Skip to main content
Erschienen in: Flow, Turbulence and Combustion 4/2016

18.08.2016

Transport Mechanism of Interface Turbulence over Porous and Rough Walls

verfasst von: Yusuke Kuwata, Kazuhiko Suga

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To understand turbulent transport mechanisms of interface turbulence over porous and rough walls, statistical analyses using direct numerical simulation (DNS) data are carried out at a bulk Reynolds number of 3000. The presently considered porous wall, whose porosity is 0.71, consists of interconnected staggered cube arrays and the rough wall has the same surface structure. Through quadrant and budget term analyses, the transport mechanisms of the plane averaged Reynolds stress are investigated and mutual dependency between turbulence and dispersion is elucidated. Moreover, the influence of the Kelvin-Helmholtz instability on turbulent transport is clarified.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Breugem, W.P., Boersma, B.J.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17, 025103 (2005)CrossRefMATH Breugem, W.P., Boersma, B.J.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17, 025103 (2005)CrossRefMATH
2.
Zurück zum Zitat Breugem, W.P., Boersma, B.J., Uittenbogaard, R.E.: The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 35–72 (2006)MathSciNetCrossRefMATH Breugem, W.P., Boersma, B.J., Uittenbogaard, R.E.: The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 35–72 (2006)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Chandesris, M., D’Hueppe, A., Mathieu, B., Jamet, D., Goyeau, B.: Direct numerical simulation of turbulent heat transfer in a fluid-porous domain. Phys. Fluids 25(12), 125110 (2013)CrossRef Chandesris, M., D’Hueppe, A., Mathieu, B., Jamet, D., Goyeau, B.: Direct numerical simulation of turbulent heat transfer in a fluid-porous domain. Phys. Fluids 25(12), 125110 (2013)CrossRef
4.
Zurück zum Zitat Detert, M., Nikora, V., Jirka, G.H.: Synoptic velocity and pressure fields at the water–sediment interface of streambeds. J. Fluid Mech. 660, 55–86 (2010)CrossRefMATH Detert, M., Nikora, V., Jirka, G.H.: Synoptic velocity and pressure fields at the water–sediment interface of streambeds. J. Fluid Mech. 660, 55–86 (2010)CrossRefMATH
5.
Zurück zum Zitat d’Humiéres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437–451 (2002)MathSciNetCrossRefMATH d’Humiéres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437–451 (2002)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Dwyer, M.J., Patton, E.G., Shaw, R.H.: Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol. 84(1), 23–43 (1997)CrossRef Dwyer, M.J., Patton, E.G., Shaw, R.H.: Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol. 84(1), 23–43 (1997)CrossRef
7.
Zurück zum Zitat Finnigan, J.J., Shaw, R.H., Patton, E.G.: Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387–424 (2009)CrossRefMATH Finnigan, J.J., Shaw, R.H., Patton, E.G.: Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387–424 (2009)CrossRefMATH
8.
Zurück zum Zitat He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88(3-4), 927–944 (1997)MathSciNetCrossRefMATH He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88(3-4), 927–944 (1997)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Kang, S.K., Hassan, Y.A.: The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. J. Comput. Phys. 232(1), 100–117 (2013)MathSciNetCrossRef Kang, S.K., Hassan, Y.A.: The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. J. Comput. Phys. 232(1), 100–117 (2013)MathSciNetCrossRef
10.
Zurück zum Zitat Katul, G.: An investigation of higher-order closure models for a forested canopy. Boundary-Layer Meteorol. 89(1), 47–74 (1998)CrossRef Katul, G.: An investigation of higher-order closure models for a forested canopy. Boundary-Layer Meteorol. 89(1), 47–74 (1998)CrossRef
11.
Zurück zum Zitat Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH
12.
Zurück zum Zitat Kuwata, Y., Suga, K.: Modelling turbulence around and inside porous media based on the second moment closure. Int. J. Heat Fluid Flow 43, 35–51 (2013)CrossRef Kuwata, Y., Suga, K.: Modelling turbulence around and inside porous media based on the second moment closure. Int. J. Heat Fluid Flow 43, 35–51 (2013)CrossRef
13.
Zurück zum Zitat Kuwata, Y., Suga, K.: Anomaly of the lattice Boltzmann methods in three-dimensional cylindrical flows. J. Comput. Phys. 280, 563–569 (2015)MathSciNetCrossRef Kuwata, Y., Suga, K.: Anomaly of the lattice Boltzmann methods in three-dimensional cylindrical flows. J. Comput. Phys. 280, 563–569 (2015)MathSciNetCrossRef
14.
Zurück zum Zitat Kuwata, Y., Suga, K.: Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. J. Comput. Phys. 311, 348–362 (2016)MathSciNetCrossRef Kuwata, Y., Suga, K.: Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. J. Comput. Phys. 311, 348–362 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Kuwata, Y., Suga, K., Sakurai, Y.: Development and application of a multi-scale k−ε model for turbulent porous medium flows. Int. J. Heat Fluid Flow 49, 135–150 (2014)CrossRef Kuwata, Y., Suga, K., Sakurai, Y.: Development and application of a multi-scale kε model for turbulent porous medium flows. Int. J. Heat Fluid Flow 49, 135–150 (2014)CrossRef
17.
Zurück zum Zitat Manes, C., Poggi, D., Ridolfi, L.: Turbulent boundary layers over permeable walls: scaling and near-wall structure. J. Fluid Mech. 687, 141–170 (2011)CrossRefMATH Manes, C., Poggi, D., Ridolfi, L.: Turbulent boundary layers over permeable walls: scaling and near-wall structure. J. Fluid Mech. 687, 141–170 (2011)CrossRefMATH
18.
Zurück zum Zitat Manes, C., Pokrajac, D., McEwan, I., Nikora, V.: Turbulence structure of open channel flows over permeable and impermeable beds a comparative study. Phys. Fluids 21, 125109 (2009)CrossRefMATH Manes, C., Pokrajac, D., McEwan, I., Nikora, V.: Turbulence structure of open channel flows over permeable and impermeable beds a comparative study. Phys. Fluids 21, 125109 (2009)CrossRefMATH
19.
Zurück zum Zitat Meyers, T.P., Baldocchi, D.D.: The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric. For. Meteorol. 53(3), 207–222 (1991)CrossRef Meyers, T.P., Baldocchi, D.D.: The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric. For. Meteorol. 53(3), 207–222 (1991)CrossRef
20.
Zurück zum Zitat Nepf, H.M.: Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35(2), 479–489 (1999)CrossRef Nepf, H.M.: Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35(2), 479–489 (1999)CrossRef
21.
Zurück zum Zitat Nezu, I., Sanjou, M.: Turburence structure and coherent motion in vegetated canopy open-channel flows. J. Hydro-Environ. Res. 2, 62–90 (2008)CrossRef Nezu, I., Sanjou, M.: Turburence structure and coherent motion in vegetated canopy open-channel flows. J. Hydro-Environ. Res. 2, 62–90 (2008)CrossRef
22.
Zurück zum Zitat Poggi, D., Porporato, A., Ridolfi, L., Albertson, J.D., Katul, G.G.: The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111(3), 565–587 (2004)CrossRef Poggi, D., Porporato, A., Ridolfi, L., Albertson, J.D., Katul, G.G.: The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111(3), 565–587 (2004)CrossRef
23.
Zurück zum Zitat Pokrajac, D., Manes, C.: Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transp. Porous Med. 78, 367–383 (2009)CrossRef Pokrajac, D., Manes, C.: Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transp. Porous Med. 78, 367–383 (2009)CrossRef
24.
Zurück zum Zitat Raupach, M.R., Finnigan, J.J., Brunei, Y.: Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78(3-4), 351–382 (1996)CrossRef Raupach, M.R., Finnigan, J.J., Brunei, Y.: Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78(3-4), 351–382 (1996)CrossRef
25.
Zurück zum Zitat Suga, K.: Understanding and modelling turbulence over and inside porous media. Flow Turbulence Combust. 96, 717–756 (2016)CrossRef Suga, K.: Understanding and modelling turbulence over and inside porous media. Flow Turbulence Combust. 96, 717–756 (2016)CrossRef
26.
Zurück zum Zitat Suga, K., Kuwata, Y., Takashima, K., Chikasue, R.: A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Comput. Math. Appl. 69, 518–529 (2015)MathSciNetCrossRef Suga, K., Kuwata, Y., Takashima, K., Chikasue, R.: A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Comput. Math. Appl. 69, 518–529 (2015)MathSciNetCrossRef
27.
Zurück zum Zitat Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S., Kaneda, M.: Effects of wall permeability on turbulence. Int. J. Heat Fluid Flow 31, 974–984 (2010)CrossRef Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S., Kaneda, M.: Effects of wall permeability on turbulence. Int. J. Heat Fluid Flow 31, 974–984 (2010)CrossRef
28.
Zurück zum Zitat Suga, K., Mori, M., Kaneda, M.: Vortex structure of turbulence over permeable walls. Int. J. Heat Fluid Flow 32, 586–595 (2011)CrossRef Suga, K., Mori, M., Kaneda, M.: Vortex structure of turbulence over permeable walls. Int. J. Heat Fluid Flow 32, 586–595 (2011)CrossRef
29.
Zurück zum Zitat Whitaker, S.: Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Med. 1, 3–25 (1986)CrossRef Whitaker, S.: Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Med. 1, 3–25 (1986)CrossRef
30.
Zurück zum Zitat Whitaker, S.: The Forchheimer equation: A theoretical development. Transp. Porous Med. 25, 27–61 (1996)CrossRef Whitaker, S.: The Forchheimer equation: A theoretical development. Transp. Porous Med. 25, 27–61 (1996)CrossRef
31.
Zurück zum Zitat White, A.T., Chong, C.K.: Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230(16), 6367–6378 (2011)CrossRefMATH White, A.T., Chong, C.K.: Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230(16), 6367–6378 (2011)CrossRefMATH
Metadaten
Titel
Transport Mechanism of Interface Turbulence over Porous and Rough Walls
verfasst von
Yusuke Kuwata
Kazuhiko Suga
Publikationsdatum
18.08.2016
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 4/2016
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-016-9759-9

Weitere Artikel der Ausgabe 4/2016

Flow, Turbulence and Combustion 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.