Skip to main content

2013 | OriginalPaper | Buchkapitel

Translational Research: Multi-Scale Models of the Pulmonary Circulation in Health and Disease

verfasst von : Alys R. Clark, Kelly S. Burrowes, Merryn H. Tawhai

Erschienen in: Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The pulmonary circulation is a unique low resistance system that carries almost the entire cardiac output, and is responsible for the essential role of providing oxygenated blood to the body. As the pulmonary circulation differs from the systemic circulation in its development, structure, and function, it is often most appropriate to study the mechanisms that contribute toward pulmonary vascular disease separately from those of systemic vascular disease at the genetic, cellular, tissue and organ level. Here we review the development of multi-scale, anatomically based models of the pulmonary circulation. These models aim to describe the interaction of structural and functional aspects of the pulmonary circulation that are the most important in determining the effective uptake of oxygen to the blood. We describe how these models have been used to understand normal lung physiology and to explain outcomes in pulmonary disease. Finally, we consider the future of multi-scale modeling in the pulmonary circulation and discuss what can be learned from well-developed multi-scale models of the pulmonary airspaces that interact closely with the lung’s circulatory system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Weibel, E.R.: Morphometry of the Human Lung. Springer, Berlin (1963) Weibel, E.R.: Morphometry of the Human Lung. Springer, Berlin (1963)
2.
Zurück zum Zitat Levitzky, M.G.: Pulmonary Physiology, 7th edn. The McGraw-Hill Companies, Inc., New York (2007) Levitzky, M.G.: Pulmonary Physiology, 7th edn. The McGraw-Hill Companies, Inc., New York (2007)
3.
Zurück zum Zitat Grassino, A.E., Anthonisen, N.R.: Chest wall distortion and regional lung volume distribution in erect humans. J. Appl. Physiol. 39(6), 1004–1007 (1975) Grassino, A.E., Anthonisen, N.R.: Chest wall distortion and regional lung volume distribution in erect humans. J. Appl. Physiol. 39(6), 1004–1007 (1975)
4.
Zurück zum Zitat Whitfield, A., Waterhouse, J., Arnott, W.M.: The total lung volume and its subdivisions. II. The effect of posture. Brit J Soc Med 4, 86–97 (1950) Whitfield, A., Waterhouse, J., Arnott, W.M.: The total lung volume and its subdivisions. II. The effect of posture. Brit J Soc Med 4, 86–97 (1950)
5.
Zurück zum Zitat Hoffman, E.A., Sinak, L.J., Riman, E.L.: Effect of body position on regional lung expansion: A computer tomographic approach. Physiologist 26(4), A-69 (1983) Hoffman, E.A., Sinak, L.J., Riman, E.L.: Effect of body position on regional lung expansion: A computer tomographic approach. Physiologist 26(4), A-69 (1983)
6.
Zurück zum Zitat Amis, T., Jones, H., Hughes, J.: Effect of posture on inter-regional distribution of pulmonary perfusion and VA/Q ratios in man. Respir. Physiol. 56, 169–182 (1984)CrossRef Amis, T., Jones, H., Hughes, J.: Effect of posture on inter-regional distribution of pulmonary perfusion and VA/Q ratios in man. Respir. Physiol. 56, 169–182 (1984)CrossRef
7.
Zurück zum Zitat West, J.B.: Regional differences in gas exchange in the lung of erect man. J. Appl. Physiol. 17(6), 893–898 (1962) West, J.B.: Regional differences in gas exchange in the lung of erect man. J. Appl. Physiol. 17(6), 893–898 (1962)
8.
Zurück zum Zitat Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)CrossRef Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)CrossRef
9.
Zurück zum Zitat Prisk, G.K., Yamada, K., Henderson, A.C., Arai, T.J., Levin, D.L., Buxton, R.B., Hopkins, S.R.: Pulmonary perfusion in the prone and supine postures in the normal human lung. J. Appl. Physiol. 103, 883–894 (2007)CrossRef Prisk, G.K., Yamada, K., Henderson, A.C., Arai, T.J., Levin, D.L., Buxton, R.B., Hopkins, S.R.: Pulmonary perfusion in the prone and supine postures in the normal human lung. J. Appl. Physiol. 103, 883–894 (2007)CrossRef
10.
Zurück zum Zitat Albert, M.S., Cates, G.D., Driehuys, B., Happer, W., Saam, B., Springer Jr., C.S., Wishnia, A.: Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486), 199–201 (1994)CrossRef Albert, M.S., Cates, G.D., Driehuys, B., Happer, W., Saam, B., Springer Jr., C.S., Wishnia, A.: Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486), 199–201 (1994)CrossRef
11.
Zurück zum Zitat West, J.B., Dollery, C.T., Naimark, A.: Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J. Appl. Physiol. 19, 713–724 (1964) West, J.B., Dollery, C.T., Naimark, A.: Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J. Appl. Physiol. 19, 713–724 (1964)
12.
Zurück zum Zitat Hughes, M., West, J.B.: Point: Gravity is the major factor determining the distribution of blood flow in the human lung. J. Appl. Physiol. 104(5), 1531–1533 (2008)CrossRef Hughes, M., West, J.B.: Point: Gravity is the major factor determining the distribution of blood flow in the human lung. J. Appl. Physiol. 104(5), 1531–1533 (2008)CrossRef
13.
Zurück zum Zitat West, J.: Importance of gravity in determining the distribution of pulmonary blood flow. J. Appl. Physiol. 93(5), 1888–1889 (2002) West, J.: Importance of gravity in determining the distribution of pulmonary blood flow. J. Appl. Physiol. 93(5), 1888–1889 (2002)
14.
Zurück zum Zitat Glenny, R.W.: Counterpoint: gavity is not the major factor determining the distribution of blood flow in the healthy human lung. J. Appl. Physiol. 104(5), 1533–1535 (2008)CrossRef Glenny, R.W.: Counterpoint: gavity is not the major factor determining the distribution of blood flow in the healthy human lung. J. Appl. Physiol. 104(5), 1533–1535 (2008)CrossRef
15.
Zurück zum Zitat Glenny, R.W., Bernard, S., Robertson, H.T., Hlastala, M.P.: Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J. Appl. Physiol. 86(2), 623–632 (1999) Glenny, R.W., Bernard, S., Robertson, H.T., Hlastala, M.P.: Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J. Appl. Physiol. 86(2), 623–632 (1999)
16.
Zurück zum Zitat Glenny, R.W., Lamm, W.J.E., Albert, R.K., Robertson, H.T.: Gravity is a minor determinant of pulmonary blood flow distribution. J. Appl. Physiol. 71, 620–629 (1991) Glenny, R.W., Lamm, W.J.E., Albert, R.K., Robertson, H.T.: Gravity is a minor determinant of pulmonary blood flow distribution. J. Appl. Physiol. 71, 620–629 (1991)
17.
Zurück zum Zitat Clark, A.R., Tawhai, M.H., Burrowes, K.S.: The interdependent contributions of gravitational and structural features to the distribution of pulmonary perfusion in a multi-scale model of the pulmonary circulation. J. Appl. Physiol. 110, 943–945 (2011)CrossRef Clark, A.R., Tawhai, M.H., Burrowes, K.S.: The interdependent contributions of gravitational and structural features to the distribution of pulmonary perfusion in a multi-scale model of the pulmonary circulation. J. Appl. Physiol. 110, 943–945 (2011)CrossRef
18.
Zurück zum Zitat Rideout, V., Katra, J.: Computer simulation of the pulmonary circulation. Simulation 12, 239–245 (1969) Rideout, V., Katra, J.: Computer simulation of the pulmonary circulation. Simulation 12, 239–245 (1969)
19.
Zurück zum Zitat Parker, J.C., Cave, C.B., Ardell, J.L., Hamm, C.R., Williams, S.G.: Vascular tree structure affects lung blood flow heterogeneity simulated in three dimensions. J. Appl. Physiol. 83(4), 1370–1382 (1997) Parker, J.C., Cave, C.B., Ardell, J.L., Hamm, C.R., Williams, S.G.: Vascular tree structure affects lung blood flow heterogeneity simulated in three dimensions. J. Appl. Physiol. 83(4), 1370–1382 (1997)
20.
Zurück zum Zitat Glenny, R.W., Robertson, H.T.: Fractal modeling of pulmonary blood flow heterogeneity. J. Appl. Physiol. 70(3), 1024–1030 (1991) Glenny, R.W., Robertson, H.T.: Fractal modeling of pulmonary blood flow heterogeneity. J. Appl. Physiol. 70(3), 1024–1030 (1991)
21.
Zurück zum Zitat Bshouty, Z., Younes, M.: Distensibility and pressure-flow relationship of the pulmonary circulation. II. Multibranched model. J. Appl. Physiol. 68(4), 1514–1527 (1990) Bshouty, Z., Younes, M.: Distensibility and pressure-flow relationship of the pulmonary circulation. II. Multibranched model. J. Appl. Physiol. 68(4), 1514–1527 (1990)
22.
Zurück zum Zitat Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Anatomically-based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J. Appl. Physiol. 99, 731–738 (2005)CrossRef Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Anatomically-based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J. Appl. Physiol. 99, 731–738 (2005)CrossRef
23.
Zurück zum Zitat Marshall, B., Marshall, C.: A model for hypoxic constriction of the pulmonary circulation. J. Appl. Physiol. 64(1), 68–77 (1988)CrossRef Marshall, B., Marshall, C.: A model for hypoxic constriction of the pulmonary circulation. J. Appl. Physiol. 64(1), 68–77 (1988)CrossRef
24.
Zurück zum Zitat Nelin, L.D., Krenz, G.S., Rickaby, D.A., Linehan, J.H., Dawson, C.A.: A distensible vessel model applied to hypoxic pulmonary vasoconstriction in the neonatal pig. J. Appl. Physiol. 74(5), 2049–2056 (1993) Nelin, L.D., Krenz, G.S., Rickaby, D.A., Linehan, J.H., Dawson, C.A.: A distensible vessel model applied to hypoxic pulmonary vasoconstriction in the neonatal pig. J. Appl. Physiol. 74(5), 2049–2056 (1993)
25.
Zurück zum Zitat Burrowes, K.S., Hoffman, E.A., Tawhai, M.H.: Species-specific pulmonary arterial asymmetry determines species differences in regional pulmonary perfusion. Ann. Biomed. Eng. 37(12), 2497–2509 (2009)CrossRef Burrowes, K.S., Hoffman, E.A., Tawhai, M.H.: Species-specific pulmonary arterial asymmetry determines species differences in regional pulmonary perfusion. Ann. Biomed. Eng. 37(12), 2497–2509 (2009)CrossRef
26.
Zurück zum Zitat Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model. Acad. Radiol. 12(11), 1464–1474 (2005)CrossRef Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model. Acad. Radiol. 12(11), 1464–1474 (2005)CrossRef
27.
Zurück zum Zitat Burrowes, K.S., Swan, A.J., Warren, N.J., Tawhai, M.H.: Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system. Philos. Trans. R. Soc. A 366(1879), 3247–3263 (2008)CrossRef Burrowes, K.S., Swan, A.J., Warren, N.J., Tawhai, M.H.: Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system. Philos. Trans. R. Soc. A 366(1879), 3247–3263 (2008)CrossRef
28.
Zurück zum Zitat Burrowes, K.S., Tawhai, M.H.: Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir. Physiol. Neurobiol. 154(3), 515–523 (2006)CrossRef Burrowes, K.S., Tawhai, M.H.: Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir. Physiol. Neurobiol. 154(3), 515–523 (2006)CrossRef
29.
Zurück zum Zitat Burrowes, K.S., Tawhai, M.H.: Coupling of lung tissue tethering force to fluid dynamics in the pulmonary circulation. Int. J. Numer. Methods. Biomed. Eng. 26, 862–875 (2010)MATH Burrowes, K.S., Tawhai, M.H.: Coupling of lung tissue tethering force to fluid dynamics in the pulmonary circulation. Int. J. Numer. Methods. Biomed. Eng. 26, 862–875 (2010)MATH
30.
Zurück zum Zitat Burrowes, K.S., Tawhai, M.H., Hunter, P.J.: Modeling RBC and neutrophil distribution through an anatomically based pulmonary capillary network. Ann. Biomed. Eng. 32(4), 585–595 (2004)CrossRef Burrowes, K.S., Tawhai, M.H., Hunter, P.J.: Modeling RBC and neutrophil distribution through an anatomically based pulmonary capillary network. Ann. Biomed. Eng. 32(4), 585–595 (2004)CrossRef
31.
Zurück zum Zitat Clark, A.R., Burrowes, K.S., Tawhai, M.H.: Contribution of serial and parallel micro-perfusion to spatial variability in pulmonary inter- and intra-acinar blood flow. J. Appl. Physiol. 108(5), 1116–1126 (2010)CrossRef Clark, A.R., Burrowes, K.S., Tawhai, M.H.: Contribution of serial and parallel micro-perfusion to spatial variability in pulmonary inter- and intra-acinar blood flow. J. Appl. Physiol. 108(5), 1116–1126 (2010)CrossRef
32.
Zurück zum Zitat Clark, A.R., Burrowes, K.S., Tawhai, M.H.: The impact of micro-embolism size on haemodynamic changes in the pulmonary micro-circulation. Respir. Physiol. Neurobiol. 175, 365–374 (2011)CrossRef Clark, A.R., Burrowes, K.S., Tawhai, M.H.: The impact of micro-embolism size on haemodynamic changes in the pulmonary micro-circulation. Respir. Physiol. Neurobiol. 175, 365–374 (2011)CrossRef
33.
Zurück zum Zitat Burrowes, K.S., Clark, A.R., Marcinkowski, A., Wilsher, M.L., Milne, D.G., Tawhai, M.H.: Pulmonary embolism: predicting disease severity. Philos. Trans. R. Soc. A 369(1954), 4145–4148 (2011)MathSciNetCrossRef Burrowes, K.S., Clark, A.R., Marcinkowski, A., Wilsher, M.L., Milne, D.G., Tawhai, M.H.: Pulmonary embolism: predicting disease severity. Philos. Trans. R. Soc. A 369(1954), 4145–4148 (2011)MathSciNetCrossRef
34.
Zurück zum Zitat Burrowes, K.S., Clark, A.R., Tawhai, M.H.: Blood flow redistribution and ventilation–perfusion mismatch during embolic pulmonary occlusion. Pulm. Circ. 1(3), 365–376 (2011)CrossRef Burrowes, K.S., Clark, A.R., Tawhai, M.H.: Blood flow redistribution and ventilation–perfusion mismatch during embolic pulmonary occlusion. Pulm. Circ. 1(3), 365–376 (2011)CrossRef
35.
Zurück zum Zitat MacLean, M., Herve, P., Eddahibi, S., Adnot, S.: 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br. J. Pharmacol. 131(2), 161–168 (2000)CrossRef MacLean, M., Herve, P., Eddahibi, S., Adnot, S.: 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br. J. Pharmacol. 131(2), 161–168 (2000)CrossRef
36.
Zurück zum Zitat Howell, J.B.L., Permutt, S., Proctor, D.F., Riley, R.L.: Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16(1), 71–76 (1961) Howell, J.B.L., Permutt, S., Proctor, D.F., Riley, R.L.: Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16(1), 71–76 (1961)
37.
Zurück zum Zitat Horsfield, K.: Morphometry of the small pulmonary arteries in man. Circ. Res. 42, 537–593 (1978)CrossRef Horsfield, K.: Morphometry of the small pulmonary arteries in man. Circ. Res. 42, 537–593 (1978)CrossRef
38.
Zurück zum Zitat Pump, K.K.: The circulation in the peripheral parts of the human lung. Chest 49(2), 119–129 Pump, K.K.: The circulation in the peripheral parts of the human lung. Chest 49(2), 119–129
39.
Zurück zum Zitat Clough, A.V., Audi, S.H., Molthen, R.C., Krenz, G.S.: Lung circulation modeling: status and prospects. Proc. IEEE 94(4), 753–768 (2006)CrossRef Clough, A.V., Audi, S.H., Molthen, R.C., Krenz, G.S.: Lung circulation modeling: status and prospects. Proc. IEEE 94(4), 753–768 (2006)CrossRef
40.
Zurück zum Zitat Hillier, S.C., Graham, J.A., Hanger, C.C., Godbey, P.S., Glenny, R.W., Wagner Jr., W.W.: Hypoxic vasoconstriction in pulmonary arterioles and venules. J. Appl. Physiol. 82(4), 1084–1090 (1997) Hillier, S.C., Graham, J.A., Hanger, C.C., Godbey, P.S., Glenny, R.W., Wagner Jr., W.W.: Hypoxic vasoconstriction in pulmonary arterioles and venules. J. Appl. Physiol. 82(4), 1084–1090 (1997)
41.
Zurück zum Zitat Marshall, B.E., Marshall, C.: Continuity of response to hypoxic pulmonary vasoconstriction. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 49, 189–196 (1980) Marshall, B.E., Marshall, C.: Continuity of response to hypoxic pulmonary vasoconstriction. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 49, 189–196 (1980)
42.
Zurück zum Zitat Elliot, F.M., Reid L.: Some new facts about the pulmonary artery and its branching pattern. Clin Radiol 16, 193–198 (1965) Elliot, F.M., Reid L.: Some new facts about the pulmonary artery and its branching pattern. Clin Radiol 16, 193–198 (1965)
43.
Zurück zum Zitat Huang, W., Yen, R.T., McLaurine, M., Bledsoe, G.: Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81(5), 2123–2133 (1996) Huang, W., Yen, R.T., McLaurine, M., Bledsoe, G.: Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81(5), 2123–2133 (1996)
44.
Zurück zum Zitat Horsfield, K., Gordon, W.I.: Morphometry of pulmonary veins in man. Lung 159, 211–218 (1981)CrossRef Horsfield, K., Gordon, W.I.: Morphometry of pulmonary veins in man. Lung 159, 211–218 (1981)CrossRef
45.
Zurück zum Zitat Singhal, S., Henderson, R., Horsfield, K., Harding, K., Cumming, G.: Morphometry of the human pulmonary arterial tree. Circ. Res. 33(2), 190–197 (1973)CrossRef Singhal, S., Henderson, R., Horsfield, K., Harding, K., Cumming, G.: Morphometry of the human pulmonary arterial tree. Circ. Res. 33(2), 190–197 (1973)CrossRef
46.
Zurück zum Zitat Glenny, R.W., Robertson, T.J.: Fractal properties of pulmonary blood flow: charaterization of spatial heterogeneity. J. Appl. Physiol. 69(2), 532–545 (1990) Glenny, R.W., Robertson, T.J.: Fractal properties of pulmonary blood flow: charaterization of spatial heterogeneity. J. Appl. Physiol. 69(2), 532–545 (1990)
47.
Zurück zum Zitat Tawhai, M.H., Hunter, P.J., Tschirren, J., Reinhardt, J.M., McLennan, G., Hoffman, E.A.: CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97(6), 2310–2321 (2004)CrossRef Tawhai, M.H., Hunter, P.J., Tschirren, J., Reinhardt, J.M., McLennan, G., Hoffman, E.A.: CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97(6), 2310–2321 (2004)CrossRef
48.
Zurück zum Zitat Tawhai, M.H., Pullan, A.J., Hunter, P.J.: Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28(7), 793–802 (2000)CrossRef Tawhai, M.H., Pullan, A.J., Hunter, P.J.: Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28(7), 793–802 (2000)CrossRef
49.
Zurück zum Zitat West, J.B.: Respiratory Physiology—The Essentials. Williams and Wilkins, Baltimore (1995) West, J.B.: Respiratory Physiology—The Essentials. Williams and Wilkins, Baltimore (1995)
50.
Zurück zum Zitat Yen, M.: Elastic properties of pulmonary blood vessels. In: Respiratory Physiology: An Analytical Approach, pp. 553–560. Marcel Dekker, Inc. (1989) Yen, M.: Elastic properties of pulmonary blood vessels. In: Respiratory Physiology: An Analytical Approach, pp. 553–560. Marcel Dekker, Inc. (1989)
51.
Zurück zum Zitat Krenz, G.S., Dawson, C.A.: Flow and pressure distributions in vascular networks consisting of distensible vessels. Am. J. Physiol. Heart Circ Physiol 284(6), H2192–H2203 (2003) Krenz, G.S., Dawson, C.A.: Flow and pressure distributions in vascular networks consisting of distensible vessels. Am. J. Physiol. Heart Circ Physiol 284(6), H2192–H2203 (2003)
52.
Zurück zum Zitat Glenny, R.W., Lamm, W.J.E., Bernard, S.L., An, D., Chornuk, M., Pool, S., Wagner Jr., W.W., Hlastala, M.P., Rovertson, H.T.: Physiology of a microgravity environment, selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J. Appl. Physiol. 89(3), 1239–1248 (2000) Glenny, R.W., Lamm, W.J.E., Bernard, S.L., An, D., Chornuk, M., Pool, S., Wagner Jr., W.W., Hlastala, M.P., Rovertson, H.T.: Physiology of a microgravity environment, selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J. Appl. Physiol. 89(3), 1239–1248 (2000)
53.
Zurück zum Zitat Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2(3), 139–155 (2004)CrossRef Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2(3), 139–155 (2004)CrossRef
54.
Zurück zum Zitat Tawhai, M., Nash, N., Lin, C., Hoffman, E.: Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J. Appl. Physiol. 107(3), 912–920 (2009)CrossRef Tawhai, M., Nash, N., Lin, C., Hoffman, E.: Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J. Appl. Physiol. 107(3), 912–920 (2009)CrossRef
55.
Zurück zum Zitat Swan, A.J., Clark, A.R., Tawhai, M.H.: A computational model of the topographic distribution of ventilation in healthy human lungs. J. Theor. Biol. 300, 222–231 (2012)MathSciNetCrossRef Swan, A.J., Clark, A.R., Tawhai, M.H.: A computational model of the topographic distribution of ventilation in healthy human lungs. J. Theor. Biol. 300, 222–231 (2012)MathSciNetCrossRef
56.
Zurück zum Zitat Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)CrossRef Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)CrossRef
57.
Zurück zum Zitat Spilker, R.L., Feinstein, J.A., Parker, D.W., Reddy, V.M., Taylor, C.A.: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35(4), 546–559 (2007)CrossRef Spilker, R.L., Feinstein, J.A., Parker, D.W., Reddy, V.M., Taylor, C.A.: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35(4), 546–559 (2007)CrossRef
58.
Zurück zum Zitat Clipp, R., Steele, B.N.: Impedance boundary conditions for the pulmonary vasculature including the effects of geometry, compliance, and respiration. IEEE Trans. Biomed. Eng. 56(3), 862–870 (2009)CrossRef Clipp, R., Steele, B.N.: Impedance boundary conditions for the pulmonary vasculature including the effects of geometry, compliance, and respiration. IEEE Trans. Biomed. Eng. 56(3), 862–870 (2009)CrossRef
59.
Zurück zum Zitat Ochs, M., Nyengaard, J.R., Jung, A., Knudsen, L., Voigt, M., Wahlers, T., Richter, J., Gundersen, H.J.: The number of alveoli in the human lung. Am. J. Respir. Crit. Care Med. 169(1), 120–124 (2004)CrossRef Ochs, M., Nyengaard, J.R., Jung, A., Knudsen, L., Voigt, M., Wahlers, T., Richter, J., Gundersen, H.J.: The number of alveoli in the human lung. Am. J. Respir. Crit. Care Med. 169(1), 120–124 (2004)CrossRef
60.
Zurück zum Zitat Fung, Y.C., Sobin, S.S.: Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26, 472–488 (1969) Fung, Y.C., Sobin, S.S.: Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26, 472–488 (1969)
61.
Zurück zum Zitat Guntheroth, W.G., Luchtel, D.L., Kawabori, I.: Pulmonary microcirculation: tubules rather than sheet or post. J. Appl. Physiol. 53(2), 510–515 (1982) Guntheroth, W.G., Luchtel, D.L., Kawabori, I.: Pulmonary microcirculation: tubules rather than sheet or post. J. Appl. Physiol. 53(2), 510–515 (1982)
62.
Zurück zum Zitat Maina, J.N., West, J.B.: Thin and strong! The bioengineering dilema in the structural and functional design of the blood gas barrier. Physiol. Rev. 85, 811–844 (2005)CrossRef Maina, J.N., West, J.B.: Thin and strong! The bioengineering dilema in the structural and functional design of the blood gas barrier. Physiol. Rev. 85, 811–844 (2005)CrossRef
63.
Zurück zum Zitat Fahraeus, R., Lindqvist T.: The viscosity of the blood in narrow capillary tubes. J. Appl. Physiol. 96, 562–568 (1931) Fahraeus, R., Lindqvist T.: The viscosity of the blood in narrow capillary tubes. J. Appl. Physiol. 96, 562–568 (1931)
64.
Zurück zum Zitat Hogg, J.: Neutrophil kinetics and lung injury. Physiol. Rev. 67(4), 1249–1295 (1987)MathSciNet Hogg, J.: Neutrophil kinetics and lung injury. Physiol. Rev. 67(4), 1249–1295 (1987)MathSciNet
65.
Zurück zum Zitat Doerschuk, C.: Neutrophil rheology and transit through capillaries and sinusoids. Am. J. Respir. Crit. Care Med. 159, 1693–1999 (1999)CrossRef Doerschuk, C.: Neutrophil rheology and transit through capillaries and sinusoids. Am. J. Respir. Crit. Care Med. 159, 1693–1999 (1999)CrossRef
66.
Zurück zum Zitat Fung, Y.C., Sobin, S.S.: Elasticity of the pulmonary alveolar sheet. Circ. Res. 30(4), 451–469 (1972)CrossRef Fung, Y.C., Sobin, S.S.: Elasticity of the pulmonary alveolar sheet. Circ. Res. 30(4), 451–469 (1972)CrossRef
67.
Zurück zum Zitat Pries, A.R., Secomb, T.W.: Microcirculatory network structures and models. Ann. Biomed. Eng. 28, 916–921 (2000)CrossRef Pries, A.R., Secomb, T.W.: Microcirculatory network structures and models. Ann. Biomed. Eng. 28, 916–921 (2000)CrossRef
68.
Zurück zum Zitat Pries, A.R., Secomb, T.W., Gaehtgens, P., Gross, J.F.: Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67(4), 826–834 (1990)CrossRef Pries, A.R., Secomb, T.W., Gaehtgens, P., Gross, J.F.: Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67(4), 826–834 (1990)CrossRef
69.
Zurück zum Zitat Fenton, B., Wilson, D., Cokelet, G.: Analysis of the effect of measured white blood cell entrance time on hemodynamics in a computer model of a mircovascular bed. Pflugers Arch. 403, 396–401 (1985)CrossRef Fenton, B., Wilson, D., Cokelet, G.: Analysis of the effect of measured white blood cell entrance time on hemodynamics in a computer model of a mircovascular bed. Pflugers Arch. 403, 396–401 (1985)CrossRef
70.
Zurück zum Zitat Dhadwal, A., Wiggs, B., Doerschuk, C., Kamm, R.: Effects of anatomic variability on blood flow and pressure gradients in the pulmonary circulation. J. Appl. Physiol. 83(5), 1711–1720 (1997) Dhadwal, A., Wiggs, B., Doerschuk, C., Kamm, R.: Effects of anatomic variability on blood flow and pressure gradients in the pulmonary circulation. J. Appl. Physiol. 83(5), 1711–1720 (1997)
71.
Zurück zum Zitat Huang, Y., Doerschuk, C.M., Kamm, R.D.: Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J. Appl. Physiol. 90(2), 545–564 (2001)CrossRef Huang, Y., Doerschuk, C.M., Kamm, R.D.: Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J. Appl. Physiol. 90(2), 545–564 (2001)CrossRef
72.
Zurück zum Zitat Fung, Y.C., Sobin, S.S.: Pulmonary alveolar blood flow. Circ. Res. 30(4), 470–490 (1972)CrossRef Fung, Y.C., Sobin, S.S.: Pulmonary alveolar blood flow. Circ. Res. 30(4), 470–490 (1972)CrossRef
73.
Zurück zum Zitat Fung, Y.C., Yen, R.T.: A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol. 60(5), 1638–1650 (1986) Fung, Y.C., Yen, R.T.: A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol. 60(5), 1638–1650 (1986)
74.
Zurück zum Zitat Sobin, S.S., Fung, Y.C., Tremer, H.M., Rosenquist, T.H.: Elasticity of the pulmonary microvascular sheet in the cat. Circ. Res. 30(4), 440–450 (1972)CrossRef Sobin, S.S., Fung, Y.C., Tremer, H.M., Rosenquist, T.H.: Elasticity of the pulmonary microvascular sheet in the cat. Circ. Res. 30(4), 440–450 (1972)CrossRef
75.
Zurück zum Zitat Sobin, S.S., Tremer, H.M., Fung, Y.C.: Morphometric basis of the sheet-flow concenpt of the alveolar microcirculation in the cat. Circ. Res. 26(3), 397–414 (1970)CrossRef Sobin, S.S., Tremer, H.M., Fung, Y.C.: Morphometric basis of the sheet-flow concenpt of the alveolar microcirculation in the cat. Circ. Res. 26(3), 397–414 (1970)CrossRef
76.
Zurück zum Zitat Sobin, S.S., Tremer, H.M., Lindal, R.G., Fung, Y.C.: Distensibility of human pulmonary capillary blood vessels in the interalveolar septa. Fed. Proc. 38, 990 (1979) Sobin, S.S., Tremer, H.M., Lindal, R.G., Fung, Y.C.: Distensibility of human pulmonary capillary blood vessels in the interalveolar septa. Fed. Proc. 38, 990 (1979)
77.
Zurück zum Zitat Read, J.: Redistribution of stratified pulmonary blood flow during exercise. J. Appl. Physiol. 27(3), 374–377 (1969) Read, J.: Redistribution of stratified pulmonary blood flow during exercise. J. Appl. Physiol. 27(3), 374–377 (1969)
78.
Zurück zum Zitat Read, J.: Stratified pulmonary blood flow: some consequences in emphysema and pulmonary embolism. Br. Med. J. 2, 44–46 (1969)CrossRef Read, J.: Stratified pulmonary blood flow: some consequences in emphysema and pulmonary embolism. Br. Med. J. 2, 44–46 (1969)CrossRef
79.
Zurück zum Zitat Wagner, P., McRae, J., Read, J.: Stratified distribution of blood flow in secondary lobule of the rat lung. J. Appl. Physiol. 22(6), 1115–1123 (1967) Wagner, P., McRae, J., Read, J.: Stratified distribution of blood flow in secondary lobule of the rat lung. J. Appl. Physiol. 22(6), 1115–1123 (1967)
80.
Zurück zum Zitat West, J.B., Maloney, J.E., Castle, B.L.: Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs. J. Appl. Physiol. 32(3), 357–361 (1972) West, J.B., Maloney, J.E., Castle, B.L.: Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs. J. Appl. Physiol. 32(3), 357–361 (1972)
81.
Zurück zum Zitat Hughes, J.M., Glazier, J.B., Maloney, J.E., West, J.B.: Effect of lung volume on the distribution of pulmonary blood flow in man. Respir. Physiol. 4(1), 58–72 (1968)CrossRef Hughes, J.M., Glazier, J.B., Maloney, J.E., West, J.B.: Effect of lung volume on the distribution of pulmonary blood flow in man. Respir. Physiol. 4(1), 58–72 (1968)CrossRef
82.
Zurück zum Zitat Hopkins, S.R., Arai, T.J., Henderson, A.C., Levin, D.L., Buxton, R.B., Prisk, G.K.: Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans. J. Physiol. 588(Pt 23), 4759–4768 (2010)CrossRef Hopkins, S.R., Arai, T.J., Henderson, A.C., Levin, D.L., Buxton, R.B., Prisk, G.K.: Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans. J. Physiol. 588(Pt 23), 4759–4768 (2010)CrossRef
83.
Zurück zum Zitat Tawhai, M.H., Clark, A.R., Burrowes, K.S.: Computational models of the pulmonary circulation: insights and the move towards clinically directed studies. Pulm. Circu. 1(2), 224–238 (2011)CrossRef Tawhai, M.H., Clark, A.R., Burrowes, K.S.: Computational models of the pulmonary circulation: insights and the move towards clinically directed studies. Pulm. Circu. 1(2), 224–238 (2011)CrossRef
84.
Zurück zum Zitat Ben-Tal, A.: Simplified models for gas exchange in the human lungs. J. Theor. Biol. 238, 474–495 (2006)CrossRef Ben-Tal, A.: Simplified models for gas exchange in the human lungs. J. Theor. Biol. 238, 474–495 (2006)CrossRef
85.
Zurück zum Zitat Kapitan, K., Hempleman, S.: Computer simulation of mammalian gas exchange. Comput. Methods Biol. Med. 16(2), 91–101 (1986)CrossRef Kapitan, K., Hempleman, S.: Computer simulation of mammalian gas exchange. Comput. Methods Biol. Med. 16(2), 91–101 (1986)CrossRef
86.
Zurück zum Zitat Monod, J., Wyman, J., Changeaux, J.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–112 (1965)CrossRef Monod, J., Wyman, J., Changeaux, J.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–112 (1965)CrossRef
87.
Zurück zum Zitat Tawhai, M., Clark, A., Wilsher, M., Millne, D., Subramaniam, K., Burrowes, K.: Spatial redistribution of perfusion and gas exchange in patient specific models of pulmonary embolism. In: 2012 IEEE International Symposium on Biomedical Imaging. Barcelona, Spain Tawhai, M., Clark, A., Wilsher, M., Millne, D., Subramaniam, K., Burrowes, K.: Spatial redistribution of perfusion and gas exchange in patient specific models of pulmonary embolism. In: 2012 IEEE International Symposium on Biomedical Imaging. Barcelona, Spain
88.
Zurück zum Zitat Wagner, P.D.: The multiple inert gas elimination technique (MIGET). Intensive Care Med. 34(6), 994–1001 (2008)CrossRef Wagner, P.D.: The multiple inert gas elimination technique (MIGET). Intensive Care Med. 34(6), 994–1001 (2008)CrossRef
89.
Zurück zum Zitat McIntyre, K., Sasahara, A.: Hemodynamic alterations related to extent of lung scan perfusion defect in pulmonary embolism. J. Nucl. Med. 4, 166–170 (1971) McIntyre, K., Sasahara, A.: Hemodynamic alterations related to extent of lung scan perfusion defect in pulmonary embolism. J. Nucl. Med. 4, 166–170 (1971)
90.
Zurück zum Zitat McIntyre, K., Sasahara, A.: The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am. J. Cardiol. 28(3), 288–294 (1971)CrossRef McIntyre, K., Sasahara, A.: The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am. J. Cardiol. 28(3), 288–294 (1971)CrossRef
91.
Zurück zum Zitat Ghaye, B., Ghuysen, A., Bruyere, P.J., D’Orio, V., Dondelinger, R.F.: Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics 26(1), 23–39; discussion 39–40 (2006) (discussion 39–40) Ghaye, B., Ghuysen, A., Bruyere, P.J., D’Orio, V., Dondelinger, R.F.: Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics 26(1), 23–39; discussion 39–40 (2006) (discussion 39–40)
92.
93.
Zurück zum Zitat Tawhai, M.H., Hunter, P.J.: Characterising respiratory airway gas mixing using a lumped parameter model of the pulmonary acinus. Respir. Physiol. 127, 241–248 (2001)CrossRef Tawhai, M.H., Hunter, P.J.: Characterising respiratory airway gas mixing using a lumped parameter model of the pulmonary acinus. Respir. Physiol. 127, 241–248 (2001)CrossRef
94.
Zurück zum Zitat Haefeli-Bleuer, B., Weibel, E.R.: Morphometry of the human pulmonary acinus. Anat. Rec. 220, 401–414 (1988)CrossRef Haefeli-Bleuer, B., Weibel, E.R.: Morphometry of the human pulmonary acinus. Anat. Rec. 220, 401–414 (1988)CrossRef
95.
Zurück zum Zitat Delcroix, M., Mélot, C., Lejeune, P., Leeman, M., Naeije, R.: Effects of vasodilators on gas exchange in acute canine embolic pulmonary hypertension. Anesthesiology 72, 77–84 (1990) Delcroix, M., Mélot, C., Lejeune, P., Leeman, M., Naeije, R.: Effects of vasodilators on gas exchange in acute canine embolic pulmonary hypertension. Anesthesiology 72, 77–84 (1990)
96.
Zurück zum Zitat Delcroix, M., Mélot, C., Vachiery, J.-L., Lejeune, P., Leeman, M., Vanderhoeft, P., Naeije, R.: Effects of embolus size on hemodynamics and gas exchange in canine embolic pulmonary hypertension. J. Appl. Physiol. 69(6), 2254–2261 (1990) Delcroix, M., Mélot, C., Vachiery, J.-L., Lejeune, P., Leeman, M., Vanderhoeft, P., Naeije, R.: Effects of embolus size on hemodynamics and gas exchange in canine embolic pulmonary hypertension. J. Appl. Physiol. 69(6), 2254–2261 (1990)
97.
Zurück zum Zitat Hasinoff, I., Ducas, J., Schick, U., Prewitt, R.: Pulmonary vascular pressure-flow characteristics in canine pulmonary embolism. J. Appl. Physiol. 68(2), 462–467 (1990) Hasinoff, I., Ducas, J., Schick, U., Prewitt, R.: Pulmonary vascular pressure-flow characteristics in canine pulmonary embolism. J. Appl. Physiol. 68(2), 462–467 (1990)
98.
Zurück zum Zitat Mélot, C., Delcroix, M., Closset, J., Vanderhoeft, P., Lejeune, P., Leeman, M., Naeije, R.: Starling resistor vs. distensible vessel models for embolic pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 268(2), H817–H827 (1995) Mélot, C., Delcroix, M., Closset, J., Vanderhoeft, P., Lejeune, P., Leeman, M., Naeije, R.: Starling resistor vs. distensible vessel models for embolic pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 268(2), H817–H827 (1995)
99.
Zurück zum Zitat Levine, J.A., Schleusner, S.J., Jensen, M.D.: Energy expenditure of nonexercise activity. Am. J. Clin. Nutr. 72, 1451–1454 (2000) Levine, J.A., Schleusner, S.J., Jensen, M.D.: Energy expenditure of nonexercise activity. Am. J. Clin. Nutr. 72, 1451–1454 (2000)
100.
Zurück zum Zitat Nishimura, M., Kiyamoto, K., Suzuki, A., Yamamoto, H., Tsuji, M., Kishi, F., Kawakami, Y.: Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax 44, 215–257 (1989)CrossRef Nishimura, M., Kiyamoto, K., Suzuki, A., Yamamoto, H., Tsuji, M., Kishi, F., Kawakami, Y.: Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax 44, 215–257 (1989)CrossRef
101.
Zurück zum Zitat Politi, A.Z., Donovan, G.M., Tawhai, M.H., Sanderson, M.J., Lauzon, A., Bates, J.H.T., Sneyd, J.: A multiscale, spatially distributed model of asthmatic airway hyper-responsiveness. J. Theor. Biol. 266, 614–624 (2010)CrossRef Politi, A.Z., Donovan, G.M., Tawhai, M.H., Sanderson, M.J., Lauzon, A., Bates, J.H.T., Sneyd, J.: A multiscale, spatially distributed model of asthmatic airway hyper-responsiveness. J. Theor. Biol. 266, 614–624 (2010)CrossRef
102.
Zurück zum Zitat Wang, I., Politi, A.Z., Tania, N., Bai, Y., Sanderson, M.J., Sneyd, J.: A mathematical model of airway and pulmonary arteriole smooth muscle. Biophys. J. 94(6), 2053–2064 (2008)CrossRef Wang, I., Politi, A.Z., Tania, N., Bai, Y., Sanderson, M.J., Sneyd, J.: A mathematical model of airway and pulmonary arteriole smooth muscle. Biophys. J. 94(6), 2053–2064 (2008)CrossRef
103.
Zurück zum Zitat Hai, C., Murphy, R.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99–C106 (1988) Hai, C., Murphy, R.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99–C106 (1988)
104.
Zurück zum Zitat Lai-Fook, S.J., Hyatt, R.E.: Effect of parenchyma and length changes on vessel pressure-diameter behavior in pig lungs. J. Appl. Physiol. 47(4), 666–669 (1979) Lai-Fook, S.J., Hyatt, R.E.: Effect of parenchyma and length changes on vessel pressure-diameter behavior in pig lungs. J. Appl. Physiol. 47(4), 666–669 (1979)
105.
Zurück zum Zitat Donovan, G., Bullimore, S., Elvin, A., Tawhai, M., Bates, J., Lauzon, A., Sneyd, J.: A continuous-binding cross-linker model for passive airway smooth muscle. Biophys. J. 99(10), 3164–3171 (2010)CrossRef Donovan, G., Bullimore, S., Elvin, A., Tawhai, M., Bates, J., Lauzon, A., Sneyd, J.: A continuous-binding cross-linker model for passive airway smooth muscle. Biophys. J. 99(10), 3164–3171 (2010)CrossRef
Metadaten
Titel
Translational Research: Multi-Scale Models of the Pulmonary Circulation in Health and Disease
verfasst von
Alys R. Clark
Kelly S. Burrowes
Merryn H. Tawhai
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2012_152

Neuer Inhalt