Skip to main content
Top
Published in: Flow, Turbulence and Combustion 4/2016

18-08-2016

Transport Mechanism of Interface Turbulence over Porous and Rough Walls

Authors: Yusuke Kuwata, Kazuhiko Suga

Published in: Flow, Turbulence and Combustion | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To understand turbulent transport mechanisms of interface turbulence over porous and rough walls, statistical analyses using direct numerical simulation (DNS) data are carried out at a bulk Reynolds number of 3000. The presently considered porous wall, whose porosity is 0.71, consists of interconnected staggered cube arrays and the rough wall has the same surface structure. Through quadrant and budget term analyses, the transport mechanisms of the plane averaged Reynolds stress are investigated and mutual dependency between turbulence and dispersion is elucidated. Moreover, the influence of the Kelvin-Helmholtz instability on turbulent transport is clarified.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Breugem, W.P., Boersma, B.J.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17, 025103 (2005)CrossRefMATH Breugem, W.P., Boersma, B.J.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17, 025103 (2005)CrossRefMATH
2.
go back to reference Breugem, W.P., Boersma, B.J., Uittenbogaard, R.E.: The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 35–72 (2006)MathSciNetCrossRefMATH Breugem, W.P., Boersma, B.J., Uittenbogaard, R.E.: The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 35–72 (2006)MathSciNetCrossRefMATH
3.
go back to reference Chandesris, M., D’Hueppe, A., Mathieu, B., Jamet, D., Goyeau, B.: Direct numerical simulation of turbulent heat transfer in a fluid-porous domain. Phys. Fluids 25(12), 125110 (2013)CrossRef Chandesris, M., D’Hueppe, A., Mathieu, B., Jamet, D., Goyeau, B.: Direct numerical simulation of turbulent heat transfer in a fluid-porous domain. Phys. Fluids 25(12), 125110 (2013)CrossRef
4.
go back to reference Detert, M., Nikora, V., Jirka, G.H.: Synoptic velocity and pressure fields at the water–sediment interface of streambeds. J. Fluid Mech. 660, 55–86 (2010)CrossRefMATH Detert, M., Nikora, V., Jirka, G.H.: Synoptic velocity and pressure fields at the water–sediment interface of streambeds. J. Fluid Mech. 660, 55–86 (2010)CrossRefMATH
5.
go back to reference d’Humiéres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437–451 (2002)MathSciNetCrossRefMATH d’Humiéres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437–451 (2002)MathSciNetCrossRefMATH
6.
go back to reference Dwyer, M.J., Patton, E.G., Shaw, R.H.: Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol. 84(1), 23–43 (1997)CrossRef Dwyer, M.J., Patton, E.G., Shaw, R.H.: Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol. 84(1), 23–43 (1997)CrossRef
7.
go back to reference Finnigan, J.J., Shaw, R.H., Patton, E.G.: Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387–424 (2009)CrossRefMATH Finnigan, J.J., Shaw, R.H., Patton, E.G.: Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387–424 (2009)CrossRefMATH
8.
9.
go back to reference Kang, S.K., Hassan, Y.A.: The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. J. Comput. Phys. 232(1), 100–117 (2013)MathSciNetCrossRef Kang, S.K., Hassan, Y.A.: The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. J. Comput. Phys. 232(1), 100–117 (2013)MathSciNetCrossRef
10.
go back to reference Katul, G.: An investigation of higher-order closure models for a forested canopy. Boundary-Layer Meteorol. 89(1), 47–74 (1998)CrossRef Katul, G.: An investigation of higher-order closure models for a forested canopy. Boundary-Layer Meteorol. 89(1), 47–74 (1998)CrossRef
11.
go back to reference Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH
12.
go back to reference Kuwata, Y., Suga, K.: Modelling turbulence around and inside porous media based on the second moment closure. Int. J. Heat Fluid Flow 43, 35–51 (2013)CrossRef Kuwata, Y., Suga, K.: Modelling turbulence around and inside porous media based on the second moment closure. Int. J. Heat Fluid Flow 43, 35–51 (2013)CrossRef
13.
go back to reference Kuwata, Y., Suga, K.: Anomaly of the lattice Boltzmann methods in three-dimensional cylindrical flows. J. Comput. Phys. 280, 563–569 (2015)MathSciNetCrossRef Kuwata, Y., Suga, K.: Anomaly of the lattice Boltzmann methods in three-dimensional cylindrical flows. J. Comput. Phys. 280, 563–569 (2015)MathSciNetCrossRef
14.
go back to reference Kuwata, Y., Suga, K.: Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. J. Comput. Phys. 311, 348–362 (2016)MathSciNetCrossRef Kuwata, Y., Suga, K.: Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. J. Comput. Phys. 311, 348–362 (2016)MathSciNetCrossRef
16.
go back to reference Kuwata, Y., Suga, K., Sakurai, Y.: Development and application of a multi-scale k−ε model for turbulent porous medium flows. Int. J. Heat Fluid Flow 49, 135–150 (2014)CrossRef Kuwata, Y., Suga, K., Sakurai, Y.: Development and application of a multi-scale kε model for turbulent porous medium flows. Int. J. Heat Fluid Flow 49, 135–150 (2014)CrossRef
17.
go back to reference Manes, C., Poggi, D., Ridolfi, L.: Turbulent boundary layers over permeable walls: scaling and near-wall structure. J. Fluid Mech. 687, 141–170 (2011)CrossRefMATH Manes, C., Poggi, D., Ridolfi, L.: Turbulent boundary layers over permeable walls: scaling and near-wall structure. J. Fluid Mech. 687, 141–170 (2011)CrossRefMATH
18.
go back to reference Manes, C., Pokrajac, D., McEwan, I., Nikora, V.: Turbulence structure of open channel flows over permeable and impermeable beds a comparative study. Phys. Fluids 21, 125109 (2009)CrossRefMATH Manes, C., Pokrajac, D., McEwan, I., Nikora, V.: Turbulence structure of open channel flows over permeable and impermeable beds a comparative study. Phys. Fluids 21, 125109 (2009)CrossRefMATH
19.
go back to reference Meyers, T.P., Baldocchi, D.D.: The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric. For. Meteorol. 53(3), 207–222 (1991)CrossRef Meyers, T.P., Baldocchi, D.D.: The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric. For. Meteorol. 53(3), 207–222 (1991)CrossRef
20.
go back to reference Nepf, H.M.: Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35(2), 479–489 (1999)CrossRef Nepf, H.M.: Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35(2), 479–489 (1999)CrossRef
21.
go back to reference Nezu, I., Sanjou, M.: Turburence structure and coherent motion in vegetated canopy open-channel flows. J. Hydro-Environ. Res. 2, 62–90 (2008)CrossRef Nezu, I., Sanjou, M.: Turburence structure and coherent motion in vegetated canopy open-channel flows. J. Hydro-Environ. Res. 2, 62–90 (2008)CrossRef
22.
go back to reference Poggi, D., Porporato, A., Ridolfi, L., Albertson, J.D., Katul, G.G.: The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111(3), 565–587 (2004)CrossRef Poggi, D., Porporato, A., Ridolfi, L., Albertson, J.D., Katul, G.G.: The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111(3), 565–587 (2004)CrossRef
23.
go back to reference Pokrajac, D., Manes, C.: Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transp. Porous Med. 78, 367–383 (2009)CrossRef Pokrajac, D., Manes, C.: Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transp. Porous Med. 78, 367–383 (2009)CrossRef
24.
go back to reference Raupach, M.R., Finnigan, J.J., Brunei, Y.: Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78(3-4), 351–382 (1996)CrossRef Raupach, M.R., Finnigan, J.J., Brunei, Y.: Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78(3-4), 351–382 (1996)CrossRef
25.
go back to reference Suga, K.: Understanding and modelling turbulence over and inside porous media. Flow Turbulence Combust. 96, 717–756 (2016)CrossRef Suga, K.: Understanding and modelling turbulence over and inside porous media. Flow Turbulence Combust. 96, 717–756 (2016)CrossRef
26.
go back to reference Suga, K., Kuwata, Y., Takashima, K., Chikasue, R.: A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Comput. Math. Appl. 69, 518–529 (2015)MathSciNetCrossRef Suga, K., Kuwata, Y., Takashima, K., Chikasue, R.: A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Comput. Math. Appl. 69, 518–529 (2015)MathSciNetCrossRef
27.
go back to reference Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S., Kaneda, M.: Effects of wall permeability on turbulence. Int. J. Heat Fluid Flow 31, 974–984 (2010)CrossRef Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S., Kaneda, M.: Effects of wall permeability on turbulence. Int. J. Heat Fluid Flow 31, 974–984 (2010)CrossRef
28.
go back to reference Suga, K., Mori, M., Kaneda, M.: Vortex structure of turbulence over permeable walls. Int. J. Heat Fluid Flow 32, 586–595 (2011)CrossRef Suga, K., Mori, M., Kaneda, M.: Vortex structure of turbulence over permeable walls. Int. J. Heat Fluid Flow 32, 586–595 (2011)CrossRef
29.
go back to reference Whitaker, S.: Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Med. 1, 3–25 (1986)CrossRef Whitaker, S.: Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Med. 1, 3–25 (1986)CrossRef
30.
go back to reference Whitaker, S.: The Forchheimer equation: A theoretical development. Transp. Porous Med. 25, 27–61 (1996)CrossRef Whitaker, S.: The Forchheimer equation: A theoretical development. Transp. Porous Med. 25, 27–61 (1996)CrossRef
31.
go back to reference White, A.T., Chong, C.K.: Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230(16), 6367–6378 (2011)CrossRefMATH White, A.T., Chong, C.K.: Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230(16), 6367–6378 (2011)CrossRefMATH
Metadata
Title
Transport Mechanism of Interface Turbulence over Porous and Rough Walls
Authors
Yusuke Kuwata
Kazuhiko Suga
Publication date
18-08-2016
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 4/2016
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-016-9759-9

Other articles of this Issue 4/2016

Flow, Turbulence and Combustion 4/2016 Go to the issue

Premium Partners