Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 1/2024

01-01-2024

Trace Cu2+ detection based on GH-PEDOT:PSS-Pt NP-modified glassy carbon electrode

Authors: Hao Changshi, Wang Yiding, Wu Hongpeng, Duan Shaojing, Liu Bo, Yan Luting

Published in: Journal of Materials Science: Materials in Electronics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We successfully developed a GH-PP-Pt/GCE electrode by compounding graphene hydrogel (GH) with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), and in situ electrodeposition of Pt nanoparticles. The experimental results prove that the performance of GH-PP-Pt/GCE to trace copper ions significantly improved, the sensitivity reaches 45.673 µA/µmol L−1, the limit of detection is as low as 9.9 nmol L−1, and the linear range is 0.08–10 µmol L−1. Its detection ability is at a relatively high level among the existing Cu2+ electrochemical detection sensors, and the repeatability, stability, and anti-interference are good.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference M. Araya, B.H. Chen, L.M. Klevay et al., Confirmation of an acute no-ob served-adverse-effect and low-observed-adverse-effect level for copper in bottled drinking water in a multi-site international study. Regul. Toxicol. Pharmacol. 38(3), 389–399 (2003)CrossRef M. Araya, B.H. Chen, L.M. Klevay et al., Confirmation of an acute no-ob served-adverse-effect and low-observed-adverse-effect level for copper in bottled drinking water in a multi-site international study. Regul. Toxicol. Pharmacol. 38(3), 389–399 (2003)CrossRef
2.
go back to reference M. Pohanka, Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl Lek Listy 120(6), 397–409 (2019) M. Pohanka, Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl Lek Listy 120(6), 397–409 (2019)
3.
go back to reference A. Sinkovic, A. Strdin, F. Svensek, Severe acute copper sulphate Poisoning: a case report. Arh Hig Rada Toksikol 59(1), 31–35 (2008)CrossRef A. Sinkovic, A. Strdin, F. Svensek, Severe acute copper sulphate Poisoning: a case report. Arh Hig Rada Toksikol 59(1), 31–35 (2008)CrossRef
4.
go back to reference X.B. Yin, X.P. Yan, Y. Jiang et al., On-line coupling of capillary electrophoresis to hydride generation atomic fluorescence spectrometry for arsenic speciation analysis. Anal. Chem. 74(15), 3720–3725 (2002)CrossRef X.B. Yin, X.P. Yan, Y. Jiang et al., On-line coupling of capillary electrophoresis to hydride generation atomic fluorescence spectrometry for arsenic speciation analysis. Anal. Chem. 74(15), 3720–3725 (2002)CrossRef
5.
go back to reference J. Aggett, A.C. Aspell, Determination of Arsenic(III) and total Arsenic by atomic-absorption spectroscopy. Analyst 101(1202), 341–347 (1976)CrossRef J. Aggett, A.C. Aspell, Determination of Arsenic(III) and total Arsenic by atomic-absorption spectroscopy. Analyst 101(1202), 341–347 (1976)CrossRef
6.
go back to reference X.P. Yan, R. Kerrich, M.J. Hendry, Determination of (ultra)trace amounts of arsenic(III) and arsenic(V) in water by inductively coupled plasma mass spectrometry coupled with flow injection on-line sorption preconcentration and separation in a knotted reactor. Anal. Chem. 70(22), 4736–4742 (1998)CrossRef X.P. Yan, R. Kerrich, M.J. Hendry, Determination of (ultra)trace amounts of arsenic(III) and arsenic(V) in water by inductively coupled plasma mass spectrometry coupled with flow injection on-line sorption preconcentration and separation in a knotted reactor. Anal. Chem. 70(22), 4736–4742 (1998)CrossRef
7.
go back to reference M. Hossien-poor-Zaryabi, M. Chamsaz, T. Heidari et al., Application of dispersive liquid–liquid micro-extraction using mean centering of ratio spectra method for trace determination of mercury in food and environmental samples. Food. Anal. Methods 7(2), 352–359 (2014)CrossRef M. Hossien-poor-Zaryabi, M. Chamsaz, T. Heidari et al., Application of dispersive liquid–liquid micro-extraction using mean centering of ratio spectra method for trace determination of mercury in food and environmental samples. Food. Anal. Methods 7(2), 352–359 (2014)CrossRef
8.
go back to reference J.M. Gong, T. Zhou, D.D. Song et al., Stripping voltammetric detection of Mercury(II) based on a bimetallic Au-Pt inorganic–organic hybrid nanocomposite modified glassy carbon electrode. Anal. Chem. 82(2), 567–573 (2010)CrossRef J.M. Gong, T. Zhou, D.D. Song et al., Stripping voltammetric detection of Mercury(II) based on a bimetallic Au-Pt inorganic–organic hybrid nanocomposite modified glassy carbon electrode. Anal. Chem. 82(2), 567–573 (2010)CrossRef
9.
go back to reference E.L.S. Wong, E. Chow, J.J. Gooding, The electrochemical detection of cadmium using surface-immobilized DNA. Electrochem. Commun. 9(4), 845–849 (2007)CrossRef E.L.S. Wong, E. Chow, J.J. Gooding, The electrochemical detection of cadmium using surface-immobilized DNA. Electrochem. Commun. 9(4), 845–849 (2007)CrossRef
10.
go back to reference S.L. Ting, S.J. Ee, A. Ananthanarayanan et al., Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta 172, 7–11 (2015)CrossRef S.L. Ting, S.J. Ee, A. Ananthanarayanan et al., Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta 172, 7–11 (2015)CrossRef
11.
go back to reference X.N. Lin, Z.W. Lu, Y.X. Zhang et al., A glassy carbon electrode modified with a bismuth film and laser etched graphene for simultaneous voltammetric sensing of cd(II) and pb(II). Microchim. Acta 185(9), 438 (2018)CrossRef X.N. Lin, Z.W. Lu, Y.X. Zhang et al., A glassy carbon electrode modified with a bismuth film and laser etched graphene for simultaneous voltammetric sensing of cd(II) and pb(II). Microchim. Acta 185(9), 438 (2018)CrossRef
12.
go back to reference E. Majid, S. Hrapovic, Y.L. Liu et al., Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal. Chem. 78(3), 762–769 (2006)CrossRef E. Majid, S. Hrapovic, Y.L. Liu et al., Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal. Chem. 78(3), 762–769 (2006)CrossRef
13.
go back to reference M.R. Rahman, T. Okajima, T. Ohsaka, Selective detection of as(III) at the au(III)-like polycrystalline gold electrode. Anal. Chem. 82(22), 9169–9176 (2010)CrossRef M.R. Rahman, T. Okajima, T. Ohsaka, Selective detection of as(III) at the au(III)-like polycrystalline gold electrode. Anal. Chem. 82(22), 9169–9176 (2010)CrossRef
14.
go back to reference B.K. Jena, C.R. Raj, Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal. Chem. 80(13), 4836–4844 (2008)CrossRef B.K. Jena, C.R. Raj, Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal. Chem. 80(13), 4836–4844 (2008)CrossRef
15.
go back to reference K. Ravichandran, D.S. Vasanthi, P. Kavitha et al., Vermiwash-derived enzyme-activated ZnO nanomaterial towards two cascading applications: enhanced photocatalysis and effective irrigation. J. Mater. Sci. 32, 9584–9595 (2021) K. Ravichandran, D.S. Vasanthi, P. Kavitha et al., Vermiwash-derived enzyme-activated ZnO nanomaterial towards two cascading applications: enhanced photocatalysis and effective irrigation. J. Mater. Sci. 32, 9584–9595 (2021)
16.
go back to reference P. Bindra, A. Hazra, Capacitive gas and vapor sensors using nanomaterials. J. Mater. Sci. 29, 6129–6148 (2018) P. Bindra, A. Hazra, Capacitive gas and vapor sensors using nanomaterials. J. Mater. Sci. 29, 6129–6148 (2018)
17.
go back to reference J.J. Gooding, J. Shein, L.M.H. Lai, Using nanoparticle aggregation to give an ultrasensitive amperometric metal ion sensor. Electrochem. Commun. 11(10), 2015–2018 (2009)CrossRef J.J. Gooding, J. Shein, L.M.H. Lai, Using nanoparticle aggregation to give an ultrasensitive amperometric metal ion sensor. Electrochem. Commun. 11(10), 2015–2018 (2009)CrossRef
18.
go back to reference T. Wu, T. Xu, Z. Ma, Sensitive electrochemical detection of copper ions based on the copper(II) ion assisted etching of Au@Ag nanoparticles. Analyst 140(23), 8041–8047 (2015)CrossRef T. Wu, T. Xu, Z. Ma, Sensitive electrochemical detection of copper ions based on the copper(II) ion assisted etching of Au@Ag nanoparticles. Analyst 140(23), 8041–8047 (2015)CrossRef
19.
go back to reference W.J. Li, X.Z. Yao, Z. Guo et al., Fe3O4 with novel nanoplate-stacked structure: surfactant-free hydrothermal synthesis and application in detection of heavy metal ions. J. Electroanal. Chem. 749, 75–82 (2015)CrossRef W.J. Li, X.Z. Yao, Z. Guo et al., Fe3O4 with novel nanoplate-stacked structure: surfactant-free hydrothermal synthesis and application in detection of heavy metal ions. J. Electroanal. Chem. 749, 75–82 (2015)CrossRef
20.
go back to reference D.K. Neethipathi, A. Beniwal, A.M. Bass et al., MoS2 modified screen printed carbon electrode based flexible electrochemical sensor for detection of copper ions in water. IEEE Sens. J. 23(8), 8146–8153 (2023)CrossRef D.K. Neethipathi, A. Beniwal, A.M. Bass et al., MoS2 modified screen printed carbon electrode based flexible electrochemical sensor for detection of copper ions in water. IEEE Sens. J. 23(8), 8146–8153 (2023)CrossRef
21.
go back to reference D.A.C. Brownson, C.E. Banks, Graphene electrochemistry: an overview of potential applications. Analyst 135(11), 2768–2778 (2010)CrossRef D.A.C. Brownson, C.E. Banks, Graphene electrochemistry: an overview of potential applications. Analyst 135(11), 2768–2778 (2010)CrossRef
22.
go back to reference G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano 2(7), 1487–1491 (2008)CrossRef G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano 2(7), 1487–1491 (2008)CrossRef
23.
go back to reference C. Gao, X.Y. Yu, R.X. Xu et al., AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS Appl. Mater. Interfaces 4(9), 4672–4682 (2012)CrossRef C. Gao, X.Y. Yu, R.X. Xu et al., AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS Appl. Mater. Interfaces 4(9), 4672–4682 (2012)CrossRef
24.
go back to reference L. Zhang, G.Q. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate Capability. J. Phys. Chem. C 115(34), 17206–17212 (2011)CrossRef L. Zhang, G.Q. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate Capability. J. Phys. Chem. C 115(34), 17206–17212 (2011)CrossRef
25.
go back to reference X.W. Yang, J.W. Zhu, L. Qiu et al., Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23(25), 2833–2838 (2011)CrossRef X.W. Yang, J.W. Zhu, L. Qiu et al., Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23(25), 2833–2838 (2011)CrossRef
26.
go back to reference Y.X. Xu, K.X. Sheng, C. Li et al., Self-assembled graphene hydrogel via a one-step hydrothermal process. Acs Nano 4(7), 4324–4330 (2010)CrossRef Y.X. Xu, K.X. Sheng, C. Li et al., Self-assembled graphene hydrogel via a one-step hydrothermal process. Acs Nano 4(7), 4324–4330 (2010)CrossRef
27.
go back to reference U.N. Maiti, J. Lim, K.E. Lee et al., Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 26(4), 615–619 (2014)CrossRef U.N. Maiti, J. Lim, K.E. Lee et al., Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 26(4), 615–619 (2014)CrossRef
29.
go back to reference T. Takano, H. Masunaga, A. Fujiwara et al., PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films. Macromolecules 45(9), 3859–3865 (2012)CrossRef T. Takano, H. Masunaga, A. Fujiwara et al., PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films. Macromolecules 45(9), 3859–3865 (2012)CrossRef
30.
go back to reference N.G. Yasri, A.J. Halabi, G. Istamboulie et al., Chronoamperometric determination of lead ions using PEDOT:PSS modified carbon electrodes. Talanta 85(5), 2528–2533 (2011)CrossRef N.G. Yasri, A.J. Halabi, G. Istamboulie et al., Chronoamperometric determination of lead ions using PEDOT:PSS modified carbon electrodes. Talanta 85(5), 2528–2533 (2011)CrossRef
31.
go back to reference Y.K. Kim, M.H. Kim, D.H. Min, Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem. Commun. 47(11), 3195–3197 (2011)CrossRef Y.K. Kim, M.H. Kim, D.H. Min, Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem. Commun. 47(11), 3195–3197 (2011)CrossRef
32.
go back to reference B. Cheng, L. Zhou, L. Lu et al., Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sens. Actuators B 259, 364–371 (2018)CrossRef B. Cheng, L. Zhou, L. Lu et al., Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sens. Actuators B 259, 364–371 (2018)CrossRef
33.
go back to reference M. Lu, Y. Deng, Y. Luo et al., Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal. Chem. 91(1), 888–895 (2019)CrossRef M. Lu, Y. Deng, Y. Luo et al., Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal. Chem. 91(1), 888–895 (2019)CrossRef
34.
go back to reference S. Hao, J. Li, Y. Li et al., Facile synthesis of a 3D MnO2 nanowire/Ni foam electrode for the electrochemical detection of Cu(ii). Anal. Methods 8(24), 4919–4925 (2016)CrossRef S. Hao, J. Li, Y. Li et al., Facile synthesis of a 3D MnO2 nanowire/Ni foam electrode for the electrochemical detection of Cu(ii). Anal. Methods 8(24), 4919–4925 (2016)CrossRef
35.
go back to reference J. Shang, M. Zhao, H. Qu et al., New application of p-n junction in electrochemical detection: the detection of heavy metal ions. J. Electroanal. Chem. 855, 113624 (2019)CrossRef J. Shang, M. Zhao, H. Qu et al., New application of p-n junction in electrochemical detection: the detection of heavy metal ions. J. Electroanal. Chem. 855, 113624 (2019)CrossRef
Metadata
Title
Trace Cu2+ detection based on GH-PEDOT:PSS-Pt NP-modified glassy carbon electrode
Authors
Hao Changshi
Wang Yiding
Wu Hongpeng
Duan Shaojing
Liu Bo
Yan Luting
Publication date
01-01-2024
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 1/2024
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-023-11882-w

Other articles of this Issue 1/2024

Journal of Materials Science: Materials in Electronics 1/2024 Go to the issue