Skip to main content
Top

2013 | OriginalPaper | Chapter

Translational Research: Multi-Scale Models of the Pulmonary Circulation in Health and Disease

Authors : Alys R. Clark, Kelly S. Burrowes, Merryn H. Tawhai

Published in: Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pulmonary circulation is a unique low resistance system that carries almost the entire cardiac output, and is responsible for the essential role of providing oxygenated blood to the body. As the pulmonary circulation differs from the systemic circulation in its development, structure, and function, it is often most appropriate to study the mechanisms that contribute toward pulmonary vascular disease separately from those of systemic vascular disease at the genetic, cellular, tissue and organ level. Here we review the development of multi-scale, anatomically based models of the pulmonary circulation. These models aim to describe the interaction of structural and functional aspects of the pulmonary circulation that are the most important in determining the effective uptake of oxygen to the blood. We describe how these models have been used to understand normal lung physiology and to explain outcomes in pulmonary disease. Finally, we consider the future of multi-scale modeling in the pulmonary circulation and discuss what can be learned from well-developed multi-scale models of the pulmonary airspaces that interact closely with the lung’s circulatory system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Weibel, E.R.: Morphometry of the Human Lung. Springer, Berlin (1963) Weibel, E.R.: Morphometry of the Human Lung. Springer, Berlin (1963)
2.
go back to reference Levitzky, M.G.: Pulmonary Physiology, 7th edn. The McGraw-Hill Companies, Inc., New York (2007) Levitzky, M.G.: Pulmonary Physiology, 7th edn. The McGraw-Hill Companies, Inc., New York (2007)
3.
go back to reference Grassino, A.E., Anthonisen, N.R.: Chest wall distortion and regional lung volume distribution in erect humans. J. Appl. Physiol. 39(6), 1004–1007 (1975) Grassino, A.E., Anthonisen, N.R.: Chest wall distortion and regional lung volume distribution in erect humans. J. Appl. Physiol. 39(6), 1004–1007 (1975)
4.
go back to reference Whitfield, A., Waterhouse, J., Arnott, W.M.: The total lung volume and its subdivisions. II. The effect of posture. Brit J Soc Med 4, 86–97 (1950) Whitfield, A., Waterhouse, J., Arnott, W.M.: The total lung volume and its subdivisions. II. The effect of posture. Brit J Soc Med 4, 86–97 (1950)
5.
go back to reference Hoffman, E.A., Sinak, L.J., Riman, E.L.: Effect of body position on regional lung expansion: A computer tomographic approach. Physiologist 26(4), A-69 (1983) Hoffman, E.A., Sinak, L.J., Riman, E.L.: Effect of body position on regional lung expansion: A computer tomographic approach. Physiologist 26(4), A-69 (1983)
6.
go back to reference Amis, T., Jones, H., Hughes, J.: Effect of posture on inter-regional distribution of pulmonary perfusion and VA/Q ratios in man. Respir. Physiol. 56, 169–182 (1984)CrossRef Amis, T., Jones, H., Hughes, J.: Effect of posture on inter-regional distribution of pulmonary perfusion and VA/Q ratios in man. Respir. Physiol. 56, 169–182 (1984)CrossRef
7.
go back to reference West, J.B.: Regional differences in gas exchange in the lung of erect man. J. Appl. Physiol. 17(6), 893–898 (1962) West, J.B.: Regional differences in gas exchange in the lung of erect man. J. Appl. Physiol. 17(6), 893–898 (1962)
8.
go back to reference Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)CrossRef Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)CrossRef
9.
go back to reference Prisk, G.K., Yamada, K., Henderson, A.C., Arai, T.J., Levin, D.L., Buxton, R.B., Hopkins, S.R.: Pulmonary perfusion in the prone and supine postures in the normal human lung. J. Appl. Physiol. 103, 883–894 (2007)CrossRef Prisk, G.K., Yamada, K., Henderson, A.C., Arai, T.J., Levin, D.L., Buxton, R.B., Hopkins, S.R.: Pulmonary perfusion in the prone and supine postures in the normal human lung. J. Appl. Physiol. 103, 883–894 (2007)CrossRef
10.
go back to reference Albert, M.S., Cates, G.D., Driehuys, B., Happer, W., Saam, B., Springer Jr., C.S., Wishnia, A.: Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486), 199–201 (1994)CrossRef Albert, M.S., Cates, G.D., Driehuys, B., Happer, W., Saam, B., Springer Jr., C.S., Wishnia, A.: Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486), 199–201 (1994)CrossRef
11.
go back to reference West, J.B., Dollery, C.T., Naimark, A.: Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J. Appl. Physiol. 19, 713–724 (1964) West, J.B., Dollery, C.T., Naimark, A.: Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J. Appl. Physiol. 19, 713–724 (1964)
12.
go back to reference Hughes, M., West, J.B.: Point: Gravity is the major factor determining the distribution of blood flow in the human lung. J. Appl. Physiol. 104(5), 1531–1533 (2008)CrossRef Hughes, M., West, J.B.: Point: Gravity is the major factor determining the distribution of blood flow in the human lung. J. Appl. Physiol. 104(5), 1531–1533 (2008)CrossRef
13.
go back to reference West, J.: Importance of gravity in determining the distribution of pulmonary blood flow. J. Appl. Physiol. 93(5), 1888–1889 (2002) West, J.: Importance of gravity in determining the distribution of pulmonary blood flow. J. Appl. Physiol. 93(5), 1888–1889 (2002)
14.
go back to reference Glenny, R.W.: Counterpoint: gavity is not the major factor determining the distribution of blood flow in the healthy human lung. J. Appl. Physiol. 104(5), 1533–1535 (2008)CrossRef Glenny, R.W.: Counterpoint: gavity is not the major factor determining the distribution of blood flow in the healthy human lung. J. Appl. Physiol. 104(5), 1533–1535 (2008)CrossRef
15.
go back to reference Glenny, R.W., Bernard, S., Robertson, H.T., Hlastala, M.P.: Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J. Appl. Physiol. 86(2), 623–632 (1999) Glenny, R.W., Bernard, S., Robertson, H.T., Hlastala, M.P.: Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J. Appl. Physiol. 86(2), 623–632 (1999)
16.
go back to reference Glenny, R.W., Lamm, W.J.E., Albert, R.K., Robertson, H.T.: Gravity is a minor determinant of pulmonary blood flow distribution. J. Appl. Physiol. 71, 620–629 (1991) Glenny, R.W., Lamm, W.J.E., Albert, R.K., Robertson, H.T.: Gravity is a minor determinant of pulmonary blood flow distribution. J. Appl. Physiol. 71, 620–629 (1991)
17.
go back to reference Clark, A.R., Tawhai, M.H., Burrowes, K.S.: The interdependent contributions of gravitational and structural features to the distribution of pulmonary perfusion in a multi-scale model of the pulmonary circulation. J. Appl. Physiol. 110, 943–945 (2011)CrossRef Clark, A.R., Tawhai, M.H., Burrowes, K.S.: The interdependent contributions of gravitational and structural features to the distribution of pulmonary perfusion in a multi-scale model of the pulmonary circulation. J. Appl. Physiol. 110, 943–945 (2011)CrossRef
18.
go back to reference Rideout, V., Katra, J.: Computer simulation of the pulmonary circulation. Simulation 12, 239–245 (1969) Rideout, V., Katra, J.: Computer simulation of the pulmonary circulation. Simulation 12, 239–245 (1969)
19.
go back to reference Parker, J.C., Cave, C.B., Ardell, J.L., Hamm, C.R., Williams, S.G.: Vascular tree structure affects lung blood flow heterogeneity simulated in three dimensions. J. Appl. Physiol. 83(4), 1370–1382 (1997) Parker, J.C., Cave, C.B., Ardell, J.L., Hamm, C.R., Williams, S.G.: Vascular tree structure affects lung blood flow heterogeneity simulated in three dimensions. J. Appl. Physiol. 83(4), 1370–1382 (1997)
20.
go back to reference Glenny, R.W., Robertson, H.T.: Fractal modeling of pulmonary blood flow heterogeneity. J. Appl. Physiol. 70(3), 1024–1030 (1991) Glenny, R.W., Robertson, H.T.: Fractal modeling of pulmonary blood flow heterogeneity. J. Appl. Physiol. 70(3), 1024–1030 (1991)
21.
go back to reference Bshouty, Z., Younes, M.: Distensibility and pressure-flow relationship of the pulmonary circulation. II. Multibranched model. J. Appl. Physiol. 68(4), 1514–1527 (1990) Bshouty, Z., Younes, M.: Distensibility and pressure-flow relationship of the pulmonary circulation. II. Multibranched model. J. Appl. Physiol. 68(4), 1514–1527 (1990)
22.
go back to reference Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Anatomically-based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J. Appl. Physiol. 99, 731–738 (2005)CrossRef Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Anatomically-based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J. Appl. Physiol. 99, 731–738 (2005)CrossRef
23.
go back to reference Marshall, B., Marshall, C.: A model for hypoxic constriction of the pulmonary circulation. J. Appl. Physiol. 64(1), 68–77 (1988)CrossRef Marshall, B., Marshall, C.: A model for hypoxic constriction of the pulmonary circulation. J. Appl. Physiol. 64(1), 68–77 (1988)CrossRef
24.
go back to reference Nelin, L.D., Krenz, G.S., Rickaby, D.A., Linehan, J.H., Dawson, C.A.: A distensible vessel model applied to hypoxic pulmonary vasoconstriction in the neonatal pig. J. Appl. Physiol. 74(5), 2049–2056 (1993) Nelin, L.D., Krenz, G.S., Rickaby, D.A., Linehan, J.H., Dawson, C.A.: A distensible vessel model applied to hypoxic pulmonary vasoconstriction in the neonatal pig. J. Appl. Physiol. 74(5), 2049–2056 (1993)
25.
go back to reference Burrowes, K.S., Hoffman, E.A., Tawhai, M.H.: Species-specific pulmonary arterial asymmetry determines species differences in regional pulmonary perfusion. Ann. Biomed. Eng. 37(12), 2497–2509 (2009)CrossRef Burrowes, K.S., Hoffman, E.A., Tawhai, M.H.: Species-specific pulmonary arterial asymmetry determines species differences in regional pulmonary perfusion. Ann. Biomed. Eng. 37(12), 2497–2509 (2009)CrossRef
26.
go back to reference Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model. Acad. Radiol. 12(11), 1464–1474 (2005)CrossRef Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model. Acad. Radiol. 12(11), 1464–1474 (2005)CrossRef
27.
go back to reference Burrowes, K.S., Swan, A.J., Warren, N.J., Tawhai, M.H.: Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system. Philos. Trans. R. Soc. A 366(1879), 3247–3263 (2008)CrossRef Burrowes, K.S., Swan, A.J., Warren, N.J., Tawhai, M.H.: Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system. Philos. Trans. R. Soc. A 366(1879), 3247–3263 (2008)CrossRef
28.
go back to reference Burrowes, K.S., Tawhai, M.H.: Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir. Physiol. Neurobiol. 154(3), 515–523 (2006)CrossRef Burrowes, K.S., Tawhai, M.H.: Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir. Physiol. Neurobiol. 154(3), 515–523 (2006)CrossRef
29.
go back to reference Burrowes, K.S., Tawhai, M.H.: Coupling of lung tissue tethering force to fluid dynamics in the pulmonary circulation. Int. J. Numer. Methods. Biomed. Eng. 26, 862–875 (2010)MATH Burrowes, K.S., Tawhai, M.H.: Coupling of lung tissue tethering force to fluid dynamics in the pulmonary circulation. Int. J. Numer. Methods. Biomed. Eng. 26, 862–875 (2010)MATH
30.
go back to reference Burrowes, K.S., Tawhai, M.H., Hunter, P.J.: Modeling RBC and neutrophil distribution through an anatomically based pulmonary capillary network. Ann. Biomed. Eng. 32(4), 585–595 (2004)CrossRef Burrowes, K.S., Tawhai, M.H., Hunter, P.J.: Modeling RBC and neutrophil distribution through an anatomically based pulmonary capillary network. Ann. Biomed. Eng. 32(4), 585–595 (2004)CrossRef
31.
go back to reference Clark, A.R., Burrowes, K.S., Tawhai, M.H.: Contribution of serial and parallel micro-perfusion to spatial variability in pulmonary inter- and intra-acinar blood flow. J. Appl. Physiol. 108(5), 1116–1126 (2010)CrossRef Clark, A.R., Burrowes, K.S., Tawhai, M.H.: Contribution of serial and parallel micro-perfusion to spatial variability in pulmonary inter- and intra-acinar blood flow. J. Appl. Physiol. 108(5), 1116–1126 (2010)CrossRef
32.
go back to reference Clark, A.R., Burrowes, K.S., Tawhai, M.H.: The impact of micro-embolism size on haemodynamic changes in the pulmonary micro-circulation. Respir. Physiol. Neurobiol. 175, 365–374 (2011)CrossRef Clark, A.R., Burrowes, K.S., Tawhai, M.H.: The impact of micro-embolism size on haemodynamic changes in the pulmonary micro-circulation. Respir. Physiol. Neurobiol. 175, 365–374 (2011)CrossRef
33.
go back to reference Burrowes, K.S., Clark, A.R., Marcinkowski, A., Wilsher, M.L., Milne, D.G., Tawhai, M.H.: Pulmonary embolism: predicting disease severity. Philos. Trans. R. Soc. A 369(1954), 4145–4148 (2011)MathSciNetCrossRef Burrowes, K.S., Clark, A.R., Marcinkowski, A., Wilsher, M.L., Milne, D.G., Tawhai, M.H.: Pulmonary embolism: predicting disease severity. Philos. Trans. R. Soc. A 369(1954), 4145–4148 (2011)MathSciNetCrossRef
34.
go back to reference Burrowes, K.S., Clark, A.R., Tawhai, M.H.: Blood flow redistribution and ventilation–perfusion mismatch during embolic pulmonary occlusion. Pulm. Circ. 1(3), 365–376 (2011)CrossRef Burrowes, K.S., Clark, A.R., Tawhai, M.H.: Blood flow redistribution and ventilation–perfusion mismatch during embolic pulmonary occlusion. Pulm. Circ. 1(3), 365–376 (2011)CrossRef
35.
go back to reference MacLean, M., Herve, P., Eddahibi, S., Adnot, S.: 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br. J. Pharmacol. 131(2), 161–168 (2000)CrossRef MacLean, M., Herve, P., Eddahibi, S., Adnot, S.: 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br. J. Pharmacol. 131(2), 161–168 (2000)CrossRef
36.
go back to reference Howell, J.B.L., Permutt, S., Proctor, D.F., Riley, R.L.: Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16(1), 71–76 (1961) Howell, J.B.L., Permutt, S., Proctor, D.F., Riley, R.L.: Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16(1), 71–76 (1961)
37.
go back to reference Horsfield, K.: Morphometry of the small pulmonary arteries in man. Circ. Res. 42, 537–593 (1978)CrossRef Horsfield, K.: Morphometry of the small pulmonary arteries in man. Circ. Res. 42, 537–593 (1978)CrossRef
38.
go back to reference Pump, K.K.: The circulation in the peripheral parts of the human lung. Chest 49(2), 119–129 Pump, K.K.: The circulation in the peripheral parts of the human lung. Chest 49(2), 119–129
39.
go back to reference Clough, A.V., Audi, S.H., Molthen, R.C., Krenz, G.S.: Lung circulation modeling: status and prospects. Proc. IEEE 94(4), 753–768 (2006)CrossRef Clough, A.V., Audi, S.H., Molthen, R.C., Krenz, G.S.: Lung circulation modeling: status and prospects. Proc. IEEE 94(4), 753–768 (2006)CrossRef
40.
go back to reference Hillier, S.C., Graham, J.A., Hanger, C.C., Godbey, P.S., Glenny, R.W., Wagner Jr., W.W.: Hypoxic vasoconstriction in pulmonary arterioles and venules. J. Appl. Physiol. 82(4), 1084–1090 (1997) Hillier, S.C., Graham, J.A., Hanger, C.C., Godbey, P.S., Glenny, R.W., Wagner Jr., W.W.: Hypoxic vasoconstriction in pulmonary arterioles and venules. J. Appl. Physiol. 82(4), 1084–1090 (1997)
41.
go back to reference Marshall, B.E., Marshall, C.: Continuity of response to hypoxic pulmonary vasoconstriction. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 49, 189–196 (1980) Marshall, B.E., Marshall, C.: Continuity of response to hypoxic pulmonary vasoconstriction. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 49, 189–196 (1980)
42.
go back to reference Elliot, F.M., Reid L.: Some new facts about the pulmonary artery and its branching pattern. Clin Radiol 16, 193–198 (1965) Elliot, F.M., Reid L.: Some new facts about the pulmonary artery and its branching pattern. Clin Radiol 16, 193–198 (1965)
43.
go back to reference Huang, W., Yen, R.T., McLaurine, M., Bledsoe, G.: Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81(5), 2123–2133 (1996) Huang, W., Yen, R.T., McLaurine, M., Bledsoe, G.: Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81(5), 2123–2133 (1996)
44.
go back to reference Horsfield, K., Gordon, W.I.: Morphometry of pulmonary veins in man. Lung 159, 211–218 (1981)CrossRef Horsfield, K., Gordon, W.I.: Morphometry of pulmonary veins in man. Lung 159, 211–218 (1981)CrossRef
45.
go back to reference Singhal, S., Henderson, R., Horsfield, K., Harding, K., Cumming, G.: Morphometry of the human pulmonary arterial tree. Circ. Res. 33(2), 190–197 (1973)CrossRef Singhal, S., Henderson, R., Horsfield, K., Harding, K., Cumming, G.: Morphometry of the human pulmonary arterial tree. Circ. Res. 33(2), 190–197 (1973)CrossRef
46.
go back to reference Glenny, R.W., Robertson, T.J.: Fractal properties of pulmonary blood flow: charaterization of spatial heterogeneity. J. Appl. Physiol. 69(2), 532–545 (1990) Glenny, R.W., Robertson, T.J.: Fractal properties of pulmonary blood flow: charaterization of spatial heterogeneity. J. Appl. Physiol. 69(2), 532–545 (1990)
47.
go back to reference Tawhai, M.H., Hunter, P.J., Tschirren, J., Reinhardt, J.M., McLennan, G., Hoffman, E.A.: CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97(6), 2310–2321 (2004)CrossRef Tawhai, M.H., Hunter, P.J., Tschirren, J., Reinhardt, J.M., McLennan, G., Hoffman, E.A.: CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97(6), 2310–2321 (2004)CrossRef
48.
go back to reference Tawhai, M.H., Pullan, A.J., Hunter, P.J.: Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28(7), 793–802 (2000)CrossRef Tawhai, M.H., Pullan, A.J., Hunter, P.J.: Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28(7), 793–802 (2000)CrossRef
49.
go back to reference West, J.B.: Respiratory Physiology—The Essentials. Williams and Wilkins, Baltimore (1995) West, J.B.: Respiratory Physiology—The Essentials. Williams and Wilkins, Baltimore (1995)
50.
go back to reference Yen, M.: Elastic properties of pulmonary blood vessels. In: Respiratory Physiology: An Analytical Approach, pp. 553–560. Marcel Dekker, Inc. (1989) Yen, M.: Elastic properties of pulmonary blood vessels. In: Respiratory Physiology: An Analytical Approach, pp. 553–560. Marcel Dekker, Inc. (1989)
51.
go back to reference Krenz, G.S., Dawson, C.A.: Flow and pressure distributions in vascular networks consisting of distensible vessels. Am. J. Physiol. Heart Circ Physiol 284(6), H2192–H2203 (2003) Krenz, G.S., Dawson, C.A.: Flow and pressure distributions in vascular networks consisting of distensible vessels. Am. J. Physiol. Heart Circ Physiol 284(6), H2192–H2203 (2003)
52.
go back to reference Glenny, R.W., Lamm, W.J.E., Bernard, S.L., An, D., Chornuk, M., Pool, S., Wagner Jr., W.W., Hlastala, M.P., Rovertson, H.T.: Physiology of a microgravity environment, selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J. Appl. Physiol. 89(3), 1239–1248 (2000) Glenny, R.W., Lamm, W.J.E., Bernard, S.L., An, D., Chornuk, M., Pool, S., Wagner Jr., W.W., Hlastala, M.P., Rovertson, H.T.: Physiology of a microgravity environment, selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J. Appl. Physiol. 89(3), 1239–1248 (2000)
53.
go back to reference Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2(3), 139–155 (2004)CrossRef Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2(3), 139–155 (2004)CrossRef
54.
go back to reference Tawhai, M., Nash, N., Lin, C., Hoffman, E.: Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J. Appl. Physiol. 107(3), 912–920 (2009)CrossRef Tawhai, M., Nash, N., Lin, C., Hoffman, E.: Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J. Appl. Physiol. 107(3), 912–920 (2009)CrossRef
55.
go back to reference Swan, A.J., Clark, A.R., Tawhai, M.H.: A computational model of the topographic distribution of ventilation in healthy human lungs. J. Theor. Biol. 300, 222–231 (2012)MathSciNetCrossRef Swan, A.J., Clark, A.R., Tawhai, M.H.: A computational model of the topographic distribution of ventilation in healthy human lungs. J. Theor. Biol. 300, 222–231 (2012)MathSciNetCrossRef
56.
go back to reference Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)CrossRef Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)CrossRef
57.
go back to reference Spilker, R.L., Feinstein, J.A., Parker, D.W., Reddy, V.M., Taylor, C.A.: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35(4), 546–559 (2007)CrossRef Spilker, R.L., Feinstein, J.A., Parker, D.W., Reddy, V.M., Taylor, C.A.: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35(4), 546–559 (2007)CrossRef
58.
go back to reference Clipp, R., Steele, B.N.: Impedance boundary conditions for the pulmonary vasculature including the effects of geometry, compliance, and respiration. IEEE Trans. Biomed. Eng. 56(3), 862–870 (2009)CrossRef Clipp, R., Steele, B.N.: Impedance boundary conditions for the pulmonary vasculature including the effects of geometry, compliance, and respiration. IEEE Trans. Biomed. Eng. 56(3), 862–870 (2009)CrossRef
59.
go back to reference Ochs, M., Nyengaard, J.R., Jung, A., Knudsen, L., Voigt, M., Wahlers, T., Richter, J., Gundersen, H.J.: The number of alveoli in the human lung. Am. J. Respir. Crit. Care Med. 169(1), 120–124 (2004)CrossRef Ochs, M., Nyengaard, J.R., Jung, A., Knudsen, L., Voigt, M., Wahlers, T., Richter, J., Gundersen, H.J.: The number of alveoli in the human lung. Am. J. Respir. Crit. Care Med. 169(1), 120–124 (2004)CrossRef
60.
go back to reference Fung, Y.C., Sobin, S.S.: Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26, 472–488 (1969) Fung, Y.C., Sobin, S.S.: Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26, 472–488 (1969)
61.
go back to reference Guntheroth, W.G., Luchtel, D.L., Kawabori, I.: Pulmonary microcirculation: tubules rather than sheet or post. J. Appl. Physiol. 53(2), 510–515 (1982) Guntheroth, W.G., Luchtel, D.L., Kawabori, I.: Pulmonary microcirculation: tubules rather than sheet or post. J. Appl. Physiol. 53(2), 510–515 (1982)
62.
go back to reference Maina, J.N., West, J.B.: Thin and strong! The bioengineering dilema in the structural and functional design of the blood gas barrier. Physiol. Rev. 85, 811–844 (2005)CrossRef Maina, J.N., West, J.B.: Thin and strong! The bioengineering dilema in the structural and functional design of the blood gas barrier. Physiol. Rev. 85, 811–844 (2005)CrossRef
63.
go back to reference Fahraeus, R., Lindqvist T.: The viscosity of the blood in narrow capillary tubes. J. Appl. Physiol. 96, 562–568 (1931) Fahraeus, R., Lindqvist T.: The viscosity of the blood in narrow capillary tubes. J. Appl. Physiol. 96, 562–568 (1931)
64.
go back to reference Hogg, J.: Neutrophil kinetics and lung injury. Physiol. Rev. 67(4), 1249–1295 (1987)MathSciNet Hogg, J.: Neutrophil kinetics and lung injury. Physiol. Rev. 67(4), 1249–1295 (1987)MathSciNet
65.
go back to reference Doerschuk, C.: Neutrophil rheology and transit through capillaries and sinusoids. Am. J. Respir. Crit. Care Med. 159, 1693–1999 (1999)CrossRef Doerschuk, C.: Neutrophil rheology and transit through capillaries and sinusoids. Am. J. Respir. Crit. Care Med. 159, 1693–1999 (1999)CrossRef
66.
go back to reference Fung, Y.C., Sobin, S.S.: Elasticity of the pulmonary alveolar sheet. Circ. Res. 30(4), 451–469 (1972)CrossRef Fung, Y.C., Sobin, S.S.: Elasticity of the pulmonary alveolar sheet. Circ. Res. 30(4), 451–469 (1972)CrossRef
67.
go back to reference Pries, A.R., Secomb, T.W.: Microcirculatory network structures and models. Ann. Biomed. Eng. 28, 916–921 (2000)CrossRef Pries, A.R., Secomb, T.W.: Microcirculatory network structures and models. Ann. Biomed. Eng. 28, 916–921 (2000)CrossRef
68.
go back to reference Pries, A.R., Secomb, T.W., Gaehtgens, P., Gross, J.F.: Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67(4), 826–834 (1990)CrossRef Pries, A.R., Secomb, T.W., Gaehtgens, P., Gross, J.F.: Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67(4), 826–834 (1990)CrossRef
69.
go back to reference Fenton, B., Wilson, D., Cokelet, G.: Analysis of the effect of measured white blood cell entrance time on hemodynamics in a computer model of a mircovascular bed. Pflugers Arch. 403, 396–401 (1985)CrossRef Fenton, B., Wilson, D., Cokelet, G.: Analysis of the effect of measured white blood cell entrance time on hemodynamics in a computer model of a mircovascular bed. Pflugers Arch. 403, 396–401 (1985)CrossRef
70.
go back to reference Dhadwal, A., Wiggs, B., Doerschuk, C., Kamm, R.: Effects of anatomic variability on blood flow and pressure gradients in the pulmonary circulation. J. Appl. Physiol. 83(5), 1711–1720 (1997) Dhadwal, A., Wiggs, B., Doerschuk, C., Kamm, R.: Effects of anatomic variability on blood flow and pressure gradients in the pulmonary circulation. J. Appl. Physiol. 83(5), 1711–1720 (1997)
71.
go back to reference Huang, Y., Doerschuk, C.M., Kamm, R.D.: Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J. Appl. Physiol. 90(2), 545–564 (2001)CrossRef Huang, Y., Doerschuk, C.M., Kamm, R.D.: Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J. Appl. Physiol. 90(2), 545–564 (2001)CrossRef
72.
go back to reference Fung, Y.C., Sobin, S.S.: Pulmonary alveolar blood flow. Circ. Res. 30(4), 470–490 (1972)CrossRef Fung, Y.C., Sobin, S.S.: Pulmonary alveolar blood flow. Circ. Res. 30(4), 470–490 (1972)CrossRef
73.
go back to reference Fung, Y.C., Yen, R.T.: A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol. 60(5), 1638–1650 (1986) Fung, Y.C., Yen, R.T.: A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol. 60(5), 1638–1650 (1986)
74.
go back to reference Sobin, S.S., Fung, Y.C., Tremer, H.M., Rosenquist, T.H.: Elasticity of the pulmonary microvascular sheet in the cat. Circ. Res. 30(4), 440–450 (1972)CrossRef Sobin, S.S., Fung, Y.C., Tremer, H.M., Rosenquist, T.H.: Elasticity of the pulmonary microvascular sheet in the cat. Circ. Res. 30(4), 440–450 (1972)CrossRef
75.
go back to reference Sobin, S.S., Tremer, H.M., Fung, Y.C.: Morphometric basis of the sheet-flow concenpt of the alveolar microcirculation in the cat. Circ. Res. 26(3), 397–414 (1970)CrossRef Sobin, S.S., Tremer, H.M., Fung, Y.C.: Morphometric basis of the sheet-flow concenpt of the alveolar microcirculation in the cat. Circ. Res. 26(3), 397–414 (1970)CrossRef
76.
go back to reference Sobin, S.S., Tremer, H.M., Lindal, R.G., Fung, Y.C.: Distensibility of human pulmonary capillary blood vessels in the interalveolar septa. Fed. Proc. 38, 990 (1979) Sobin, S.S., Tremer, H.M., Lindal, R.G., Fung, Y.C.: Distensibility of human pulmonary capillary blood vessels in the interalveolar septa. Fed. Proc. 38, 990 (1979)
77.
go back to reference Read, J.: Redistribution of stratified pulmonary blood flow during exercise. J. Appl. Physiol. 27(3), 374–377 (1969) Read, J.: Redistribution of stratified pulmonary blood flow during exercise. J. Appl. Physiol. 27(3), 374–377 (1969)
78.
go back to reference Read, J.: Stratified pulmonary blood flow: some consequences in emphysema and pulmonary embolism. Br. Med. J. 2, 44–46 (1969)CrossRef Read, J.: Stratified pulmonary blood flow: some consequences in emphysema and pulmonary embolism. Br. Med. J. 2, 44–46 (1969)CrossRef
79.
go back to reference Wagner, P., McRae, J., Read, J.: Stratified distribution of blood flow in secondary lobule of the rat lung. J. Appl. Physiol. 22(6), 1115–1123 (1967) Wagner, P., McRae, J., Read, J.: Stratified distribution of blood flow in secondary lobule of the rat lung. J. Appl. Physiol. 22(6), 1115–1123 (1967)
80.
go back to reference West, J.B., Maloney, J.E., Castle, B.L.: Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs. J. Appl. Physiol. 32(3), 357–361 (1972) West, J.B., Maloney, J.E., Castle, B.L.: Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs. J. Appl. Physiol. 32(3), 357–361 (1972)
81.
go back to reference Hughes, J.M., Glazier, J.B., Maloney, J.E., West, J.B.: Effect of lung volume on the distribution of pulmonary blood flow in man. Respir. Physiol. 4(1), 58–72 (1968)CrossRef Hughes, J.M., Glazier, J.B., Maloney, J.E., West, J.B.: Effect of lung volume on the distribution of pulmonary blood flow in man. Respir. Physiol. 4(1), 58–72 (1968)CrossRef
82.
go back to reference Hopkins, S.R., Arai, T.J., Henderson, A.C., Levin, D.L., Buxton, R.B., Prisk, G.K.: Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans. J. Physiol. 588(Pt 23), 4759–4768 (2010)CrossRef Hopkins, S.R., Arai, T.J., Henderson, A.C., Levin, D.L., Buxton, R.B., Prisk, G.K.: Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans. J. Physiol. 588(Pt 23), 4759–4768 (2010)CrossRef
83.
go back to reference Tawhai, M.H., Clark, A.R., Burrowes, K.S.: Computational models of the pulmonary circulation: insights and the move towards clinically directed studies. Pulm. Circu. 1(2), 224–238 (2011)CrossRef Tawhai, M.H., Clark, A.R., Burrowes, K.S.: Computational models of the pulmonary circulation: insights and the move towards clinically directed studies. Pulm. Circu. 1(2), 224–238 (2011)CrossRef
84.
go back to reference Ben-Tal, A.: Simplified models for gas exchange in the human lungs. J. Theor. Biol. 238, 474–495 (2006)CrossRef Ben-Tal, A.: Simplified models for gas exchange in the human lungs. J. Theor. Biol. 238, 474–495 (2006)CrossRef
85.
go back to reference Kapitan, K., Hempleman, S.: Computer simulation of mammalian gas exchange. Comput. Methods Biol. Med. 16(2), 91–101 (1986)CrossRef Kapitan, K., Hempleman, S.: Computer simulation of mammalian gas exchange. Comput. Methods Biol. Med. 16(2), 91–101 (1986)CrossRef
86.
go back to reference Monod, J., Wyman, J., Changeaux, J.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–112 (1965)CrossRef Monod, J., Wyman, J., Changeaux, J.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–112 (1965)CrossRef
87.
go back to reference Tawhai, M., Clark, A., Wilsher, M., Millne, D., Subramaniam, K., Burrowes, K.: Spatial redistribution of perfusion and gas exchange in patient specific models of pulmonary embolism. In: 2012 IEEE International Symposium on Biomedical Imaging. Barcelona, Spain Tawhai, M., Clark, A., Wilsher, M., Millne, D., Subramaniam, K., Burrowes, K.: Spatial redistribution of perfusion and gas exchange in patient specific models of pulmonary embolism. In: 2012 IEEE International Symposium on Biomedical Imaging. Barcelona, Spain
88.
go back to reference Wagner, P.D.: The multiple inert gas elimination technique (MIGET). Intensive Care Med. 34(6), 994–1001 (2008)CrossRef Wagner, P.D.: The multiple inert gas elimination technique (MIGET). Intensive Care Med. 34(6), 994–1001 (2008)CrossRef
89.
go back to reference McIntyre, K., Sasahara, A.: Hemodynamic alterations related to extent of lung scan perfusion defect in pulmonary embolism. J. Nucl. Med. 4, 166–170 (1971) McIntyre, K., Sasahara, A.: Hemodynamic alterations related to extent of lung scan perfusion defect in pulmonary embolism. J. Nucl. Med. 4, 166–170 (1971)
90.
go back to reference McIntyre, K., Sasahara, A.: The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am. J. Cardiol. 28(3), 288–294 (1971)CrossRef McIntyre, K., Sasahara, A.: The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am. J. Cardiol. 28(3), 288–294 (1971)CrossRef
91.
go back to reference Ghaye, B., Ghuysen, A., Bruyere, P.J., D’Orio, V., Dondelinger, R.F.: Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics 26(1), 23–39; discussion 39–40 (2006) (discussion 39–40) Ghaye, B., Ghuysen, A., Bruyere, P.J., D’Orio, V., Dondelinger, R.F.: Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics 26(1), 23–39; discussion 39–40 (2006) (discussion 39–40)
92.
93.
go back to reference Tawhai, M.H., Hunter, P.J.: Characterising respiratory airway gas mixing using a lumped parameter model of the pulmonary acinus. Respir. Physiol. 127, 241–248 (2001)CrossRef Tawhai, M.H., Hunter, P.J.: Characterising respiratory airway gas mixing using a lumped parameter model of the pulmonary acinus. Respir. Physiol. 127, 241–248 (2001)CrossRef
94.
go back to reference Haefeli-Bleuer, B., Weibel, E.R.: Morphometry of the human pulmonary acinus. Anat. Rec. 220, 401–414 (1988)CrossRef Haefeli-Bleuer, B., Weibel, E.R.: Morphometry of the human pulmonary acinus. Anat. Rec. 220, 401–414 (1988)CrossRef
95.
go back to reference Delcroix, M., Mélot, C., Lejeune, P., Leeman, M., Naeije, R.: Effects of vasodilators on gas exchange in acute canine embolic pulmonary hypertension. Anesthesiology 72, 77–84 (1990) Delcroix, M., Mélot, C., Lejeune, P., Leeman, M., Naeije, R.: Effects of vasodilators on gas exchange in acute canine embolic pulmonary hypertension. Anesthesiology 72, 77–84 (1990)
96.
go back to reference Delcroix, M., Mélot, C., Vachiery, J.-L., Lejeune, P., Leeman, M., Vanderhoeft, P., Naeije, R.: Effects of embolus size on hemodynamics and gas exchange in canine embolic pulmonary hypertension. J. Appl. Physiol. 69(6), 2254–2261 (1990) Delcroix, M., Mélot, C., Vachiery, J.-L., Lejeune, P., Leeman, M., Vanderhoeft, P., Naeije, R.: Effects of embolus size on hemodynamics and gas exchange in canine embolic pulmonary hypertension. J. Appl. Physiol. 69(6), 2254–2261 (1990)
97.
go back to reference Hasinoff, I., Ducas, J., Schick, U., Prewitt, R.: Pulmonary vascular pressure-flow characteristics in canine pulmonary embolism. J. Appl. Physiol. 68(2), 462–467 (1990) Hasinoff, I., Ducas, J., Schick, U., Prewitt, R.: Pulmonary vascular pressure-flow characteristics in canine pulmonary embolism. J. Appl. Physiol. 68(2), 462–467 (1990)
98.
go back to reference Mélot, C., Delcroix, M., Closset, J., Vanderhoeft, P., Lejeune, P., Leeman, M., Naeije, R.: Starling resistor vs. distensible vessel models for embolic pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 268(2), H817–H827 (1995) Mélot, C., Delcroix, M., Closset, J., Vanderhoeft, P., Lejeune, P., Leeman, M., Naeije, R.: Starling resistor vs. distensible vessel models for embolic pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 268(2), H817–H827 (1995)
99.
go back to reference Levine, J.A., Schleusner, S.J., Jensen, M.D.: Energy expenditure of nonexercise activity. Am. J. Clin. Nutr. 72, 1451–1454 (2000) Levine, J.A., Schleusner, S.J., Jensen, M.D.: Energy expenditure of nonexercise activity. Am. J. Clin. Nutr. 72, 1451–1454 (2000)
100.
go back to reference Nishimura, M., Kiyamoto, K., Suzuki, A., Yamamoto, H., Tsuji, M., Kishi, F., Kawakami, Y.: Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax 44, 215–257 (1989)CrossRef Nishimura, M., Kiyamoto, K., Suzuki, A., Yamamoto, H., Tsuji, M., Kishi, F., Kawakami, Y.: Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax 44, 215–257 (1989)CrossRef
101.
go back to reference Politi, A.Z., Donovan, G.M., Tawhai, M.H., Sanderson, M.J., Lauzon, A., Bates, J.H.T., Sneyd, J.: A multiscale, spatially distributed model of asthmatic airway hyper-responsiveness. J. Theor. Biol. 266, 614–624 (2010)CrossRef Politi, A.Z., Donovan, G.M., Tawhai, M.H., Sanderson, M.J., Lauzon, A., Bates, J.H.T., Sneyd, J.: A multiscale, spatially distributed model of asthmatic airway hyper-responsiveness. J. Theor. Biol. 266, 614–624 (2010)CrossRef
102.
go back to reference Wang, I., Politi, A.Z., Tania, N., Bai, Y., Sanderson, M.J., Sneyd, J.: A mathematical model of airway and pulmonary arteriole smooth muscle. Biophys. J. 94(6), 2053–2064 (2008)CrossRef Wang, I., Politi, A.Z., Tania, N., Bai, Y., Sanderson, M.J., Sneyd, J.: A mathematical model of airway and pulmonary arteriole smooth muscle. Biophys. J. 94(6), 2053–2064 (2008)CrossRef
103.
go back to reference Hai, C., Murphy, R.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99–C106 (1988) Hai, C., Murphy, R.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99–C106 (1988)
104.
go back to reference Lai-Fook, S.J., Hyatt, R.E.: Effect of parenchyma and length changes on vessel pressure-diameter behavior in pig lungs. J. Appl. Physiol. 47(4), 666–669 (1979) Lai-Fook, S.J., Hyatt, R.E.: Effect of parenchyma and length changes on vessel pressure-diameter behavior in pig lungs. J. Appl. Physiol. 47(4), 666–669 (1979)
105.
go back to reference Donovan, G., Bullimore, S., Elvin, A., Tawhai, M., Bates, J., Lauzon, A., Sneyd, J.: A continuous-binding cross-linker model for passive airway smooth muscle. Biophys. J. 99(10), 3164–3171 (2010)CrossRef Donovan, G., Bullimore, S., Elvin, A., Tawhai, M., Bates, J., Lauzon, A., Sneyd, J.: A continuous-binding cross-linker model for passive airway smooth muscle. Biophys. J. 99(10), 3164–3171 (2010)CrossRef
Metadata
Title
Translational Research: Multi-Scale Models of the Pulmonary Circulation in Health and Disease
Authors
Alys R. Clark
Kelly S. Burrowes
Merryn H. Tawhai
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2012_152