Skip to main content
Top

2021 | OriginalPaper | Chapter

7. Tribological and Corrosion Behavior of Al-TiB2 Metal Matrix Composites—An Overview

Author : Suswagata Poria

Published in: Recent Advances in Layered Materials and Structures

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present chapter deals with Al-TiB2 metal matrix composites (MMCs). MMCs are already proved for their superior mechanical properties and tribological behavior when compared with monolithic metal alloys which actually made MMCs suitable for versatile range of applications. Accordingly, mass market products of composite materials are increasing progressively and area of applications are spreading day by day. From solid-to-liquid processing, there are several methods through which reinforcing phases have been incorporated into the metallic phase. A discussion regarding tribological and corrosion behavior of Al–TiB2 composites based on existing literature has been introduced in this chapter. It can be said from overall discussion that Al–TiB2 composites perform very well in tribological aspects. To talk about corrosion resistance, definitely some new approaches should be taken to make it better.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdizadeh H, Ebrahimifard R, Baghchesara MA (2014) Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: a comparative study. Compos B Eng 56:217–221CrossRef Abdizadeh H, Ebrahimifard R, Baghchesara MA (2014) Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: a comparative study. Compos B Eng 56:217–221CrossRef
2.
go back to reference Acharya SK, Dikshit V, Mishra P (2008) Erosive wear behaviour of redmud filled metal matrix composite. J Reinf Plast Compos 27(2):145–152 Acharya SK, Dikshit V, Mishra P (2008) Erosive wear behaviour of redmud filled metal matrix composite. J Reinf Plast Compos 27(2):145–152
3.
go back to reference Akbari MK, Baharvandi HR, Shirvanimoghaddam K (2015) Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater Des 1980–2015(66):150–161CrossRef Akbari MK, Baharvandi HR, Shirvanimoghaddam K (2015) Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater Des 1980–2015(66):150–161CrossRef
4.
go back to reference Alizadeh M, Paydar MH, Jazi FS (2013) Structural evaluation and mechanical properties of nano-structured Al/B4C composite fabricated by ARB process. Compos Part B Eng 44(1):339–343 Alizadeh M, Paydar MH, Jazi FS (2013) Structural evaluation and mechanical properties of nano-structured Al/B4C composite fabricated by ARB process. Compos Part B Eng 44(1):339–343
5.
go back to reference Antoniou R, Subramanian C (1988) Wear mechanism map for aluminium alloys. Scripta Metallurgica 22(6):809–814 Antoniou R, Subramanian C (1988) Wear mechanism map for aluminium alloys. Scripta Metallurgica 22(6):809–814
6.
go back to reference Balasubramanian I, Maheswaran R (2015) Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites. Mater Design (1980–2015) 65:511–520 Balasubramanian I, Maheswaran R (2015) Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites. Mater Design (1980–2015) 65:511–520
7.
go back to reference Balci O, Agaogulları D, Gokçe H, Duman I, Ovecoglu ML (2014) Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering. J Alloy Compd 586:S78–S84CrossRef Balci O, Agaogulları D, Gokçe H, Duman I, Ovecoglu ML (2014) Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering. J Alloy Compd 586:S78–S84CrossRef
8.
go back to reference Bannister M (2001) Challenges for composites into the next millennium—a reinforcement perspective. Compos A Appl Sci Manuf 32(7):901–910CrossRef Bannister M (2001) Challenges for composites into the next millennium—a reinforcement perspective. Compos A Appl Sci Manuf 32(7):901–910CrossRef
9.
go back to reference Ceschini L, Dahle A, Gupta M, Jarfors AEW, Jayalakshmi S, Morri A, Singh RA et al (2017) Aluminum and magnesium metal matrix nanocomposite. Springer, Berlin Ceschini L, Dahle A, Gupta M, Jarfors AEW, Jayalakshmi S, Morri A, Singh RA et al (2017) Aluminum and magnesium metal matrix nanocomposite. Springer, Berlin
10.
go back to reference Chawla KK, Chawla N (2014) Encyclopedia of automotive engineering. Wiley, New York Chawla KK, Chawla N (2014) Encyclopedia of automotive engineering. Wiley, New York
11.
go back to reference Clyne TW, Withers PJ (1995) An Introduction to Metal Matrix Composites. Cambridge university press Clyne TW, Withers PJ (1995) An Introduction to Metal Matrix Composites. Cambridge university press
12.
go back to reference Dai LH, Ling Z, Bai YL (2001) Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Compos Sci Technol 61(8):1057–1063 Dai LH, Ling Z, Bai YL (2001) Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Compos Sci Technol 61(8):1057–1063
13.
go back to reference Daniel SAA, Sakthivel M, Gopal PM, Sudhagar S (2018) Study on tribological behaviour of Al/SiC/MoS2 hybrid metal matrix composites in high temperature environmental condition. Silicon 1–11 Daniel SAA, Sakthivel M, Gopal PM, Sudhagar S (2018) Study on tribological behaviour of Al/SiC/MoS2 hybrid metal matrix composites in high temperature environmental condition. Silicon 1–11
14.
go back to reference Dhokey NB, Ghule S, Rane K, Ranade RS (2011) Effect of KBF4 and K2TiF6 on precipitation kinetics of TiB2 in aluminium matrix composite. J Adv Mater Lett 2:210–216CrossRef Dhokey NB, Ghule S, Rane K, Ranade RS (2011) Effect of KBF4 and K2TiF6 on precipitation kinetics of TiB2 in aluminium matrix composite. J Adv Mater Lett 2:210–216CrossRef
15.
go back to reference Evans A, San Marchi C, Mortensen A (2003) Metal matrix composites. In: Metal matrix composites in industry an introduction and a survey. Springer, Boston Evans A, San Marchi C, Mortensen A (2003) Metal matrix composites. In: Metal matrix composites in industry an introduction and a survey. Springer, Boston
16.
go back to reference Ferguson JB, Sheykh-Jaberi F, Kim CS, Rohatgi PK, Cho K (2012) On the strength and strain to failure in particle-reinforced magnesium metal-matrix nano-composites (Mg MMNCs). Mater Sci Eng A 558:193–204CrossRef Ferguson JB, Sheykh-Jaberi F, Kim CS, Rohatgi PK, Cho K (2012) On the strength and strain to failure in particle-reinforced magnesium metal-matrix nano-composites (Mg MMNCs). Mater Sci Eng A 558:193–204CrossRef
17.
go back to reference Girifalco LA, Good RJ (1957) A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J Phys Chem 61(7):904–909 Girifalco LA, Good RJ (1957) A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J Phys Chem 61(7):904–909
18.
go back to reference Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg–Y2O3 nano-composites. Acta Materialia 55(15):5115–5121 Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg–Y2O3 nano-composites. Acta Materialia 55(15):5115–5121
19.
go back to reference Gopinath K, Balasubramaniam R, Murthy VSR (2001) Corrosion behavior of cast Al-Al2O3 particulate composites. J Mater Sci Lett 20(9):793–794CrossRef Gopinath K, Balasubramaniam R, Murthy VSR (2001) Corrosion behavior of cast Al-Al2O3 particulate composites. J Mater Sci Lett 20(9):793–794CrossRef
20.
go back to reference Habibnejad-Korayem, M., Mahmudi, R., & Poole, W. J. (2009). Enhanced properties of Mg-based nano-composites reinforced with Al2O3nano-particles. Mater Sci Eng A 519(1–2):198–203 Habibnejad-Korayem, M., Mahmudi, R., & Poole, W. J. (2009). Enhanced properties of Mg-based nano-composites reinforced with Al2O3nano-particles. Mater Sci Eng A 519(1–2):198–203
21.
go back to reference Haghshenas M (2016) Metal–matrix composites. In: Reference module in materials science and materials engineering, 03950-3 Haghshenas M (2016) Metal–matrix composites. In: Reference module in materials science and materials engineering, 03950-3
22.
go back to reference Halpin JC, Tsai SW (1967) Air Force Materials Laboratory. AFML-TR-67-42 Halpin JC, Tsai SW (1967) Air Force Materials Laboratory. AFML-TR-67-42
23.
go back to reference Hanumanth GS, Irons GA (1993) Particle incorporation by melt stirring for the production of metal-matrix composites. J Mater Sci 28(9):2459–2465 Hanumanth GS, Irons GA (1993) Particle incorporation by melt stirring for the production of metal-matrix composites. J Mater Sci 28(9):2459–2465
24.
go back to reference Hashim J, Looney L, Hashmi MSJ (2001) The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol 119(1–3):324–328 Hashim J, Looney L, Hashmi MSJ (2001) The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol 119(1–3):324–328
25.
go back to reference Hihara LH (1997) Corrosion of aluminium-matrix composites. Corros Rev 15(3–4):361–386 Hihara LH (1997) Corrosion of aluminium-matrix composites. Corros Rev 15(3–4):361–386
26.
go back to reference Hosseini N, Karimzadeh F, Abbasi MH, Enayati MH (2010) Tribological properties of Al6061–Al2O3 nanocomposite prepared by milling and hot pressing. Mater Design 31(10):4777–4785 Hosseini N, Karimzadeh F, Abbasi MH, Enayati MH (2010) Tribological properties of Al6061–Al2O3 nanocomposite prepared by milling and hot pressing. Mater Design 31(10):4777–4785
27.
go back to reference Iacob G, Ghica VG, Buzatu M, Buzatu T, Petrescu MI (2015) Studies on wear rate and micro-hardness of the Al/Al2O3/Gr hybrid composites produced via powder metallurgy. Compos B Eng 69:603–611CrossRef Iacob G, Ghica VG, Buzatu M, Buzatu T, Petrescu MI (2015) Studies on wear rate and micro-hardness of the Al/Al2O3/Gr hybrid composites produced via powder metallurgy. Compos B Eng 69:603–611CrossRef
28.
go back to reference Kainer KU (ed) (2006) Metal matrix composites: custom-made materials for automotive and aerospace engineering. Wiley, New York Kainer KU (ed) (2006) Metal matrix composites: custom-made materials for automotive and aerospace engineering. Wiley, New York
29.
go back to reference Kang YC, Chan SLI (2004) Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys 85(2–3):438–443CrossRef Kang YC, Chan SLI (2004) Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys 85(2–3):438–443CrossRef
30.
go back to reference Kennedy AR, Karantzalis AE, Wyatt SM (1999) The microstructure and mechanical properties of TiC and TiB2-reinforced cast metal matrix composites. J Mater Sci 34(5):933–940CrossRef Kennedy AR, Karantzalis AE, Wyatt SM (1999) The microstructure and mechanical properties of TiC and TiB2-reinforced cast metal matrix composites. J Mater Sci 34(5):933–940CrossRef
31.
go back to reference Kim CS, Sohn I, Nezafati M, Ferguson JB, Schultz BF, Bajestani-Gohari Z, Cho K, et al (2013) Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nano-composites (MMNCs). J Mater Sci 4(12):4191–4204 Kim CS, Sohn I, Nezafati M, Ferguson JB, Schultz BF, Bajestani-Gohari Z, Cho K, et al (2013) Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nano-composites (MMNCs). J Mater Sci 4(12):4191–4204
32.
go back to reference Kumar N, Gautam G, Gautam RK, Mohan A, Mohan S (2016) Synthesis and characterization of TiB2 reinforced aluminium matrix composites: a review. J Inst Eng (India): Series D 97(2):233–253 Kumar N, Gautam G, Gautam RK, Mohan A, Mohan S (2016) Synthesis and characterization of TiB2 reinforced aluminium matrix composites: a review. J Inst Eng (India): Series D 97(2):233–253
33.
go back to reference Kumar S, Sarma VS, Murty BS (2010) High temperature wear behavior of Al–4Cu–TiB2 in situ composites. Wear 268(11–12):1266–1274 Kumar S, Sarma VS, Murty BS (2010) High temperature wear behavior of Al–4Cu–TiB2 in situ composites. Wear 268(11–12):1266–1274
34.
go back to reference Lakshmi S, Lu L, Gupta M (1998) In situ preparation of TiB2 reinforced Al based composites. J Mater Process Technol 73(1–3):160–166 Lakshmi S, Lu L, Gupta M (1998) In situ preparation of TiB2 reinforced Al based composites. J Mater Process Technol 73(1–3):160–166
35.
go back to reference Lee HS, Jeon KY, Kim HY, Hong SH (2000) Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications. J Mater Sci 35(24):6231–6236 Lee HS, Jeon KY, Kim HY, Hong SH (2000) Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications. J Mater Sci 35(24):6231–6236
36.
go back to reference Lee HS, Yeo JS, Hong SH, Yoon DJ, Na KH (2001) The fabrication process and mechanical properties of SiCp/Al–Si metal matrix composites for automobile air-conditioner compressor pistons. J Mater Process Technol 113(1–3):202–208 Lee HS, Yeo JS, Hong SH, Yoon DJ, Na KH (2001) The fabrication process and mechanical properties of SiCp/Al–Si metal matrix composites for automobile air-conditioner compressor pistons. J Mater Process Technol 113(1–3):202–208
37.
go back to reference Lim SC, Ashby MF (1987) Overview no. 55 wear-mechanism maps. Acta Metallurgica 35(1):1–24 Lim SC, Ashby MF (1987) Overview no. 55 wear-mechanism maps. Acta Metallurgica 35(1):1–24
38.
go back to reference Liu CY, Wang Q, Jia YZ, Zhang B, Jing R, Ma MZ, Liu RP et al (2013) Evaluation of mechanical properties of 1060-Al reinforced with WC particles via warm accumulative roll bonding process. Mater Design 43:367–372 Liu CY, Wang Q, Jia YZ, Zhang B, Jing R, Ma MZ, Liu RP et al (2013) Evaluation of mechanical properties of 1060-Al reinforced with WC particles via warm accumulative roll bonding process. Mater Design 43:367–372
39.
go back to reference Llorca J, Gonzalez C (1998) Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites. J Mech Phys Solids 46(1):1–28 Llorca J, Gonzalez C (1998) Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites. J Mech Phys Solids 46(1):1–28
40.
go back to reference Lorusso M, Aversa A, Manfredi D, Calignano F, Ambrosio EP, Ugues D, Pavese M (2016) Tribological behavior of aluminum alloy AlSi10Mg-TiB2 composites produced by direct metal laser sintering (DMLS). J Mater Eng Perform 25(8):3152–3160CrossRef Lorusso M, Aversa A, Manfredi D, Calignano F, Ambrosio EP, Ugues D, Pavese M (2016) Tribological behavior of aluminum alloy AlSi10Mg-TiB2 composites produced by direct metal laser sintering (DMLS). J Mater Eng Perform 25(8):3152–3160CrossRef
41.
go back to reference Lu L, Lai MO, Chen FL (1997) Al-4 wt% Cu composite reinforced with in-situ TiB2 particles. Acta Mater 45(10):4297–4309CrossRef Lu L, Lai MO, Chen FL (1997) Al-4 wt% Cu composite reinforced with in-situ TiB2 particles. Acta Mater 45(10):4297–4309CrossRef
42.
go back to reference Ma ZY, Bi J, Lu YX, Shen HW, Gao YX (1993) Microstructure and interface of the in situ forming TiB2-reinforced aluminum composite. Compos Interfaces 1(4):287–291 Ma ZY, Bi J, Lu YX, Shen HW, Gao YX (1993) Microstructure and interface of the in situ forming TiB2-reinforced aluminum composite. Compos Interfaces 1(4):287–291
43.
go back to reference Mallikarjuna C, Shashidhara SM, Mallik US, Parashivamurthy KI (2011) Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB2 in-situ composites. Mater Design 32(6):3554–3559 Mallikarjuna C, Shashidhara SM, Mallik US, Parashivamurthy KI (2011) Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB2 in-situ composites. Mater Design 32(6):3554–3559
44.
go back to reference Mandal A, Murty BS, Chakraborty M (2009) Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites. Wear 266(7–8):865–872 Mandal A, Murty BS, Chakraborty M (2009) Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites. Wear 266(7–8):865–872
45.
go back to reference McNelley TR, Edwards GR, Francois D, McCarthy WH, Shyne JC, Sherby OD (1972) Unusual high temperature mechanical effects in zinc-based particulate composite materials. Metallur Trans 3(5), 1316–1318 McNelley TR, Edwards GR, Francois D, McCarthy WH, Shyne JC, Sherby OD (1972) Unusual high temperature mechanical effects in zinc-based particulate composite materials. Metallur Trans 3(5), 1316–1318
46.
go back to reference Miller WS, Humphreys FJ (1991) Strengthening mechanisms in particulate metal matrix composites. Scripta Metallurgica et Materialia 25(1):33–38 Miller WS, Humphreys FJ (1991) Strengthening mechanisms in particulate metal matrix composites. Scripta Metallurgica et Materialia 25(1):33–38
47.
go back to reference Miracle DB (2005) Metal matrix composites–from science to technological significance. Compos Sci Technol 65(15–16):2526–2540 Miracle DB (2005) Metal matrix composites–from science to technological significance. Compos Sci Technol 65(15–16):2526–2540
48.
go back to reference Mouritz AP (2012) Introduction to aerospace materials. Woodhead Publishing Ltd Mouritz AP (2012) Introduction to aerospace materials. Woodhead Publishing Ltd
49.
go back to reference Natarajan S, Narayanasamy R, Babu SK, Dinesh G, Kumar BA, Sivaprasad K (2009) Sliding wear behaviour of Al 6063/TiB2 in situ composites at elevated temperatures. Mater Design 30(7):2521–2531 Natarajan S, Narayanasamy R, Babu SK, Dinesh G, Kumar BA, Sivaprasad K (2009) Sliding wear behaviour of Al 6063/TiB2 in situ composites at elevated temperatures. Mater Design 30(7):2521–2531
50.
go back to reference Niranjan K, Lakshminarayanan PR (2013) Dry sliding wear behaviour of in situ Al–TiB2 composites. Mater Design 47:167–173 Niranjan K, Lakshminarayanan PR (2013) Dry sliding wear behaviour of in situ Al–TiB2 composites. Mater Design 47:167–173
51.
go back to reference Nishida Y (2013) Introduction to metal matrix composites: fabrication and recycling. Springer Science & Business Media Nishida Y (2013) Introduction to metal matrix composites: fabrication and recycling. Springer Science & Business Media
52.
go back to reference Pandey AB, Mishra RS, Mahajan YR (1993) On the anomalous creep behavior of an XD Al-TiB2 composite. Scripta Metallurgica et Materialia (United States) 29(9) Pandey AB, Mishra RS, Mahajan YR (1993) On the anomalous creep behavior of an XD Al-TiB2 composite. Scripta Metallurgica et Materialia (United States) 29(9)
53.
go back to reference Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I, Martínez-Sánchez R (2014) Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J Alloys Cmpd 615:S578–S582 Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I, Martínez-Sánchez R (2014) Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J Alloys Cmpd 615:S578–S582
54.
go back to reference Poria S, Sahoo P, Sutradhar G (2016) Tribological characterization of stir-cast aluminium-TiB2 metal matrix composites. Silicon 8(4):591–599CrossRef Poria S, Sahoo P, Sutradhar G (2016) Tribological characterization of stir-cast aluminium-TiB2 metal matrix composites. Silicon 8(4):591–599CrossRef
55.
go back to reference Poria S, Sutradhar G, Sahoo P (2018) High temperature tribological behavior of stir-cast Al–TiB2 metal matrix composites. Surface Rev Lett 5(08):1850122, 1–17 Poria S, Sutradhar G, Sahoo P (2018) High temperature tribological behavior of stir-cast Al–TiB2 metal matrix composites. Surface Rev Lett 5(08):1850122, 1–17
56.
go back to reference Poria S, Sutradhar G, Sahoo P (2019) Corrosion behavior of stir-cast Al–TiB2 metal matrix composites. Int J Mater Res 110(2):148–154 Poria S, Sutradhar G, Sahoo P (2019) Corrosion behavior of stir-cast Al–TiB2 metal matrix composites. Int J Mater Res 110(2):148–154
57.
go back to reference Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453 Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453
58.
go back to reference Ramesh CS, Ahamed A (2011) Friction and wear behaviour of cast Al 6063 based in situ metal matrix composites. Wear 271(9–10):1928–1939 Ramesh CS, Ahamed A (2011) Friction and wear behaviour of cast Al 6063 based in situ metal matrix composites. Wear 271(9–10):1928–1939
59.
go back to reference Ramakrishnan N (1996) An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater 44(1):69–77CrossRef Ramakrishnan N (1996) An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater 44(1):69–77CrossRef
60.
go back to reference Rao RN, Das S, Mondal DP, Dixit G, Devi ST (2013) Dry sliding wear maps for AA7010 (Al–Zn–Mg–Cu) aluminium matrix composite. Tribol Int 60:77–82 Rao RN, Das S, Mondal DP, Dixit G, Devi ST (2013) Dry sliding wear maps for AA7010 (Al–Zn–Mg–Cu) aluminium matrix composite. Tribol Int 60:77–82
61.
go back to reference Rittner M (2000) Metal matrix composites in the 21st century: markets and opportunities. Report GB-108R, Business Communications Co., Inc., Norwalk, CT Rittner M (2000) Metal matrix composites in the 21st century: markets and opportunities. Report GB-108R, Business Communications Co., Inc., Norwalk, CT
62.
go back to reference Rodopoulos, C. A., & Wessel, J. K. (2004). The Handbook of Advanced Materials: Enabling New Designs. Wiley Publication. Rodopoulos, C. A., & Wessel, J. K. (2004). The Handbook of Advanced Materials: Enabling New Designs. Wiley Publication.
63.
go back to reference Rosso, M. (2006).Ceramic and metal matrix composites: Routes and properties.Journal of Materials Processing Technology, 175(1–3), 364–375. Rosso, M. (2006).Ceramic and metal matrix composites: Routes and properties.Journal of Materials Processing Technology175(1–3), 364–375.
64.
go back to reference Rekha MY, Mallik N, Srivastava C (2018) First report on high entropy alloy nanoparticle decorated graphene. Sci Rep 8(1):8737 Rekha MY, Mallik N, Srivastava C (2018) First report on high entropy alloy nanoparticle decorated graphene. Sci Rep 8(1):8737
65.
go back to reference Singh J, Chauhan A (2016) Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceram Int 42(1):56–81CrossRef Singh J, Chauhan A (2016) Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceram Int 42(1):56–81CrossRef
66.
go back to reference Skibo MD, Schuster DM (1988) U.S. Patent No. 4,759,995. U.S. Patent and Trademark Office, Washington, DC Skibo MD, Schuster DM (1988) U.S. Patent No. 4,759,995. U.S. Patent and Trademark Office, Washington, DC
67.
go back to reference Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Yao Y (2018) Processing bulk natural wood into a high-performance structural material. Nature 554(7691):224 Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Yao Y (2018) Processing bulk natural wood into a high-performance structural material. Nature 554(7691):224
68.
go back to reference Sulima I, Kowalik R, Hyjek P (2016) The corrosion and mechanical properties of spark plasma sintered composites reinforced with titanium diboride. J Alloy Compd 688:1195–1205CrossRef Sulima I, Kowalik R, Hyjek P (2016) The corrosion and mechanical properties of spark plasma sintered composites reinforced with titanium diboride. J Alloy Compd 688:1195–1205CrossRef
69.
go back to reference Sun H, Ma N, Chen D, Li X, Wang H (2008) Fabrication and analysis of anti-corrosion coatings on in-situ TiB2p reinforced aluminum matrix composite. Surf Coat Technol 203(3–4):329–334CrossRef Sun H, Ma N, Chen D, Li X, Wang H (2008) Fabrication and analysis of anti-corrosion coatings on in-situ TiB2p reinforced aluminum matrix composite. Surf Coat Technol 203(3–4):329–334CrossRef
70.
go back to reference Surappa MK (2003) Aluminium matrix composites: Challenges and opportunities. Sadhana 28(1–2):319–334CrossRef Surappa MK (2003) Aluminium matrix composites: Challenges and opportunities. Sadhana 28(1–2):319–334CrossRef
71.
go back to reference Suresh S, Moorthi NSV, Vettivel SC, Selvakumar N (2014a) Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology. Mater Des 59:383–396 Suresh S, Moorthi NSV, Vettivel SC, Selvakumar N (2014a) Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology. Mater Des 59:383–396
72.
go back to reference Suresh S, Moorthi NSV, Vettivel SC, Selvakumar N, Jinu GR (2014b) Effect of graphite addition on mechanical behavior of Al6061/TiB2 hybrid composite using acoustic emission. Mater Sci Eng A 612:16–27 Suresh S, Moorthi NSV, Vettivel SC, Selvakumar N, Jinu GR (2014b) Effect of graphite addition on mechanical behavior of Al6061/TiB2 hybrid composite using acoustic emission. Mater Sci Eng A 612:16–27
73.
go back to reference Tee K, Lu L, Lai MO (1999) In situ processing of Al–TiB2 composite by the stir-casting technique. J Mater Process Technol 89:513–519 Tee K, Lu L, Lai MO (1999) In situ processing of Al–TiB2 composite by the stir-casting technique. J Mater Process Technol 89:513–519
74.
go back to reference Tee KL, Lu L, Lai MO (2000) Wear performance of in-situ Al–TiB2 composite. Wear 240(1–2):59–64CrossRef Tee KL, Lu L, Lai MO (2000) Wear performance of in-situ Al–TiB2 composite. Wear 240(1–2):59–64CrossRef
75.
go back to reference Tian HF, Qiao JW, Yang HJ, Wang YS, Liaw PK, Lan AD (2016) The corrosion behavior of in-situ Zr-based metallic glass matrix composites in different corrosive media. Appl Surf Sci 363:37–43 Tian HF, Qiao JW, Yang HJ, Wang YS, Liaw PK, Lan AD (2016) The corrosion behavior of in-situ Zr-based metallic glass matrix composites in different corrosive media. Appl Surf Sci 363:37–43
76.
go back to reference Tjong SC, Tam KF (2006) Mechanical and thermal expansion behavior of hipped aluminum–TiB2 composites. Mater Chem Phys 97(1):91–97 Tjong SC, Tam KF (2006) Mechanical and thermal expansion behavior of hipped aluminum–TiB2 composites. Mater Chem Phys 97(1):91–97
77.
go back to reference Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581 Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581
78.
go back to reference Vivekananda AS, Prabu SB (2018) Wear behaviour of in situ Al/TiB2 composite: influence of the microstructural instability. Tribolo Lett 66(1):41. 1–14 Vivekananda AS, Prabu SB (2018) Wear behaviour of in situ Al/TiB2 composite: influence of the microstructural instability. Tribolo Lett 66(1):41. 1–14
79.
go back to reference Wang T, Chen Z, Zheng Y, Zhao Y, Kang H, Gao L (2014) Development of TiB2 reinforced aluminum foundry alloy based in situ composites—Part I: an improved halide salt route to fabricate Al–5 wt% TiB2 master composite. Mater Sci Eng A 605:22–32CrossRef Wang T, Chen Z, Zheng Y, Zhao Y, Kang H, Gao L (2014) Development of TiB2 reinforced aluminum foundry alloy based in situ composites—Part I: an improved halide salt route to fabricate Al–5 wt% TiB2 master composite. Mater Sci Eng A 605:22–32CrossRef
80.
go back to reference Wilson S, Alpas AT (1997) Wear mechanism maps for metal matrix composites. Wear 212(1):41–49 Wilson S, Alpas AT (1997) Wear mechanism maps for metal matrix composites. Wear 212(1):41–49
81.
go back to reference Wilson S, Alpas AT (1999) Thermal effects on mild wear transitions in dry sliding of an aluminum alloy. Wear 225:440–449 Wilson S, Alpas AT (1999) Thermal effects on mild wear transitions in dry sliding of an aluminum alloy. Wear 225:440–449
82.
go back to reference Wu Y, Kim GY, Russell AM (2012) Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing. Mater Sci Eng A 538:164–172 Wu Y, Kim GY, Russell AM (2012) Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing. Mater Sci Eng A 538:164–172
83.
go back to reference Yang Y, Lan J, Li X (2004) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380(1–2):378–383 Yang Y, Lan J, Li X (2004) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380(1–2):378–383
84.
go back to reference Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A 483:148–152CrossRef Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A 483:148–152CrossRef
85.
go back to reference Zwilsky KM, Grant NJ (1957) Copper-silica and copper-alumina alloys of high temperature interest. JOM J Miner Metals Mater Soc (TMS) 9(10):1197–1201 Zwilsky KM, Grant NJ (1957) Copper-silica and copper-alumina alloys of high temperature interest. JOM J Miner Metals Mater Soc (TMS) 9(10):1197–1201
Metadata
Title
Tribological and Corrosion Behavior of Al-TiB2 Metal Matrix Composites—An Overview
Author
Suswagata Poria
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4550-8_7

Premium Partners