 23(1), 72–79.CrossRef Ge, X., Tu, S., Mao, G., Wang, C. X., & Han, T. (2016). The 5G ultra dense cellular networks. Wireless Communications, 23(1), 72–79.CrossRef
20.
go back to reference Liu, C., Wang, J., Cheng, L., Zhu, M., & Chang, G. K. (2014). Key microwave-photonics technologies for next-generation cloud-based radio access networks. Journal of Lightwave Technology, 32(20), 3452–3460.CrossRef Liu, C., Wang, J., Cheng, L., Zhu, M., & Chang, G. K. (2014). Key microwave-photonics technologies for next-generation cloud-based radio access networks. Journal of Lightwave Technology, 32(20), 3452–3460.CrossRef
21.
go back to reference Zhang, H., Chu, X., Guo, W., & Wang, S. (2015). Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164.CrossRef Zhang, H., Chu, X., Guo, W., & Wang, S. (2015). Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164.CrossRef
22.
go back to reference Zhang, H., Jiang, C., Mao, X., & Chen, H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65(3), 1761–1771.CrossRef Zhang, H., Jiang, C., Mao, X., & Chen, H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65(3), 1761–1771.CrossRef
23.
go back to reference Peng, H., Xiao, Y., Ruyue, Y. N., & Yifei, Y. (2016). Ultra dense network: challenges, enabling technologies and new trends. China Communications, 13(2), 30–40. Peng, H., Xiao, Y., Ruyue, Y. N., & Yifei, Y. (2016). Ultra dense network: challenges, enabling technologies and new trends. China Communications, 13(2), 30–40.
24.
go back to reference Yasuda, H. et al. (2015). A study on moving cell in 5G cellular system. In IEEE Conference on Vehicular Technology (VTC) (pp. 1–5). Yasuda, H. et al. (2015). A study on moving cell in 5G cellular system. In IEEE Conference on Vehicular Technology (VTC) (pp. 1–5).
25.
go back to reference Kliks, A., Holland, O., Basaure, A., & Matinmikko, M. (2015). Spectrum and license flexibility for 5G networks. IEEE Communications Magazine, 53(7), 42–49.CrossRef Kliks, A., Holland, O., Basaure, A., & Matinmikko, M. (2015). Spectrum and license flexibility for 5G networks. IEEE Communications Magazine, 53(7), 42–49.CrossRef
26.
go back to reference Usman, M., Gebremariam, A. A., Raza, U., & Granelli, F. (2015). A software-defined device-to-device communication architecture for public safety applications in 5G networks. IEEE Access, 3, 1649–1654.CrossRef Usman, M., Gebremariam, A. A., Raza, U., & Granelli, F. (2015). A software-defined device-to-device communication architecture for public safety applications in 5G networks. IEEE Access, 3, 1649–1654.CrossRef
27.
go back to reference Cheng, W., Zhang, X., & Zhang, H. (2014). Optimal power allocation for full-duplex D2D communications over wireless cellular networks. In IEEE Global Communications Conference (GLOBECOM) (pp. 4764–4769). Cheng, W., Zhang, X., & Zhang, H. (2014). Optimal power allocation for full-duplex D2D communications over wireless cellular networks. In IEEE Global Communications Conference (GLOBECOM) (pp. 4764–4769).
28.
go back to reference Wang, L., Tian, F., Svensson, T., Feng, D., Song, M., & Li, S. (2015). Exploiting full duplex for device-to-device communications in heterogeneous networks. IEEE Communications Magazine, 53(5), 146–152.CrossRef Wang, L., Tian, F., Svensson, T., Feng, D., Song, M., & Li, S. (2015). Exploiting full duplex for device-to-device communications in heterogeneous networks. IEEE Communications Magazine, 53(5), 146–152.CrossRef
29.
go back to reference Wu, G., Yang, C., Li, S., & Li, G. Y. (2015). Recent advances in energy efficient networks and their application in 5G systems. IEEE Wireless Communications, 22(2), 145–151.CrossRef Wu, G., Yang, C., Li, S., & Li, G. Y. (2015). Recent advances in energy efficient networks and their application in 5G systems. IEEE Wireless Communications, 22(2), 145–151.CrossRef
30.
go back to reference Mumtaz, S., Huq, K. M. S., Ashraf, M. I., Rodriguez, J., Monteiro, V., & Politis, C. (2015). Cognitive vehicular communication for 5G. IEEE Communications Magazine, 53(7), 109–117.CrossRef Mumtaz, S., Huq, K. M. S., Ashraf, M. I., Rodriguez, J., Monteiro, V., & Politis, C. (2015). Cognitive vehicular communication for 5G. IEEE Communications Magazine, 53(7), 109–117.CrossRef
31.
go back to reference Pervaiz, H., Musavian, L., & Ni, Q. (2015). The area energy and area spectrum efficiency trade-off in 5G heterogeneous networks. In IEEE International Conference on Communication Workshop (ICCW) (pp. 1178–1183). Pervaiz, H., Musavian, L., & Ni, Q. (2015). The area energy and area spectrum efficiency trade-off in 5G heterogeneous networks. In IEEE International Conference on Communication Workshop (ICCW) (pp. 1178–1183).
32.
go back to reference Yang, F., Wang, H., Mei, C., Zhang, J., & Wang, M. (2015). A flexible three clouds 5G mobile network architecture based on NFV and SDN. China Communications, 12, 121–131.CrossRef Yang, F., Wang, H., Mei, C., Zhang, J., & Wang, M. (2015). A flexible three clouds 5G mobile network architecture based on NFV and SDN. China Communications, 12, 121–131.CrossRef
33.
go back to reference Condoluci, M., Dohler, M., Araniti, G., Molinaro, A., & Zheng, K. (2015). Toward 5G denseNets: architectural advances for effective machine-type communications over femtocells. IEEE Communications Magazine, 53(1), 134–141.CrossRef Condoluci, M., Dohler, M., Araniti, G., Molinaro, A., & Zheng, K. (2015). Toward 5G denseNets: architectural advances for effective machine-type communications over femtocells. IEEE Communications Magazine, 53(1), 134–141.CrossRef
34.
go back to reference Shariatmadari, H., et al. (2015). Machine-type communications: current status and future perspectives toward 5G systems. IEEE Communications Magazine, 53(9), 10–17.CrossRef Shariatmadari, H., et al. (2015). Machine-type communications: current status and future perspectives toward 5G systems. IEEE Communications Magazine, 53(9), 10–17.CrossRef
35.
go back to reference Zhang, X., Cheng, W., & Zhang, H. (2014). Heterogeneous statistical QoS provisioning over 5G mobile wireless networks. IEEE Network, 28(6), 46–53.CrossRef Zhang, X., Cheng, W., & Zhang, H. (2014). Heterogeneous statistical QoS provisioning over 5G mobile wireless networks. IEEE Network, 28(6), 46–53.CrossRef
36.
go back to reference Goyal, S., Liu, P., Panwar, S. S., Difazio, R. A., Yang, R., & Bala, E. (2015). Full duplex cellular systems: will doubling interference prevent doubling capacity? IEEE Communications Magazine, 53(5), 121–127.CrossRef Goyal, S., Liu, P., Panwar, S. S., Difazio, R. A., Yang, R., & Bala, E. (2015). Full duplex cellular systems: will doubling interference prevent doubling capacity? IEEE Communications Magazine, 53(5), 121–127.CrossRef
37.
go back to reference Xie, X., & Zhang, X. (2014). Does full-duplex double the capacity of wireless networks? In IEEE INFOCOM (pp. 253–261). Xie, X., & Zhang, X. (2014). Does full-duplex double the capacity of wireless networks? In IEEE INFOCOM (pp. 253–261).
38.
go back to reference Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5), 128–137.CrossRef Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5), 128–137.CrossRef
39.
go back to reference Catania, D., Sarret, M. G., Cattoni, A. F., Frederiksen, F., Berardinelli, G., & Mogensen, P. (2014). The Potential of Flexible UL/DL Slot Assignment in 5G Systems. In IEEE Vehicular Technology Conference (pp. 1–6). Catania, D., Sarret, M. G., Cattoni, A. F., Frederiksen, F., Berardinelli, G., & Mogensen, P. (2014). The Potential of Flexible UL/DL Slot Assignment in 5G Systems. In IEEE Vehicular Technology Conference (pp. 1–6).
40.
go back to reference Han, C. L. I. S., Xu, Z., Wang, S., Sun, Q., & Chen, Y. (2016). New paradigm of 5G wireless internet. IEEE Journal on Selected Areas in Communications, 34(3), 474–482.CrossRef Han, C. L. I. S., Xu, Z., Wang, S., Sun, Q., & Chen, Y. (2016). New paradigm of 5G wireless internet. IEEE Journal on Selected Areas in Communications, 34(3), 474–482.CrossRef
41.
go back to reference Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.CrossRef Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.CrossRef
42.
go back to reference Huq, K. M. S., Mumtaz, S., Bachmatiuk, J., Rodriguez, J., Wang, X., & Aguiar, R. L. (2014). Green HetNet CoMP: energy efficiency analysis and optimization. IEEE Transaction on Vehicular Technology, 64(10), 4670–4683.CrossRef Huq, K. M. S., Mumtaz, S., Bachmatiuk, J., Rodriguez, J., Wang, X., & Aguiar, R. L. (2014). Green HetNet CoMP: energy efficiency analysis and optimization. IEEE Transaction on Vehicular Technology, 64(10), 4670–4683.CrossRef
43.
go back to reference Mustafa, H. A. U., Imran, M. A., Shakir, M. Z., Imran, A., & Tafazolli, R. (2015). Separation framework: an enabler for cooperative and D2D communication for future 5G networks. IEEE Communications Surveys and Tutorials, 18(1), 419–445.CrossRef Mustafa, H. A. U., Imran, M. A., Shakir, M. Z., Imran, A., & Tafazolli, R. (2015). Separation framework: an enabler for cooperative and D2D communication for future 5G networks. IEEE Communications Surveys and Tutorials, 18(1), 419–445.CrossRef
44.
go back to reference Zhang, H., Jiang, C., Cheng, J., & Leung, V. C. M. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.CrossRef Zhang, H., Jiang, C., Cheng, J., & Leung, V. C. M. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.CrossRef
45.
go back to reference Zhang, H., Jiang, C., Hu, R. Q., & Qian, Y. (2016). Self-organization in disaster-resilient heterogeneous small cell networks. IEEE Network, 30(2), 116–121.CrossRef Zhang, H., Jiang, C., Hu, R. Q., & Qian, Y. (2016). Self-organization in disaster-resilient heterogeneous small cell networks. IEEE Network, 30(2), 116–121.CrossRef
46.
go back to reference Han, Q., Liang, S., & Zhang, H. (2015). Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world. IEEE Network, 29(2), 40–45.CrossRef Han, Q., Liang, S., & Zhang, H. (2015). Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world. IEEE Network, 29(2), 40–45.CrossRef
47.
go back to reference Zhang, N., Cheng, N., Gamage, A. T., Zhang, K., Mark, J. W., & Shen, X. (2015). Cloud assisted HetNets toward 5G wireless networks. IEEE Communications Magazine, 53(6), 59–65.CrossRef Zhang, N., Cheng, N., Gamage, A. T., Zhang, K., Mark, J. W., & Shen, X. (2015). Cloud assisted HetNets toward 5G wireless networks. IEEE Communications Magazine, 53(6), 59–65.CrossRef
48.
go back to reference Liu, X., Wang, P., Lan, Z., & Shao, B. (2015). Biological characteristic online identification technique over 5G network. IEEE Wireless Communications, 22(6), 84–90.CrossRef Liu, X., Wang, P., Lan, Z., & Shao, B. (2015). Biological characteristic online identification technique over 5G network. IEEE Wireless Communications, 22(6), 84–90.CrossRef
49.
go back to reference Jiang, C., Zhang, H., Ren, Y., & Chen, H. (2014). Energy-efficient non-cooperative cognitive radio networks: micro, meso, and macro views. IEEE Communications Magazine, 52(7), 14–20.CrossRef Jiang, C., Zhang, H., Ren, Y., & Chen, H. (2014). Energy-efficient non-cooperative cognitive radio networks: micro, meso, and macro views. IEEE Communications Magazine, 52(7), 14–20.CrossRef
50.
go back to reference Rost, P., et al. (2015). Benefits and challenges of virtualization in 5G radio access networks. IEEE Communications Magazine, 53(12), 75–82.CrossRef Rost, P., et al. (2015). Benefits and challenges of virtualization in 5G radio access networks. IEEE Communications Magazine, 53(12), 75–82.CrossRef
51.
go back to reference Sezer, S., et al. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36–43.CrossRef Sezer, S., et al. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36–43.CrossRef
52.
go back to reference Feng, Z., Qiu, C., Feng, Z., Wei, Z., Li, W., & Zhang, P. (2015). An effective approach to 5G: wireless network virtualization. IEEE Communications Magazine, 53(12), 53–59.CrossRef Feng, Z., Qiu, C., Feng, Z., Wei, Z., Li, W., & Zhang, P. (2015). An effective approach to 5G: wireless network virtualization. IEEE Communications Magazine, 53(12), 53–59.CrossRef
53.
go back to reference Wang, H., Chen, S., Xu, H., Ai, M., & Shi, Y. (2015). SoftNet: a software defined decentralized mobile network architecture toward 5G. IEEE Network, 29(2), 16–22.CrossRef Wang, H., Chen, S., Xu, H., Ai, M., & Shi, Y. (2015). SoftNet: a software defined decentralized mobile network architecture toward 5G. IEEE Network, 29(2), 16–22.CrossRef
54.
go back to reference Bogucka, H., Kryszkiewicz, P., & Kliks, A. (2015). Dynamic spectrum aggregation for future 5G communications. IEEE Communications Magazine, 53(5), 35–43.CrossRef Bogucka, H., Kryszkiewicz, P., & Kliks, A. (2015). Dynamic spectrum aggregation for future 5G communications. IEEE Communications Magazine, 53(5), 35–43.CrossRef
55.
go back to reference Zappone, A., Sanguinetti, L., Bacci, G., Jorswieck, E., & Debbah, M. (2015). Energy-efficient power control: a look at 5G wireless technologies. IEEE Transactions on Signal Processing, 64(7), 1668–1683.CrossRef Zappone, A., Sanguinetti, L., Bacci, G., Jorswieck, E., & Debbah, M. (2015). Energy-efficient power control: a look at 5G wireless technologies. IEEE Transactions on Signal Processing, 64(7), 1668–1683.CrossRef
56.
go back to reference Tran, G.K., Shimodaira, H., Rezagah, R. E., Sakaguchi, K., & Araki, K. (2015). Dynamic cell activation and user association for green 5G heterogeneous cellular networks. In IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 2364–2368). Tran, G.K., Shimodaira, H., Rezagah, R. E., Sakaguchi, K., & Araki, K. (2015). Dynamic cell activation and user association for green 5G heterogeneous cellular networks. In IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 2364–2368).
57.
go back to reference Han, N. D., Chung, Y., & Jo, M. (2015). Green data centers for cloud-assisted mobile Ad Hoc networks in 5G. IEEE Network, 29(2), 70–76.CrossRef Han, N. D., Chung, Y., & Jo, M. (2015). Green data centers for cloud-assisted mobile Ad Hoc networks in 5G. IEEE Network, 29(2), 70–76.CrossRef
58.
go back to reference Liu, G., Yu, F. R., Ji, H., & Leung, V. C. M. (2014). The energy-efficient resource allocation in cellular networks with shared full-duplex relaying. IEEE Transactions on Vehicular Technology, 64(8), 3711–3724.CrossRef Liu, G., Yu, F. R., Ji, H., & Leung, V. C. M. (2014). The energy-efficient resource allocation in cellular networks with shared full-duplex relaying. IEEE Transactions on Vehicular Technology, 64(8), 3711–3724.CrossRef
59.
go back to reference Jing, W., Lu, Z., Zhang, H., Zhang, Z., Zhao, J., & Wen, X. (2014). Energy-Saving Resource Allocation Scheme With QoS Provisioning in OFDMA Femtocell Networks. In IEEE International Conference on Communications Workshops (ICC) (pp. 912–917). Jing, W., Lu, Z., Zhang, H., Zhang, Z., Zhao, J., & Wen, X. (2014). Energy-Saving Resource Allocation Scheme With QoS Provisioning in OFDMA Femtocell Networks. In IEEE International Conference on Communications Workshops (ICC) (pp. 912–917).
60.
go back to reference Oliva, A. D. L., et al. (2015). Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wireless Communications, 22(5), 32–40.CrossRef Oliva, A. D. L., et al. (2015). Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wireless Communications, 22(5), 32–40.CrossRef
61.
go back to reference Geraci, G., Wildemeersch, M., & Quek, T. Q. S. (2015). Distributed network management for green wireless communications. In IEEE Global Communications Conference (GLOBECOM) (pp. 1–7). Geraci, G., Wildemeersch, M., & Quek, T. Q. S. (2015). Distributed network management for green wireless communications. In IEEE Global Communications Conference (GLOBECOM) (pp. 1–7).
62.
go back to reference Barco, R., Lazaro, P., & Munoz, P. (2012). A unified framework for self-healing in wireless networks. IEEE Communications Magazine, 50(12), 134–142.CrossRef Barco, R., Lazaro, P., & Munoz, P. (2012). A unified framework for self-healing in wireless networks. IEEE Communications Magazine, 50(12), 134–142.CrossRef
63.
go back to reference Zheng, W., Zhang, H., Chu, X., & Wen, X. (2013). Mobility robustness optimization in self-organizing LTE femtocell networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–10. Zheng, W., Zhang, H., Chu, X., & Wen, X. (2013). Mobility robustness optimization in self-organizing LTE femtocell networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–10.
64.
go back to reference Imran, A., Zoha, A., & Abu-Dayya, A. (2014). Challenges in 5G: how to empower SON with big data for enabling 5G. IEEE Network, 28(6), 27–33.CrossRef Imran, A., Zoha, A., & Abu-Dayya, A. (2014). Challenges in 5G: how to empower SON with big data for enabling 5G. IEEE Network, 28(6), 27–33.CrossRef
65.
go back to reference Duan, D., Yang, L., Cao, Y., Wei, J., & Cheng, X. (2014). Self-organizing networks: from bio-inspired to social-driven. IEEE Intelligent Systems, 29(2), 86–90.CrossRef Duan, D., Yang, L., Cao, Y., Wei, J., & Cheng, X. (2014). Self-organizing networks: from bio-inspired to social-driven. IEEE Intelligent Systems, 29(2), 86–90.CrossRef
66.
go back to reference Nam, C., Joo, C., & Bahk, S. (2015). Joint subcarrier assignment and power allocation in full-duplex OFDMA networks. IEEE Transactions on Wireless Communications, 14(6), 3108–3119.CrossRef Nam, C., Joo, C., & Bahk, S. (2015). Joint subcarrier assignment and power allocation in full-duplex OFDMA networks. IEEE Transactions on Wireless Communications, 14(6), 3108–3119.CrossRef
Metadata
Title
Towards the fulfillment of 5G network requirements: technologies and challenges
Authors
Ali Alnoman
Alagan Anpalagan
Publication date
18-08-2016
Publisher
Springer US
Published in
Telecommunication Systems / Issue 1/2017
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-016-0216-9

Other articles of this Issue 1/2017

Telecommunication Systems 1/2017 Go to the issue