Skip to main content
Top
Published in: Rock Mechanics and Rock Engineering 8/2016

23-04-2016 | Original Paper

Transgranular Crack Nucleation in Carrara Marble of Brittle Failure

Authors: Yi Cheng, Louis Ngai Yuen Wong, Varun Maruvanchery

Published in: Rock Mechanics and Rock Engineering | Issue 8/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Understanding the microcrack nucleation is of a fundamental importance in the study of rock fracturing process. Due to variations in texture and mineralogy, different rocks may show different distinctive microcrack nucleation mechanisms. In order to understand the microcrack nucleation mechanisms in Carrara marble comprehensively, localized damage zones are artificially produced by loading specimens containing an array of en-echelon flaws in this study. Then, representative samples were cut from those loaded specimens and prepared for optical observation. Four types of microcrack nucleation mechanisms leading to the formation of transgranular cracks have been identified in Carrara marble. Type I and II mechanisms are favored by the distinctive polygonal shape of the crystal grains in Carrara marble. Local tensile stress concentration in these two mechanisms is attributed to grain sliding and divergent normal contact force, respectively. Type III mechanism is associated with the gliding along twin lamellae. The resultant tensile stress concentration could nucleate microcracks within the grain containing these lamellae or in the grain boundary. No microcracks in the adjoining grains were observed in this study. Our statistical analysis suggests that type III mechanism favors the nucleation of new cracks which are nearly perpendicular to the gently inclined twin lamellae and thus have a small angle with the maximum loading direction (about 15°). Type IV mechanism operates in grains failed mainly due to compressive stress rather than tensile stress concentration. Sets of parallel microcracks of this mechanism seem to be related to the crystallographic planes of calcite. The microcracking results also suggest that most of the grain boundaries in damaged zone have been cracked at the loading about 80 % of the specimen strength, while transgranular cracks begin to occur at that time and flourish after about 90 % loading of the strength.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alber M, Hauptfleisch U (1999) Generation and visualization of microfractures in Carrara marble for estimating fracture toughness, fracture shear and fracture normal stiffness. Int J Rock Mech Min Sci 36:1065–1071. doi:10.1016/S1365-1609(99)00069-6 CrossRef Alber M, Hauptfleisch U (1999) Generation and visualization of microfractures in Carrara marble for estimating fracture toughness, fracture shear and fracture normal stiffness. Int J Rock Mech Min Sci 36:1065–1071. doi:10.​1016/​S1365-1609(99)00069-6 CrossRef
go back to reference Ashby MF, Sammis CG (1990) The damage mechanics of brittle solids in compression. Pure appl Geophys 133:489–521CrossRef Ashby MF, Sammis CG (1990) The damage mechanics of brittle solids in compression. Pure appl Geophys 133:489–521CrossRef
go back to reference Brace W, Paulding B, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953CrossRef Brace W, Paulding B, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953CrossRef
go back to reference DiGiovanni A, Fredrich J, Holcomb D, Olsson W (2007) Microscale damage evolution in compacting sandstone. Geol Soc Lond Spec Publ 289:89–103CrossRef DiGiovanni A, Fredrich J, Holcomb D, Olsson W (2007) Microscale damage evolution in compacting sandstone. Geol Soc Lond Spec Publ 289:89–103CrossRef
go back to reference Dunn DE, LaFountain LJ, Jackson RE (1973) Porosity dependence and mechanism of brittle fracture in sandstones. J Geophys Res 78(14):2403–2417CrossRef Dunn DE, LaFountain LJ, Jackson RE (1973) Porosity dependence and mechanism of brittle fracture in sandstones. J Geophys Res 78(14):2403–2417CrossRef
go back to reference Edmond J, Paterson M (1972) Volume changes during the deformation of rocks at high pressures. Int J Rock Mech Min Sci Geomech Abstr 9:161–182CrossRef Edmond J, Paterson M (1972) Volume changes during the deformation of rocks at high pressures. Int J Rock Mech Min Sci Geomech Abstr 9:161–182CrossRef
go back to reference Frank F, Lawn BR (1967) On the theory of Hertzian fracture. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society Frank F, Lawn BR (1967) On the theory of Hertzian fracture. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society
go back to reference Fredrich JT, Evans B, Wong TF (1989) Micromechanics of the brittle to plastic transition in Carrara marble. J Geophys Res 94:4129–4145CrossRef Fredrich JT, Evans B, Wong TF (1989) Micromechanics of the brittle to plastic transition in Carrara marble. J Geophys Res 94:4129–4145CrossRef
go back to reference Friedman M, Logan JM (1970) Microscopic feather fractures. Geol Soc Am Bull 81:3417–3420CrossRef Friedman M, Logan JM (1970) Microscopic feather fractures. Geol Soc Am Bull 81:3417–3420CrossRef
go back to reference Gamond J (1987) Bridge structures as sense of displacement criteria in brittle fault zones. J Struct Geol 9:609–620CrossRef Gamond J (1987) Bridge structures as sense of displacement criteria in brittle fault zones. J Struct Geol 9:609–620CrossRef
go back to reference Kim Y-S, Peacock DCP, Sanderson DJ (2003) Mesoscale strike-slip faults and damage zones. J Struct Geol 25:793–812CrossRef Kim Y-S, Peacock DCP, Sanderson DJ (2003) Mesoscale strike-slip faults and damage zones. J Struct Geol 25:793–812CrossRef
go back to reference Lajtai E (1971) A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics 11:129–156CrossRef Lajtai E (1971) A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics 11:129–156CrossRef
go back to reference Menéndez B, Zhu W, Wong T-F (1996) Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. J Struct Geol 18:1–16CrossRef Menéndez B, Zhu W, Wong T-F (1996) Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. J Struct Geol 18:1–16CrossRef
go back to reference Moore DE, Lockner DA (1995) The role of microcracking in shear-fracture propagation in granite. J Struct Geol 17:95–114CrossRef Moore DE, Lockner DA (1995) The role of microcracking in shear-fracture propagation in granite. J Struct Geol 17:95–114CrossRef
go back to reference Olsson WA, Peng SS (1976) Microcrack Nucleation in Marble. Int J Rock Mech Min Sci Geomech Abstr 13:53–59CrossRef Olsson WA, Peng SS (1976) Microcrack Nucleation in Marble. Int J Rock Mech Min Sci Geomech Abstr 13:53–59CrossRef
go back to reference Tapponnier P, Brace W (1976) Development of stress-induced microcracks in Westerly granite. Int J Rock Mech Min Sci Geomech Abstr 13:103–112CrossRef Tapponnier P, Brace W (1976) Development of stress-induced microcracks in Westerly granite. Int J Rock Mech Min Sci Geomech Abstr 13:103–112CrossRef
go back to reference Turner FJ, GRIGGS D, Heard H (1954) Experimental deformation of calcite crystals. Geol Soc Am Bull 65:883–934CrossRef Turner FJ, GRIGGS D, Heard H (1954) Experimental deformation of calcite crystals. Geol Soc Am Bull 65:883–934CrossRef
go back to reference Vajdova V, Zhu W, Natalie Chen T-M, T-f Wong (2010) Micromechanics of brittle faulting and cataclastic flow in Tavel limestone. J Struct Geol 32:1158–1169CrossRef Vajdova V, Zhu W, Natalie Chen T-M, T-f Wong (2010) Micromechanics of brittle faulting and cataclastic flow in Tavel limestone. J Struct Geol 32:1158–1169CrossRef
go back to reference Wong TF, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. J Geophys Res 102:3009–3025CrossRef Wong TF, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. J Geophys Res 102:3009–3025CrossRef
go back to reference Zhu W, Baud P, Vinciguerra S, T-f Wong (2011) Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff. J Geophys Res. doi:10.1029/2010jb008046 Zhu W, Baud P, Vinciguerra S, T-f Wong (2011) Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff. J Geophys Res. doi:10.​1029/​2010jb008046
Metadata
Title
Transgranular Crack Nucleation in Carrara Marble of Brittle Failure
Authors
Yi Cheng
Louis Ngai Yuen Wong
Varun Maruvanchery
Publication date
23-04-2016
Publisher
Springer Vienna
Published in
Rock Mechanics and Rock Engineering / Issue 8/2016
Print ISSN: 0723-2632
Electronic ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-016-0976-2

Other articles of this Issue 8/2016

Rock Mechanics and Rock Engineering 8/2016 Go to the issue