Skip to main content
Top
Published in: Journal of Electronic Materials 9/2023

14-07-2023 | Original Research Article

Tracing of Ammonia Gas by Solution-Combustion-Derived Pristine and Nb-Doped TiO2 Films: Beneficial Impact of Crystallinity and Adsorbed Oxygen on the Gas Response

Authors: Robbi Vivek Vardhan, G. Manjunath, P. Nagaraju, Saumen Mandal

Published in: Journal of Electronic Materials | Issue 9/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current work delivers room-temperature ammonia (NH3) gas-detectable pristine, Nb-doped TiO2 air- and vacuum-annealed films obtained through the solution-combustion process. Polycrystalline anatase crystal structured films without any dopant oxide phases were processed at 400°C on glass substrates. The crystallinity was higher in pristine films than in doped films; the morphological features were similar in all the films. The films were > 50% transparent, and the estimated optical energy band gap was greater in doped films than in pristine films. All the films detected NH3 gas (25 ppm to 100 ppm) at room temperature, and the gas response was highly dependent on the crystallinity and relative area fraction of adsorbed oxygen (% of OA). The vacuum-annealed pristine film exhibited a better gas response than the other films at all NH3 gas concentrations due to high crystallinity and % of OA (10.15%). The film demonstrated maximum gas response of ~16 towards 100 ppm of NH3 gas and displayed good selectivity. Even though the doping reduced the crystallite size from ~17 nm to ~9 nm, it also diminished the crystallinity of the films, which significantly impacted the deterioration of their gas response.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, and T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 1 (2021).CrossRef S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, and T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 1 (2021).CrossRef
2.
go back to reference D. Kwak, Y. Lei, and R. Maric, Ammonia gas sensors: a comprehensive review. Talanta 204, 713 (2019).CrossRef D. Kwak, Y. Lei, and R. Maric, Ammonia gas sensors: a comprehensive review. Talanta 204, 713 (2019).CrossRef
3.
go back to reference V.E. Bochenkov and G.B. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Met. Oxide Nanostruct. Appl. 3, 31 (2010). V.E. Bochenkov and G.B. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Met. Oxide Nanostruct. Appl. 3, 31 (2010).
4.
go back to reference G.F. Fine, L.M. Cavanagh, A. Afonja, and R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors. 10, 5469 (2010).CrossRef G.F. Fine, L.M. Cavanagh, A. Afonja, and R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors. 10, 5469 (2010).CrossRef
5.
go back to reference G. Manjunath, P. Nagaraju, and S. Mandal, A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature. J. Mater. Sci. Mater. Electron. 31, 10366 (2020).CrossRef G. Manjunath, P. Nagaraju, and S. Mandal, A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature. J. Mater. Sci. Mater. Electron. 31, 10366 (2020).CrossRef
6.
go back to reference A. Ramesh, D.S. Gavaskar, P. Nagaraju, S. Duvvuri, S.R.K. Vanjari, and C. Subrahmanyam, Mn-doped ZnO microspheres prepared by solution combustion synthesis for room temperature NH3 sensing. Appl. Surf. Sci. Adv. 12, 100349 (2022).CrossRef A. Ramesh, D.S. Gavaskar, P. Nagaraju, S. Duvvuri, S.R.K. Vanjari, and C. Subrahmanyam, Mn-doped ZnO microspheres prepared by solution combustion synthesis for room temperature NH3 sensing. Appl. Surf. Sci. Adv. 12, 100349 (2022).CrossRef
7.
go back to reference G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B. 139, 1 (2007).CrossRef G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B. 139, 1 (2007).CrossRef
8.
go back to reference H.G. Moon, Y.S. Shim, D.H. Kim, H.Y. Jeong, M. Jeong, J.Y. Jung, S.M. Han, J.K. Kim, J.S. Kim, H.H. Park, J.H. Lee, H.L. Tuller, S.J. Yoon, and H.W. Jang, Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors. Sci. Rep. 2, 1 (2012).CrossRef H.G. Moon, Y.S. Shim, D.H. Kim, H.Y. Jeong, M. Jeong, J.Y. Jung, S.M. Han, J.K. Kim, J.S. Kim, H.H. Park, J.H. Lee, H.L. Tuller, S.J. Yoon, and H.W. Jang, Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors. Sci. Rep. 2, 1 (2012).CrossRef
9.
go back to reference G. Eranna, B.C. Joshi, D.P. Runthala, and R.P. Gupta, Oxide materials for development of integrated gas sensors: a comprehensive review. Crit. Re. Solid State Mater. Sci. 29, 111 (2004).CrossRef G. Eranna, B.C. Joshi, D.P. Runthala, and R.P. Gupta, Oxide materials for development of integrated gas sensors: a comprehensive review. Crit. Re. Solid State Mater. Sci. 29, 111 (2004).CrossRef
10.
go back to reference X. Tian, X. Cui, T. Lai, J. Ren, Z. Yang, M. Xiao, B. Wang, X. Xiao, and Y. Wang, Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: a review. Nano Mater. Sci. 3, 390 (2021).CrossRef X. Tian, X. Cui, T. Lai, J. Ren, Z. Yang, M. Xiao, B. Wang, X. Xiao, and Y. Wang, Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: a review. Nano Mater. Sci. 3, 390 (2021).CrossRef
11.
go back to reference S. Singh, H. Kaur, V.N. Singh, K. Jain, and T.D. Senguttuvan, Highly sensitive and pulse-like response toward ethanol of Nb doped TiO2 nanorods based gas sensors. Sens. Actuators B. Chem. 171–172, 899 (2012).CrossRef S. Singh, H. Kaur, V.N. Singh, K. Jain, and T.D. Senguttuvan, Highly sensitive and pulse-like response toward ethanol of Nb doped TiO2 nanorods based gas sensors. Sens. Actuators B. Chem. 171–172, 899 (2012).CrossRef
12.
go back to reference V. Nechita, J. Schoonman, and V. Musat, Ethanol and methanol sensing characteristics of Nb-doped TiO2 porous thin films. Phys. Status solidi. 209, 153 (2012).CrossRef V. Nechita, J. Schoonman, and V. Musat, Ethanol and methanol sensing characteristics of Nb-doped TiO2 porous thin films. Phys. Status solidi. 209, 153 (2012).CrossRef
13.
go back to reference V. Galstyan, E. Comini, G. Faglia, A. Vomiero, L. Borgese, E. Bontempi, and G. Sberveglieri, Fabrication and investigation of gas sensing properties of Nb-doped TiO2 nanotubular arrays. Nanotechnology 23, 235706 (2012).CrossRef V. Galstyan, E. Comini, G. Faglia, A. Vomiero, L. Borgese, E. Bontempi, and G. Sberveglieri, Fabrication and investigation of gas sensing properties of Nb-doped TiO2 nanotubular arrays. Nanotechnology 23, 235706 (2012).CrossRef
14.
go back to reference S. Phanichphant, C. Liewhiran, K. Wetchakun, A. Wisitsoraat, and A. Tuantranont, Flame-made Nb-doped TiO2 ethanol and acetone sensors. Sensors. 11, 472 (2011).CrossRef S. Phanichphant, C. Liewhiran, K. Wetchakun, A. Wisitsoraat, and A. Tuantranont, Flame-made Nb-doped TiO2 ethanol and acetone sensors. Sensors. 11, 472 (2011).CrossRef
15.
go back to reference N.A. Dahoudi, Low temperature gas sensing coatings made through wet chemical deposition of niobium doped titanium oxide colloid. Mater. Sci. Appl. 02, 265 (2011). N.A. Dahoudi, Low temperature gas sensing coatings made through wet chemical deposition of niobium doped titanium oxide colloid. Mater. Sci. Appl. 02, 265 (2011).
16.
go back to reference M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale, and M. Notaro, Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sens. Actuators. B. Chem. 58, 310 (1999).CrossRef M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale, and M. Notaro, Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sens. Actuators. B. Chem. 58, 310 (1999).CrossRef
17.
go back to reference L. Gan, C. Wu, Y. Tan, B. Chi, J. Pu, and L. Jian, Oxygen sensing performance of Nb-doped TiO2 thin film with porous structure. J. Alloys. Compd. 585, 729 (2014).CrossRef L. Gan, C. Wu, Y. Tan, B. Chi, J. Pu, and L. Jian, Oxygen sensing performance of Nb-doped TiO2 thin film with porous structure. J. Alloys. Compd. 585, 729 (2014).CrossRef
18.
go back to reference R.K. Sharma, M.C. Bhatnagar, and G.L. Sharma, Mechanism in Nb doped titania oxygen gas sensor. Sens. Actuators B. Chem. 46, 194 (1998).CrossRef R.K. Sharma, M.C. Bhatnagar, and G.L. Sharma, Mechanism in Nb doped titania oxygen gas sensor. Sens. Actuators B. Chem. 46, 194 (1998).CrossRef
19.
go back to reference Y. Yamada, Y. Seno, Y. Masuoka, T. Nakamura, and K. Yamashita, NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties. Sens. Actuators. B. Chem. 66, 164 (2000).CrossRef Y. Yamada, Y. Seno, Y. Masuoka, T. Nakamura, and K. Yamashita, NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties. Sens. Actuators. B. Chem. 66, 164 (2000).CrossRef
20.
go back to reference W. Wen and J.M. Wu, Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv. 4, 58090 (2014).CrossRef W. Wen and J.M. Wu, Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv. 4, 58090 (2014).CrossRef
21.
go back to reference M.G. Kim, M.G. Kanatzidis, A. Facchetti, and T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382 (2011).CrossRef M.G. Kim, M.G. Kanatzidis, A. Facchetti, and T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382 (2011).CrossRef
22.
go back to reference E. Carlos, R. Martins, E. Fortunato, and R. Branquinho, Solution combustion synthesis: towards a sustainable approach for metal oxides. Che. Eur. J. 26, 9099 (2020).CrossRef E. Carlos, R. Martins, E. Fortunato, and R. Branquinho, Solution combustion synthesis: towards a sustainable approach for metal oxides. Che. Eur. J. 26, 9099 (2020).CrossRef
23.
go back to reference G. Manjunath, P. Nagaraju, and S. Mandal, Ultra-sensitive clogging free combustible molecular precursor-based screen-printed ZnO sensors: a detection of ammonia and formaldehyde breath markers. J. Mater. Sci. Mater. Electron. 32, 5713 (2021).CrossRef G. Manjunath, P. Nagaraju, and S. Mandal, Ultra-sensitive clogging free combustible molecular precursor-based screen-printed ZnO sensors: a detection of ammonia and formaldehyde breath markers. J. Mater. Sci. Mater. Electron. 32, 5713 (2021).CrossRef
24.
go back to reference R.V. Vardhan, G. Manjunath, P. Nagaraju, and S. Mandal, Ammonia gas detection by solution combustion-processed pristine & Ti-doped ZnO transparent films: a reverse effect of doping on gas response. J. Mater. Sci. Mater. Electron. 34, 986 (2023).CrossRef R.V. Vardhan, G. Manjunath, P. Nagaraju, and S. Mandal, Ammonia gas detection by solution combustion-processed pristine & Ti-doped ZnO transparent films: a reverse effect of doping on gas response. J. Mater. Sci. Mater. Electron. 34, 986 (2023).CrossRef
25.
go back to reference C. Wang, J. Meinhardt, and P. Löbmann, Growth mechanism of Nb-doped TiO2 sol-gel multilayer films characterized by SEM and focus/defocus TEM. J. Solgel. Sci. Technol. 53, 148 (2010).CrossRef C. Wang, J. Meinhardt, and P. Löbmann, Growth mechanism of Nb-doped TiO2 sol-gel multilayer films characterized by SEM and focus/defocus TEM. J. Solgel. Sci. Technol. 53, 148 (2010).CrossRef
26.
go back to reference L. Zhao, X. Zhao, J. Liu, A. Zhang, D. Wang, and B. Wei, Fabrications of Nb-doped TiO2 (TNO) transparent conductive oxide polycrystalline films on glass substrates by sol-gel method. J. Solgel. Sci. Technol. 53, 475 (2010).CrossRef L. Zhao, X. Zhao, J. Liu, A. Zhang, D. Wang, and B. Wei, Fabrications of Nb-doped TiO2 (TNO) transparent conductive oxide polycrystalline films on glass substrates by sol-gel method. J. Solgel. Sci. Technol. 53, 475 (2010).CrossRef
27.
go back to reference K.C. Ok, J. Park, J.H. Lee, B. du Ahn, J.H. Lee, K.B. Chung, and J.S. Park, Semiconducting behavior of niobium-doped titanium oxide in the amorphous state. Appl. Phys. Lett. 100, 2012 (2012).CrossRef K.C. Ok, J. Park, J.H. Lee, B. du Ahn, J.H. Lee, K.B. Chung, and J.S. Park, Semiconducting behavior of niobium-doped titanium oxide in the amorphous state. Appl. Phys. Lett. 100, 2012 (2012).CrossRef
28.
go back to reference M. Fallah, M.R. Zamani-Meymian, R. Rahimi, and M. Rabbani, Effect of annealing treatment on electrical and optical properties of Nb doped TiO2 thin films as a TCO prepared by sol-gel spin coating method. Appl. Surf. Sci. 316, 456 (2014).CrossRef M. Fallah, M.R. Zamani-Meymian, R. Rahimi, and M. Rabbani, Effect of annealing treatment on electrical and optical properties of Nb doped TiO2 thin films as a TCO prepared by sol-gel spin coating method. Appl. Surf. Sci. 316, 456 (2014).CrossRef
29.
go back to reference B.K. Kaleji, R. Sarraf-Mamoory, and A. Fujishima, Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Mater. Chem. Phys. 132, 210 (2012).CrossRef B.K. Kaleji, R. Sarraf-Mamoory, and A. Fujishima, Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Mater. Chem. Phys. 132, 210 (2012).CrossRef
30.
go back to reference M. Regragui, M. Addou, A. Outzourhit, J.C. Bernéde, E.E. Idrissi, E. Benseddik, and A. Kachouane, Preparation and characterization of pyrolytic spray deposited electrochromic tungsten trioxide films. Thin Solid Films 358, 40 (2000).CrossRef M. Regragui, M. Addou, A. Outzourhit, J.C. Bernéde, E.E. Idrissi, E. Benseddik, and A. Kachouane, Preparation and characterization of pyrolytic spray deposited electrochromic tungsten trioxide films. Thin Solid Films 358, 40 (2000).CrossRef
31.
go back to reference W. Wu, L. Zhang, X. Zhai, C. Liang, and K. Yu, Preparation and photocatalytic activity analysis of nanometer TiO2 modified by surfactant. Nanomater. Nanotechnol. 8, 1 (2018).CrossRef W. Wu, L. Zhang, X. Zhai, C. Liang, and K. Yu, Preparation and photocatalytic activity analysis of nanometer TiO2 modified by surfactant. Nanomater. Nanotechnol. 8, 1 (2018).CrossRef
32.
go back to reference N. Joshi, L.F. da Silva, F.M. Shimizu, V.R. Mastelaro, J.C. M’Peko, L. Lin, and O.N. Oliveira, UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Microchim. Acta. 186, 1 (2019).CrossRef N. Joshi, L.F. da Silva, F.M. Shimizu, V.R. Mastelaro, J.C. M’Peko, L. Lin, and O.N. Oliveira, UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Microchim. Acta. 186, 1 (2019).CrossRef
33.
go back to reference M.K. Lee, C.M. Shih, S.C. Fang, H.F. Tu, and C.L. Ho, Preparation of niobium-doped titanium oxide film by liquid phase deposition. Jpn. J. Appl. Phys. 46, 1653 (2007).CrossRef M.K. Lee, C.M. Shih, S.C. Fang, H.F. Tu, and C.L. Ho, Preparation of niobium-doped titanium oxide film by liquid phase deposition. Jpn. J. Appl. Phys. 46, 1653 (2007).CrossRef
34.
go back to reference A.V. Manole, M. Dobromir, M. Gîrtan, R. Mallet, G. Rusu, and D. Luca, Optical properties of Nb-doped TiO2 thin films prepared by sol-gel method. Ceram. Int. 39, 4771 (2013).CrossRef A.V. Manole, M. Dobromir, M. Gîrtan, R. Mallet, G. Rusu, and D. Luca, Optical properties of Nb-doped TiO2 thin films prepared by sol-gel method. Ceram. Int. 39, 4771 (2013).CrossRef
35.
go back to reference G. Manjunath, R.V. Vardhan, L.L. Praveen, P. Nagaraju, and S. Mandal, Room-temperature detection of ammonia and formaldehyde gases by LaxBa1−xSnO3−δ (x = 0 and 0.05) screen printed sensors: effect of ceria and ruthenate sensitization. Appl. Phys. A. Mater. Sci. Process. 127, 1 (2021).CrossRef G. Manjunath, R.V. Vardhan, L.L. Praveen, P. Nagaraju, and S. Mandal, Room-temperature detection of ammonia and formaldehyde gases by LaxBa1−xSnO3−δ (x = 0 and 0.05) screen printed sensors: effect of ceria and ruthenate sensitization. Appl. Phys. A. Mater. Sci. Process. 127, 1 (2021).CrossRef
36.
go back to reference V. Shelke, M.P. Bhole, and D.S. Patil, Effect of open air annealing on spin coated aluminum doped ZnO nanostructure. Mater. Chem. Phys. 141, 81 (2013).CrossRef V. Shelke, M.P. Bhole, and D.S. Patil, Effect of open air annealing on spin coated aluminum doped ZnO nanostructure. Mater. Chem. Phys. 141, 81 (2013).CrossRef
37.
go back to reference I.K. Er, A.O. Çağırtekin, A. Ajjaq, M.A. Yıldırım, A. Ateş, and S. Acar, Complex electrical impedance and modulus characterizations of ZnO: Sn thin films in a wide temperature range. J. Mater. Sci. Mater. Electron. 32, 13594 (2021).CrossRef I.K. Er, A.O. Çağırtekin, A. Ajjaq, M.A. Yıldırım, A. Ateş, and S. Acar, Complex electrical impedance and modulus characterizations of ZnO: Sn thin films in a wide temperature range. J. Mater. Sci. Mater. Electron. 32, 13594 (2021).CrossRef
38.
go back to reference G. Korotcenkov and B.K. Cho, Thin film SnO2-based gas sensors: film thickness influence. Sens. Actuators B. Chem. 142, 321 (2009).CrossRef G. Korotcenkov and B.K. Cho, Thin film SnO2-based gas sensors: film thickness influence. Sens. Actuators B. Chem. 142, 321 (2009).CrossRef
39.
go back to reference K. Shingange, Z.P. Tshabalala, O.M. Ntwaeaborwa, D.E. Motaung, and G.H. Mhlongo, Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J. Colloid Interface Sci. 479, 127 (2016).CrossRef K. Shingange, Z.P. Tshabalala, O.M. Ntwaeaborwa, D.E. Motaung, and G.H. Mhlongo, Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J. Colloid Interface Sci. 479, 127 (2016).CrossRef
40.
go back to reference V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitization. Sens. Actuators B. Chem. 123, 701 (2007).CrossRef V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitization. Sens. Actuators B. Chem. 123, 701 (2007).CrossRef
41.
go back to reference R.S. Ganesh, M. Navaneethan, G.K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasaki, and Y. Hayakawa, Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J. Alloys Compd. 698, 555 (2017).CrossRef R.S. Ganesh, M. Navaneethan, G.K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasaki, and Y. Hayakawa, Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J. Alloys Compd. 698, 555 (2017).CrossRef
42.
go back to reference R. Pandeeswari and B.G. Jeyaprakash, High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature. Sens. Actuators B. Chem. 195, 206 (2014).CrossRef R. Pandeeswari and B.G. Jeyaprakash, High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature. Sens. Actuators B. Chem. 195, 206 (2014).CrossRef
43.
go back to reference M. Poloju, N. Jayababu, and M.V.R. Reddy, Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B. 227, 61 (2018).CrossRef M. Poloju, N. Jayababu, and M.V.R. Reddy, Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B. 227, 61 (2018).CrossRef
44.
go back to reference L. Zhu and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators A. Phys. 267, 242 (2017).CrossRef L. Zhu and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators A. Phys. 267, 242 (2017).CrossRef
45.
go back to reference S.W. Choi, J.Y. Park, and S.S. Kim, Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. J. Mater. Res. 26, 1662 (2011).CrossRef S.W. Choi, J.Y. Park, and S.S. Kim, Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. J. Mater. Res. 26, 1662 (2011).CrossRef
46.
go back to reference Z.M. Seeley, A. Bandyopadhyay, and S. Bose, Influence of crystallinity on CO gas sensing for TiO2 films. Mater. Sci. Eng. B. 164, 38 (2009).CrossRef Z.M. Seeley, A. Bandyopadhyay, and S. Bose, Influence of crystallinity on CO gas sensing for TiO2 films. Mater. Sci. Eng. B. 164, 38 (2009).CrossRef
47.
go back to reference A. Katoch, G.J. Sun, S.W. Choi, J.H. Byun, and S.S. Kim, Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B. Chem. 185, 411 (2013).CrossRef A. Katoch, G.J. Sun, S.W. Choi, J.H. Byun, and S.S. Kim, Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B. Chem. 185, 411 (2013).CrossRef
48.
go back to reference V.G. Krishnan, P. Elango, and V. Ganesan, Surface characterization and gas sensing performance of yttrium doped TiO2 nanofilms prepared by automated nebulizer spray pyrolysis (ANSP). J. Mater. Sci. Mater. Electron. 29, 392 (2018).CrossRef V.G. Krishnan, P. Elango, and V. Ganesan, Surface characterization and gas sensing performance of yttrium doped TiO2 nanofilms prepared by automated nebulizer spray pyrolysis (ANSP). J. Mater. Sci. Mater. Electron. 29, 392 (2018).CrossRef
49.
go back to reference S.G. Pawar, S.L. Patil, M.A. Chougule, B.T. Raut, P.R. Godase, R.N. Mulik, S. Sen, and V.B. Patil, New method for fabrication of CSA doped PANi-TiO2 thin-film ammonia sensor. IEEE Sens. J. 11, 2980 (2011).CrossRef S.G. Pawar, S.L. Patil, M.A. Chougule, B.T. Raut, P.R. Godase, R.N. Mulik, S. Sen, and V.B. Patil, New method for fabrication of CSA doped PANi-TiO2 thin-film ammonia sensor. IEEE Sens. J. 11, 2980 (2011).CrossRef
50.
go back to reference V.G. Krishnan, N. Ravikumar, R. Dilip, and P. Elango, Gas sensing nature and characterization of Zr doped TiO2 films prepared by automated nebulizer spray pyrolysis technique. Optik 206, 1 (2020). V.G. Krishnan, N. Ravikumar, R. Dilip, and P. Elango, Gas sensing nature and characterization of Zr doped TiO2 films prepared by automated nebulizer spray pyrolysis technique. Optik 206, 1 (2020).
51.
go back to reference N. Mintcheva, P. Srinivasan, J.B.B. Rayappan, A.A. Kuchmizhak, S. Gurbatov, and S.A. Kulinich, Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles. Appl. Surf. Sci. 507, 1 (2020).CrossRef N. Mintcheva, P. Srinivasan, J.B.B. Rayappan, A.A. Kuchmizhak, S. Gurbatov, and S.A. Kulinich, Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles. Appl. Surf. Sci. 507, 1 (2020).CrossRef
52.
go back to reference X. Yang, H. Fu, L. Zhang, X. An, S. Xiong, X. Jiang, and A. Yu, Enhanced gas sensing performance based on the fabrication of polycrystalline Ag@TiO2 core-shell nanowires. Sens. Actuators B. Chem. 286, 483 (2019).CrossRef X. Yang, H. Fu, L. Zhang, X. An, S. Xiong, X. Jiang, and A. Yu, Enhanced gas sensing performance based on the fabrication of polycrystalline Ag@TiO2 core-shell nanowires. Sens. Actuators B. Chem. 286, 483 (2019).CrossRef
53.
go back to reference H. Liu, W. Shen, and X. Chen, A room temperature operated ammonia gas sensor based on Ag-decorated TiO2 quantum dot clusters. RSC Adv. 9, 24519 (2019).CrossRef H. Liu, W. Shen, and X. Chen, A room temperature operated ammonia gas sensor based on Ag-decorated TiO2 quantum dot clusters. RSC Adv. 9, 24519 (2019).CrossRef
54.
go back to reference Y. Zhou, Q. Ding, J. Li, Q. Yang, T. Wu, W. Zhu, X. OuYang, L. Liu, and Y. Wang, TiO2/InVO4 n–n heterojunctions for efficient ammonia gas detection and their sensing mechanisms. J. Mater. Sci. 54, 13660 (2019).CrossRef Y. Zhou, Q. Ding, J. Li, Q. Yang, T. Wu, W. Zhu, X. OuYang, L. Liu, and Y. Wang, TiO2/InVO4 nn heterojunctions for efficient ammonia gas detection and their sensing mechanisms. J. Mater. Sci. 54, 13660 (2019).CrossRef
55.
go back to reference A. Kumar, A. Sanger, A. Kumar, and R. Chandra, Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv. 6, 77636 (2016).CrossRef A. Kumar, A. Sanger, A. Kumar, and R. Chandra, Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv. 6, 77636 (2016).CrossRef
56.
go back to reference C. Zhu, X. Cheng, X. Dong, and Y.M. Xu, Enhanced sub-ppm NH3 gas sensing performance of PANI/TiO2 nanocomposites at room temperature. Front. Chem 6, 1 (2018).CrossRef C. Zhu, X. Cheng, X. Dong, and Y.M. Xu, Enhanced sub-ppm NH3 gas sensing performance of PANI/TiO2 nanocomposites at room temperature. Front. Chem 6, 1 (2018).CrossRef
57.
go back to reference H. Liu, W. Shen, X. Chen, and J. Corriou, A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature. J. Mater. Sci. Mater. Electron. 29, 18380 (2018).CrossRef H. Liu, W. Shen, X. Chen, and J. Corriou, A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature. J. Mater. Sci. Mater. Electron. 29, 18380 (2018).CrossRef
58.
go back to reference H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, and Z. Ying, Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sens. Actuators B. 129, 319 (2008).CrossRef H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, and Z. Ying, Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sens. Actuators B. 129, 319 (2008).CrossRef
59.
go back to reference Z. Ye, H. Tai, T. Xie, Y. Su, Z. Yuan, C. Liu, and Y. Jiang, A facile method to develop novel TiO2/rGO layered film sensor for detecting ammonia at room temperature. Mater. Lett. 165, 127 (2016).CrossRef Z. Ye, H. Tai, T. Xie, Y. Su, Z. Yuan, C. Liu, and Y. Jiang, A facile method to develop novel TiO2/rGO layered film sensor for detecting ammonia at room temperature. Mater. Lett. 165, 127 (2016).CrossRef
60.
go back to reference F. Pan, H. Lin, H. Zhai, Z. Miao, Y. Zhang, K. Xu, B. Guan, H. Huang, and H. Zhang, Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing. Sens. Actuators B. Chem. 261, 451 (2018).CrossRef F. Pan, H. Lin, H. Zhai, Z. Miao, Y. Zhang, K. Xu, B. Guan, H. Huang, and H. Zhang, Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing. Sens. Actuators B. Chem. 261, 451 (2018).CrossRef
61.
go back to reference V.G. Krishnan, P. Elango, K. Ravikumar, R. Marnadu, O.M. Aldossary, and M. Ubaidullah, Noticeable improvement in the toxic gas-sensing activity of the Zn-doped TiO2 films for sensing devices. New J. Chem. 45, 10488 (2021).CrossRef V.G. Krishnan, P. Elango, K. Ravikumar, R. Marnadu, O.M. Aldossary, and M. Ubaidullah, Noticeable improvement in the toxic gas-sensing activity of the Zn-doped TiO2 films for sensing devices. New J. Chem. 45, 10488 (2021).CrossRef
62.
go back to reference P. Chaudhari and S. Mishra, Effect of CuO as a dopant in TiO2 on ammonia and hydrogen sulphide sensing at room temperature. Measurement 90, 468 (2016).CrossRef P. Chaudhari and S. Mishra, Effect of CuO as a dopant in TiO2 on ammonia and hydrogen sulphide sensing at room temperature. Measurement 90, 468 (2016).CrossRef
63.
go back to reference H. Fu, X. Yang, X. An, W. Fan, X. Jiang, and A. Yu, Experimental and theoretical studies of V2O5@TiO2 core-shell hybrid composites with high gas sensing performance towards ammonia. Sens. Actuators B. Chem. 252, 103 (2017).CrossRef H. Fu, X. Yang, X. An, W. Fan, X. Jiang, and A. Yu, Experimental and theoretical studies of V2O5@TiO2 core-shell hybrid composites with high gas sensing performance towards ammonia. Sens. Actuators B. Chem. 252, 103 (2017).CrossRef
64.
go back to reference S.S. Rane, D.A. Kajale, S.S. Arbuj, S.B. Rane, and S.W. Gosavi, Hydrogen, ethanol and ammonia gas sensing properties of nano-structured titanium dioxide thick films. J. Mater. Sci.: Mater. Electron. 28, 9011 (2017). S.S. Rane, D.A. Kajale, S.S. Arbuj, S.B. Rane, and S.W. Gosavi, Hydrogen, ethanol and ammonia gas sensing properties of nano-structured titanium dioxide thick films. J. Mater. Sci.: Mater. Electron. 28, 9011 (2017).
Metadata
Title
Tracing of Ammonia Gas by Solution-Combustion-Derived Pristine and Nb-Doped TiO2 Films: Beneficial Impact of Crystallinity and Adsorbed Oxygen on the Gas Response
Authors
Robbi Vivek Vardhan
G. Manjunath
P. Nagaraju
Saumen Mandal
Publication date
14-07-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10577-6

Other articles of this Issue 9/2023

Journal of Electronic Materials 9/2023 Go to the issue