Skip to main content
Top
Published in: Fluid Dynamics 1/2021

01-01-2021

Transition Problem and Localized Turbulent Structures in Pipes

Author: N. V. Nikitin

Published in: Fluid Dynamics | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the classical experiments of O. Reynolds made in 1883 the critical value of a dimensionless parameter, named now the Reynolds number, \({\text{R}}{{{\text{e}}}_{c}} \approx 2000\), was determined. As this value is exceeded in a pipe of circular cross-section, a turbulent flow regime can occur. The attempts to define this value more exactly undertaken during the twentieth century have not met with success. In this study, we present a review of theoretical, experimental, and numerical investigations of flows in a round pipe at the stage of transition to turbulence performed in recent years, which make it possible to formulate a new view on the nature of laminar-turbulent transition in these flows.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,” Philos. Trans. Roy. Soc. London 174, 935–982 (1883).ADSMATHCrossRef O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,” Philos. Trans. Roy. Soc. London 174, 935–982 (1883).ADSMATHCrossRef
2.
go back to reference W. Pfenniger, “Transition in the inlet length of tubes at high Reynolds numbers,” in: Boundary Layer and Flow Control, Ed. by G. V. Lachman (Pergamon, 1961), p. 970. W. Pfenniger, “Transition in the inlet length of tubes at high Reynolds numbers,” in: Boundary Layer and Flow Control, Ed. by G. V. Lachman (Pergamon, 1961), p. 970.
3.
go back to reference H. Salwen, F. W. Cotton, and C. E. Grosch, “Linear stability of Poiseuille flow in a circular pipe,” J. Fluid Mech. 98, 273–284 (1980).ADSMATHCrossRef H. Salwen, F. W. Cotton, and C. E. Grosch, “Linear stability of Poiseuille flow in a circular pipe,” J. Fluid Mech. 98, 273–284 (1980).ADSMATHCrossRef
4.
go back to reference A. Meseguer and L. N. Trefethen, “Linearized pipe flow at Reynolds numbers 10 000 000,” J. Comp. Phys. 186, 178–197 (2003).ADSMATHCrossRef A. Meseguer and L. N. Trefethen, “Linearized pipe flow at Reynolds numbers 10 000 000,” J. Comp. Phys. 186, 178–197 (2003).ADSMATHCrossRef
5.
go back to reference A. M. Binnie and J. S. Fowler, “A study by a double refraction method of the development of turbulence in a long cylindrical tube,” Proc. Roy. Soc. London. A 192, 32 (1947).ADSCrossRef A. M. Binnie and J. S. Fowler, “A study by a double refraction method of the development of turbulence in a long cylindrical tube,” Proc. Roy. Soc. London. A 192, 32 (1947).ADSCrossRef
6.
go back to reference E. R. Lindgren, The transition process and other phenomena in viscous flow,” Arkiv für Physik 12, 1–169 (1958). E. R. Lindgren, The transition process and other phenomena in viscous flow,” Arkiv für Physik 12, 1–169 (1958).
7.
go back to reference R. J. Leite, “An experimental investigation of the stability of Poiseuille flow,” J. Fluid Mech. 5, 81–97 (1959).ADSMATHCrossRef R. J. Leite, “An experimental investigation of the stability of Poiseuille flow,” J. Fluid Mech. 5, 81–97 (1959).ADSMATHCrossRef
8.
go back to reference A. G. Darbyshire and T. Mullin, “Transition to turbulence in constant-mass-flux pipe flow,” J. Fluid Mech. 289, 83–114 (1995).ADSCrossRef A. G. Darbyshire and T. Mullin, “Transition to turbulence in constant-mass-flux pipe flow,” J. Fluid Mech. 289, 83–114 (1995).ADSCrossRef
9.
go back to reference A. A. Pavelyev, A. I. Reshmin, S. Kh. Teplovodskii, and S. G. Fedoseev, “On the lower critical Reynolds number for flow in a circular tube,” Fluid Dynamics 38(4), 545—551 (2003).CrossRef A. A. Pavelyev, A. I. Reshmin, S. Kh. Teplovodskii, and S. G. Fedoseev, “On the lower critical Reynolds number for flow in a circular tube,” Fluid Dynamics 38(4), 545—551 (2003).CrossRef
10.
go back to reference A. A. Pavelyev, A. I. Reshmin, and V. V. Trifonov, “Effect of the pattern of initial perturbations on the steady pipe flow regime,” Fluid Dynamics 41(6), 916—922 (2006).ADSCrossRef A. A. Pavelyev, A. I. Reshmin, and V. V. Trifonov, “Effect of the pattern of initial perturbations on the steady pipe flow regime,” Fluid Dynamics 41(6), 916—922 (2006).ADSCrossRef
11.
go back to reference B. L. Rozhdestvensky and I. N. Simakin, “Secondary flows in a plane channel: their relationship and comparison with turbulent flows,” J. Fluid Mech. 147, 261–289 (1984).ADSMATHCrossRef B. L. Rozhdestvensky and I. N. Simakin, “Secondary flows in a plane channel: their relationship and comparison with turbulent flows,” J. Fluid Mech. 147, 261–289 (1984).ADSMATHCrossRef
12.
go back to reference J. Kim, P. Moin, and R. Moser, “Turbulence statistics in fully developed channel flow at low Reynolds number,” J. Fluid Mech. 177, 133–166 (1987).ADSMATHCrossRef J. Kim, P. Moin, and R. Moser, “Turbulence statistics in fully developed channel flow at low Reynolds number,” J. Fluid Mech. 177, 133–166 (1987).ADSMATHCrossRef
13.
go back to reference N. Itoh, “Nonlinear stability of parallel flows with subcritical Reynolds numbers. Part 2. Stability of pipe Poiseuille flow to finite axisymmetric disturbances,” J. Fluid Mech. 82, 469–479 (1977).ADSMATHCrossRef N. Itoh, “Nonlinear stability of parallel flows with subcritical Reynolds numbers. Part 2. Stability of pipe Poiseuille flow to finite axisymmetric disturbances,” J. Fluid Mech. 82, 469–479 (1977).ADSMATHCrossRef
15.
go back to reference N. V. Nikitin, “Hard excitation of auto-oscillations in a Hagen—Poiseuille flow,” Fluid Dynamics 19(5), 828—830 (1984).ADSMATHCrossRef N. V. Nikitin, “Hard excitation of auto-oscillations in a Hagen—Poiseuille flow,” Fluid Dynamics 19(5), 828—830 (1984).ADSMATHCrossRef
16.
go back to reference V. G. Priymak and B. L. Rozhdestvenskii, “Secondary flows of a viscous incompressible fluid in a round pipe and their statistical properties,” Dokl. Akad. Nauk SSSR 297(6), 1326–1330 (1987).ADS V. G. Priymak and B. L. Rozhdestvenskii, “Secondary flows of a viscous incompressible fluid in a round pipe and their statistical properties,” Dokl. Akad. Nauk SSSR 297(6), 1326–1330 (1987).ADS
17.
go back to reference V. G. Priymak, “Results and possibilities of direct numerical simulation of viscous turbulent flows in a round pipe,” Dokl. Akad. Nauk SSSR 316(1), 71–76 (1991). V. G. Priymak, “Results and possibilities of direct numerical simulation of viscous turbulent flows in a round pipe,” Dokl. Akad. Nauk SSSR 316(1), 71–76 (1991).
18.
go back to reference N. V. Nikitin, “Direct numerical modeling of three-dimensional turbulent flows in pipes of circular cross-section,” Fluid Dynamics 29(6), 749—758 (1994).ADSCrossRef N. V. Nikitin, “Direct numerical modeling of three-dimensional turbulent flows in pipes of circular cross-section,” Fluid Dynamics 29(6), 749—758 (1994).ADSCrossRef
19.
go back to reference J. G. M. Eggels, F. Unger, M. H. Weiss, J. Westerweel, R. J. Adrian, R. Friedrich, and F. T. M. Nieuwstadt, “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment,” J. Fluid Mech. 268, 175–209 (1994).ADSCrossRef J. G. M. Eggels, F. Unger, M. H. Weiss, J. Westerweel, R. J. Adrian, R. Friedrich, and F. T. M. Nieuwstadt, “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment,” J. Fluid Mech. 268, 175–209 (1994).ADSCrossRef
20.
go back to reference H. Faisst and B. Eckhardt, “Traveling waves in pipe flow,” Phys. Rev. Lett. 91(22), 224502(4) (2003). H. Faisst and B. Eckhardt, “Traveling waves in pipe flow,” Phys. Rev. Lett. 91(22), 224502(4) (2003).
21.
22.
go back to reference C. C. T. Pringle and R. R. Kerswell, “Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow,” Phys. Rev. Lett. 99(7), 074502(4) (2007). C. C. T. Pringle and R. R. Kerswell, “Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow,” Phys. Rev. Lett. 99(7), 074502(4) (2007).
23.
go back to reference B. Hof, C. W. H. van Doorne, J. Westerweel, F. T. M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R. R. Kerswell, and F. Waleffe, “Experimental observation of nonlinear traveling waves in turbulent pipe flow,” Science 305, 1594–1598 (2004).ADSCrossRef B. Hof, C. W. H. van Doorne, J. Westerweel, F. T. M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R. R. Kerswell, and F. Waleffe, “Experimental observation of nonlinear traveling waves in turbulent pipe flow,” Science 305, 1594–1598 (2004).ADSCrossRef
24.
25.
go back to reference B. Eckhardt, T. M. Schneider, B. Hof, and J. Westerweel, “Turbulence transition in pipe flow,” Annu. Rev. Fluid Mech. 39, 447–468 (2007).ADSMathSciNetMATHCrossRef B. Eckhardt, T. M. Schneider, B. Hof, and J. Westerweel, “Turbulence transition in pipe flow,” Annu. Rev. Fluid Mech. 39, 447–468 (2007).ADSMathSciNetMATHCrossRef
26.
go back to reference E. Ott, Chaos in Dynamical Systems (Cambridge Univ. Press, 1993).MATH E. Ott, Chaos in Dynamical Systems (Cambridge Univ. Press, 1993).MATH
27.
go back to reference H. Faisst and B. Eckhardt, “Sensitive dependence on initial conditions in transition to turbulence in pipe flow,” J. Fluid Mech. 504, 343–352 (2004).ADSMATHCrossRef H. Faisst and B. Eckhardt, “Sensitive dependence on initial conditions in transition to turbulence in pipe flow,” J. Fluid Mech. 504, 343–352 (2004).ADSMATHCrossRef
28.
go back to reference I. J. Wygnanski and F. H. Champagne, “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug,” J. Fluid Mech. 59, 281–335 (1973).ADSCrossRef I. J. Wygnanski and F. H. Champagne, “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug,” J. Fluid Mech. 59, 281–335 (1973).ADSCrossRef
29.
go back to reference M. Nishi, B. Ünsal, F. Durst, and G. Biswas, “Laminar-to-turbulent transition of pipe flows through puffs and slugs,” J. Fluid Mech. 614, 425–446 (2008).ADSMATHCrossRef M. Nishi, B. Ünsal, F. Durst, and G. Biswas, “Laminar-to-turbulent transition of pipe flows through puffs and slugs,” J. Fluid Mech. 614, 425–446 (2008).ADSMATHCrossRef
31.
go back to reference D. Barkley, B. Song, V. Mukund, G. Lemoult, M. Avila, and B. Hof, “The rise of fully turbulent flow,” Nature 526, 550–553 (2015).ADSCrossRef D. Barkley, B. Song, V. Mukund, G. Lemoult, M. Avila, and B. Hof, “The rise of fully turbulent flow,” Nature 526, 550–553 (2015).ADSCrossRef
32.
go back to reference I. Wygnanski, M. Sokolov, and D. Friedman, “On transition in a pipe. Part 2. The equilibrium puff,” J. Fluid Mech. 69(2), 283–304 (1975).ADSCrossRef I. Wygnanski, M. Sokolov, and D. Friedman, “On transition in a pipe. Part 2. The equilibrium puff,” J. Fluid Mech. 69(2), 283–304 (1975).ADSCrossRef
33.
go back to reference H. Shan, B. Ma, Z. Zhang, and F. T. M. Nieuwstadt, “Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow,” J. Fluid Mech. 387, 39–60 (1999).ADSMATHCrossRef H. Shan, B. Ma, Z. Zhang, and F. T. M. Nieuwstadt, “Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow,” J. Fluid Mech. 387, 39–60 (1999).ADSMATHCrossRef
34.
go back to reference V. G. Priymak and T. Miyazaki, “Direct numerical simulation of equilibrium spatially localized structures in pipe flow,” Phys. Fluids 16(12), 4221–4234 (2004).ADSMATHCrossRef V. G. Priymak and T. Miyazaki, “Direct numerical simulation of equilibrium spatially localized structures in pipe flow,” Phys. Fluids 16(12), 4221–4234 (2004).ADSMATHCrossRef
35.
go back to reference N. V. Nikitin and V. O. Pimanov, “Numerical study of localized turbulent structures in pipes,” Fluid Dynamics 50(5), 655—664 (2015).MathSciNetMATHCrossRef N. V. Nikitin and V. O. Pimanov, “Numerical study of localized turbulent structures in pipes,” Fluid Dynamics 50(5), 655—664 (2015).MathSciNetMATHCrossRef
36.
go back to reference N. Nikitin, “Finite-difference method for incompressible Navier—Stokes equations in arbitrary orthogonal curvilinear coordinates,” J. Comput. Phys. 217(2), 759–781 (2006).ADSMathSciNetMATHCrossRef N. Nikitin, “Finite-difference method for incompressible Navier—Stokes equations in arbitrary orthogonal curvilinear coordinates,” J. Comput. Phys. 217(2), 759–781 (2006).ADSMathSciNetMATHCrossRef
37.
go back to reference N. Nikitin, “Third-order-accurate semi-implicit Runge-Kutta scheme for incompressible Navier—Stokes equations,” Int. J. Numer. Meth. Fluids 51(2), 221–233 (2006).MathSciNetMATHCrossRef N. Nikitin, “Third-order-accurate semi-implicit Runge-Kutta scheme for incompressible Navier—Stokes equations,” Int. J. Numer. Meth. Fluids 51(2), 221–233 (2006).MathSciNetMATHCrossRef
38.
go back to reference D. Moxey and D. Barkley, “Distinct large-scale turbulent-laminar states in transitional pipe flow,” PNAS 107(18), 8091–8096 (2010).ADSCrossRef D. Moxey and D. Barkley, “Distinct large-scale turbulent-laminar states in transitional pipe flow,” PNAS 107(18), 8091–8096 (2010).ADSCrossRef
39.
go back to reference N. V. Nikitin and V. O. Pimanov, “Localized turbulent structures in round pipes,” Uch. Zap. Kazan Univ. Ser. Fiz.-Mat. Nauki 157(3), 111–116 (2015). N. V. Nikitin and V. O. Pimanov, “Localized turbulent structures in round pipes,” Uch. Zap. Kazan Univ. Ser. Fiz.-Mat. Nauki 157(3), 111–116 (2015).
40.
go back to reference B. Hof, A. de Lozar, M. Avila, X. Tu, and T. M. Schneider, “Eliminating turbulence in spatially intermittent flows,” Science 327, 1491–1494 (2010).ADSCrossRef B. Hof, A. de Lozar, M. Avila, X. Tu, and T. M. Schneider, “Eliminating turbulence in spatially intermittent flows,” Science 327, 1491–1494 (2010).ADSCrossRef
41.
go back to reference M. Shimizu and S. Kida, “A driving mechanism of a turbulent puff in pipe flow,” Fluid Dyn. Res. 41, 045501(27) (2009). M. Shimizu and S. Kida, “A driving mechanism of a turbulent puff in pipe flow,” Fluid Dyn. Res. 41, 045501(27) (2009).
44.
go back to reference J. D. Skufca, J. A. Yorke, and B. Eckhardt, “Edge of chaos in a parallel shear flow,” Phys. Rev. Lett. 96(17), 174101 (2006).ADSCrossRef J. D. Skufca, J. A. Yorke, and B. Eckhardt, “Edge of chaos in a parallel shear flow,” Phys. Rev. Lett. 96(17), 174101 (2006).ADSCrossRef
45.
go back to reference M. Avila, F. Mellibovsky, N. Roland, and B. Hof, “Streamwise-localized solutions at the onset of turbulence in pipe flow,” Phys. Rev. Lett. 110(22), 224502 (2013).ADSCrossRef M. Avila, F. Mellibovsky, N. Roland, and B. Hof, “Streamwise-localized solutions at the onset of turbulence in pipe flow,” Phys. Rev. Lett. 110(22), 224502 (2013).ADSCrossRef
46.
go back to reference N. V. Nikitin and V. O. Pimanov, “Sustainment of oscillations in localized turbulent structures in pipes,” Fluid Dynamics 53(1), 65—73 (2018).MathSciNetMATHCrossRef N. V. Nikitin and V. O. Pimanov, “Sustainment of oscillations in localized turbulent structures in pipes,” Fluid Dynamics 53(1), 65—73 (2018).MathSciNetMATHCrossRef
47.
go back to reference J. Peixinho and T. Mullin, “Decay of turbulence in pipe flow,” Phys. Rev. Let. 96, 094501(4), (2006). J. Peixinho and T. Mullin, “Decay of turbulence in pipe flow,” Phys. Rev. Let. 96, 094501(4), (2006).
48.
go back to reference A. P. Willis and R. R. Kerswell, “Critical behavior in the relaminarization of localized turbulence in pipe flow,” Phys. Rev. Lett. 98, 014501(4) (2007). A. P. Willis and R. R. Kerswell, “Critical behavior in the relaminarization of localized turbulence in pipe flow,” Phys. Rev. Lett. 98, 014501(4) (2007).
49.
go back to reference B. Hof, J. Westerweel, T. M. Schneider, and B. Eckhardt, “Finite lifetime of turbulence in shear flows,” Nature 443, 59–62 (2006).ADSCrossRef B. Hof, J. Westerweel, T. M. Schneider, and B. Eckhardt, “Finite lifetime of turbulence in shear flows,” Nature 443, 59–62 (2006).ADSCrossRef
50.
go back to reference B. Hof, A. de Lozar, D. J. Kuik, and J. Westerweel, “Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow,” Phys. Rev. Lett. 101, 214501(4) (2008). B. Hof, A. de Lozar, D. J. Kuik, and J. Westerweel, “Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow,” Phys. Rev. Lett. 101, 214501(4) (2008).
51.
go back to reference D. J. Kuik, C. Poelma, and J. Westerweel, “Quantitative measurement of the lifetime of localized turbulence in pipe flow,” J. Fluid Mech. 645, 529–539 (2010).ADSMATHCrossRef D. J. Kuik, C. Poelma, and J. Westerweel, “Quantitative measurement of the lifetime of localized turbulence in pipe flow,” J. Fluid Mech. 645, 529–539 (2010).ADSMATHCrossRef
52.
go back to reference K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The onset of turbulence in pipe flow,” Science 333, 192–196 (2011).ADSMATHCrossRef K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The onset of turbulence in pipe flow,” Science 333, 192–196 (2011).ADSMATHCrossRef
Metadata
Title
Transition Problem and Localized Turbulent Structures in Pipes
Author
N. V. Nikitin
Publication date
01-01-2021
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 1/2021
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821010092

Other articles of this Issue 1/2021

Fluid Dynamics 1/2021 Go to the issue

Premium Partners