Skip to main content
Top
Published in: Journal of Materials Science 12/2020

20-01-2020 | Composites & nanocomposites

Tuning anisotropic thermal conductivity of unidirectional carbon/carbon composites by incorporating carbonaceous fillers

Authors: Guanming Yuan, You Li, Xiangyi Long, Zhengwei Cui, Zhijun Dong, Ye Cong, Jiang Zhang, Xuanke Li

Published in: Journal of Materials Science | Issue 12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mesophase pitch-based large-diameter fibers were used to prepare unidirectional carbon/carbon (C/C) composite blocks, and mesophase pitch incorporated by various carbonaceous fillers was selected as a modified binder. The C/C composites were produced through a hot-pressing method, followed by carbonization and graphitization treatments. The influence of the carbonaceous fillers on the microstructure and physical properties of the C/C composites in different directions was investigated. The results show that both filler type and volume fraction have an important effect on the directional thermal conductivity of resulting composites. The through-thickness thermal conductivity of composites is significantly improved to be as high as 40–60 W/m K due to the incorporation of some carbonaceous dopants, which can tune their thermal conduction performance in different directions and thus solve the limitation of one-directional high thermal conduction. A three-dimensional carbon-based conductive network is diagramed to illustrate the thermal conduction mechanism of various carbon materials. The reinforcing effect on the directional thermal conductivity depends on the geometrical and physical characteristics, volume fractions and spatially distributed status of carbonaceous fillers. The flexural strengths of the composites are obviously improved owing to the decrease in porosity in the composites and the enhanced interfacial interaction between the carbon fibers and pitch-derived carbon matrix by doping with natural graphite flakes or carbon nanotubes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Luedtke A (2004) Thermal management materials for high performance applications. Adv Eng Mater 6(3):142–144 Luedtke A (2004) Thermal management materials for high performance applications. Adv Eng Mater 6(3):142–144
2.
go back to reference Zweben C (1998) Advances in composite materials for thermal management in electronic packaging. JOM 50(6):47–51 Zweben C (1998) Advances in composite materials for thermal management in electronic packaging. JOM 50(6):47–51
3.
go back to reference Shindé SL, Goela JS (2006) High thermal conductivity materials. Springer, New York Shindé SL, Goela JS (2006) High thermal conductivity materials. Springer, New York
4.
go back to reference Hong H, Kim JU, Kim T (2017) Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite. Polymers 9(9):413 Hong H, Kim JU, Kim T (2017) Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite. Polymers 9(9):413
5.
go back to reference Feng W, Qin MM, Feng YY (2016) Toward highly thermally conductive all-carbon composites: structure control. Carbon 109:575–597 Feng W, Qin MM, Feng YY (2016) Toward highly thermally conductive all-carbon composites: structure control. Carbon 109:575–597
6.
go back to reference Hong H, Jung YH, Lee JS, Jeong C, Kim JU, Lee S, Ryu H, Kim H et al (2019) Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv Funct Mater 29(37):1902575 Hong H, Jung YH, Lee JS, Jeong C, Kim JU, Lee S, Ryu H, Kim H et al (2019) Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv Funct Mater 29(37):1902575
7.
go back to reference Wang YY, Guo QQ, Su GH, Cao J, Liu JZ, Zhang XX (2019) Hierarchically structured self-healing actuators with superfast light- and magnetic-response. Adv Funct Mater 29(50):1906198 Wang YY, Guo QQ, Su GH, Cao J, Liu JZ, Zhang XX (2019) Hierarchically structured self-healing actuators with superfast light- and magnetic-response. Adv Funct Mater 29(50):1906198
8.
go back to reference Sheehan JE, Buesking KW, Sullivan BJ (1994) Carbon–carbon composites. Annu Rev Mater Sci 24:19–44 Sheehan JE, Buesking KW, Sullivan BJ (1994) Carbon–carbon composites. Annu Rev Mater Sci 24:19–44
9.
go back to reference Fitzer E (1987) The future of carbon–carbon composites. Carbon 25(2):163–190 Fitzer E (1987) The future of carbon–carbon composites. Carbon 25(2):163–190
10.
go back to reference Kude Y, Sohda Y (1996) Thermal management of carbon–carbon composites by functionally graded fiber arrangement technique. In: Shiota I, Miyamoto Y (eds) Functionally graded materials. Elsevier, Oxford, pp 239–244 Kude Y, Sohda Y (1996) Thermal management of carbon–carbon composites by functionally graded fiber arrangement technique. In: Shiota I, Miyamoto Y (eds) Functionally graded materials. Elsevier, Oxford, pp 239–244
11.
go back to reference Chung DDL (1994) Carbon fiber composites. Butterworth-Heinemann, Newton Chung DDL (1994) Carbon fiber composites. Butterworth-Heinemann, Newton
12.
go back to reference Lackey WJ (2001) Carbon–carbon composites. In: Buschow KHJ, Cahn RW, Flemings MC, Iischner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology. Pergamon Press, London, pp 952–967 Lackey WJ (2001) Carbon–carbon composites. In: Buschow KHJ, Cahn RW, Flemings MC, Iischner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology. Pergamon Press, London, pp 952–967
13.
go back to reference Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S (2006) Thermophysical properties of densified pitch based carbon/carbon materials-I. Unidirectional composites. Carbon 44(3):480–487 Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S (2006) Thermophysical properties of densified pitch based carbon/carbon materials-I. Unidirectional composites. Carbon 44(3):480–487
14.
go back to reference Li TQ, Xu ZH, Hu ZJ, Yang XG (2010) Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system. Carbon 48(3):924–925 Li TQ, Xu ZH, Hu ZJ, Yang XG (2010) Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system. Carbon 48(3):924–925
15.
go back to reference Edie DD, Robinson KE, Fleurot O, Jones SP, Fain CC (1994) High thermal conductivity ribbon fibers from naphthalene-based mesophase. Carbon 32(6):1045–1054 Edie DD, Robinson KE, Fleurot O, Jones SP, Fain CC (1994) High thermal conductivity ribbon fibers from naphthalene-based mesophase. Carbon 32(6):1045–1054
16.
go back to reference Minus ML, Kumar S (2005) The processing, properties, and structure of carbon fibers. JOM 57(2):52–58 Minus ML, Kumar S (2005) The processing, properties, and structure of carbon fibers. JOM 57(2):52–58
17.
go back to reference Emmerich FG (2014) Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbons fibers. Carbon 68:274–293 Emmerich FG (2014) Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbons fibers. Carbon 68:274–293
18.
go back to reference Bowers DA, Davis JW, Dinwiddie RB (1994) Development of 1-D carbon composites for plasma-facing components. J Nucl Mater 212–215:1163–1167 Bowers DA, Davis JW, Dinwiddie RB (1994) Development of 1-D carbon composites for plasma-facing components. J Nucl Mater 212–215:1163–1167
19.
go back to reference Golecki I, Xue L, Leung R, Walker T, Anderson A, Dewar D, Duncan C, Horik JV (1998) Properties of high thermal conductivity carbon–carbon composites for thermal management applications. In: High-temperature electronic materials, devices and sensors conference. San Diego, February, pp 190–195 Golecki I, Xue L, Leung R, Walker T, Anderson A, Dewar D, Duncan C, Horik JV (1998) Properties of high thermal conductivity carbon–carbon composites for thermal management applications. In: High-temperature electronic materials, devices and sensors conference. San Diego, February, pp 190–195
20.
go back to reference Snead LL, Burchell TD (1995) Thermal conductivity degradation of graphites due to nuetron irradiation at low temperature. J Nucl Mater 224:222–229 Snead LL, Burchell TD (1995) Thermal conductivity degradation of graphites due to nuetron irradiation at low temperature. J Nucl Mater 224:222–229
21.
go back to reference Bonal JP, Wu CH (1996) Neutron irradiation effects on the thermal conductivity and dimensional stability of carbon fiber composites at divertor conditions. J Nucl Mater 228:155–161 Bonal JP, Wu CH (1996) Neutron irradiation effects on the thermal conductivity and dimensional stability of carbon fiber composites at divertor conditions. J Nucl Mater 228:155–161
22.
go back to reference Adams PM, Katzman HA, Rellick GS, Stupian GW (1998) Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel. Carbon 36(3):233–245 Adams PM, Katzman HA, Rellick GS, Stupian GW (1998) Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel. Carbon 36(3):233–245
23.
go back to reference Ma ZK, Shi JL, Song Y, Guo QG, Zhai GT, Liu L (2006) Carbon with high thermal conductivity, prepared from ribbon-shaped mesophase pitch-based fibers. Carbon 44(7):1298–1301 Ma ZK, Shi JL, Song Y, Guo QG, Zhai GT, Liu L (2006) Carbon with high thermal conductivity, prepared from ribbon-shaped mesophase pitch-based fibers. Carbon 44(7):1298–1301
24.
go back to reference Ma ZK, Liu L, Lian F, Song HH, Liu J (2012) Three-dimensional thermal conductive behavior of graphite materials sintered from ribbon mesophase pitch-based fibers. Mater Lett 66(1):99–101 Ma ZK, Liu L, Lian F, Song HH, Liu J (2012) Three-dimensional thermal conductive behavior of graphite materials sintered from ribbon mesophase pitch-based fibers. Mater Lett 66(1):99–101
25.
go back to reference Lin JF, Yuan GM, Li XK, Dong ZJ, Zhang J, Zhang ZW, Wang JS (2013) Preparation of 1D C/C Composites with high thermal conductivity. J Inorg Mater 28(12):1338–1344 Lin JF, Yuan GM, Li XK, Dong ZJ, Zhang J, Zhang ZW, Wang JS (2013) Preparation of 1D C/C Composites with high thermal conductivity. J Inorg Mater 28(12):1338–1344
26.
go back to reference Yuan GM, Li XK, Dong ZJ, Xiong XQ, Rand B, Cui ZW, Cong Y, Zhang J et al (2014) Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon 68:413–425 Yuan GM, Li XK, Dong ZJ, Xiong XQ, Rand B, Cui ZW, Cong Y, Zhang J et al (2014) Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon 68:413–425
27.
go back to reference Zhang X, Li XK, Yuan GM, Dong ZJ, Ma GZ, Rand B (2017) Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration. Carbon 114:59–69 Zhang X, Li XK, Yuan GM, Dong ZJ, Ma GZ, Rand B (2017) Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration. Carbon 114:59–69
28.
go back to reference Yuan GM, Li XK, Dong ZJ, Westwood A, Rand B, Cui ZW, Cong Y, Zhang J et al (2014) The structure and properties of ribbon-shaped carbon fibers with high orientation. Carbon 68:426–439 Yuan GM, Li XK, Dong ZJ, Westwood A, Rand B, Cui ZW, Cong Y, Zhang J et al (2014) The structure and properties of ribbon-shaped carbon fibers with high orientation. Carbon 68:426–439
29.
go back to reference Yuan GM, Li BL, Li XK, Dong ZJ, Hu WJ, Westwood A, Cong Y, Zhang J (2019) Effect of liquid crystalline texture of mesophase pitches on the structure and property of large diameter carbon fibers. ACS Omega 4(1):1095–1102 Yuan GM, Li BL, Li XK, Dong ZJ, Hu WJ, Westwood A, Cong Y, Zhang J (2019) Effect of liquid crystalline texture of mesophase pitches on the structure and property of large diameter carbon fibers. ACS Omega 4(1):1095–1102
30.
go back to reference Yuan GM, Li XK, Xiong XQ, Dong ZJ, Westwood A, Li BL, Ye C, Ma GZ (2017) A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen. Carbon 115:59–76 Yuan GM, Li XK, Xiong XQ, Dong ZJ, Westwood A, Li BL, Ye C, Ma GZ (2017) A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen. Carbon 115:59–76
31.
go back to reference Yuan GM, Li XK, Yi J, Dong ZJ, Westwood A, Li BL, Cui ZW, Cong Y et al (2015) Mesophase pitch-based graphite fiber-reinforced acrylonitrile butadiene styrene resin composites with high thermal conductivity. Carbon 95:1007–1019 Yuan GM, Li XK, Yi J, Dong ZJ, Westwood A, Li BL, Cui ZW, Cong Y et al (2015) Mesophase pitch-based graphite fiber-reinforced acrylonitrile butadiene styrene resin composites with high thermal conductivity. Carbon 95:1007–1019
32.
go back to reference Li XK, Yuan GM, Westwood A, Zhang HB, Dong ZJ, Brown A, Brydson R (2008) The preparation and CVD densification of multi-walled carbon nanotube felt synthesised by a catalytic CVD method. Chem Vap Depos 14(1–2):40–45 Li XK, Yuan GM, Westwood A, Zhang HB, Dong ZJ, Brown A, Brydson R (2008) The preparation and CVD densification of multi-walled carbon nanotube felt synthesised by a catalytic CVD method. Chem Vap Depos 14(1–2):40–45
33.
go back to reference Yuan GM, Li XK, Dong ZJ, Westwood A, Cui ZW, Cong Y, Du HD, Kang FY (2012) Graphite blocks with preferred orientation and high thermal conductivity. Carbon 50(1):175–182 Yuan GM, Li XK, Dong ZJ, Westwood A, Cui ZW, Cong Y, Du HD, Kang FY (2012) Graphite blocks with preferred orientation and high thermal conductivity. Carbon 50(1):175–182
34.
go back to reference Marsh H, Diez MA (1994) Mesophase of graphitizable carbons. In: Shibaev VP, Lam L (eds) Liquid crystalline and mesomorphic polymers. Springer, New York, pp 231–257 Marsh H, Diez MA (1994) Mesophase of graphitizable carbons. In: Shibaev VP, Lam L (eds) Liquid crystalline and mesomorphic polymers. Springer, New York, pp 231–257
35.
go back to reference Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y (2000) Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon 38(2):305–328 Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y (2000) Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon 38(2):305–328
36.
go back to reference Zimmer JE, White JL (1983) Mesophase alignment within carbon fiber bundles. Carbon 21(3):323–324 Zimmer JE, White JL (1983) Mesophase alignment within carbon fiber bundles. Carbon 21(3):323–324
37.
go back to reference Rand B (2005) Composites: carbon matrix. In: Bassani F, Liedl GL, Wyder P (eds) Encyclopedia of condensed matter physics. Elsevier, Oxford, pp 178–192 Rand B (2005) Composites: carbon matrix. In: Bassani F, Liedl GL, Wyder P (eds) Encyclopedia of condensed matter physics. Elsevier, Oxford, pp 178–192
38.
go back to reference Menéndez R, Granda M, Fernández JJ, Figueiras A, Bermejo J, Bonhomme J, Belzunce J (1997) Influence of pitch air-blowing and thermal treatment on the microstructure and mechanical properties of carbon/carbon composites. J Microsc 185(2):146–156 Menéndez R, Granda M, Fernández JJ, Figueiras A, Bermejo J, Bonhomme J, Belzunce J (1997) Influence of pitch air-blowing and thermal treatment on the microstructure and mechanical properties of carbon/carbon composites. J Microsc 185(2):146–156
39.
go back to reference Blanco C, Appleyard SP, Rand B (2002) Study of carbon fibres and carbon–carbon composites by scanning thermal microscopy. J Microsc 205(1):21–32 Blanco C, Appleyard SP, Rand B (2002) Study of carbon fibres and carbon–carbon composites by scanning thermal microscopy. J Microsc 205(1):21–32
40.
go back to reference Hishiyama Y, Nakamura M (1995) X-ray diffraction in oriented carbon films with turbostratic structure. Carbon 33(10):1399–1403 Hishiyama Y, Nakamura M (1995) X-ray diffraction in oriented carbon films with turbostratic structure. Carbon 33(10):1399–1403
41.
go back to reference Feng W, Qin MM, Lv P, Li JP, Feng YY (2014) A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength. Carbon 77:1054–1064 Feng W, Qin MM, Lv P, Li JP, Feng YY (2014) A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength. Carbon 77:1054–1064
42.
go back to reference Chen SC, Feng YY, Qin MM, Ji TX, Feng W (2017) Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes. Carbon 116:84–93 Chen SC, Feng YY, Qin MM, Ji TX, Feng W (2017) Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes. Carbon 116:84–93
43.
go back to reference Lv F, Qin MM, Zhang F, Yu HT, Gao L, Lv P, Wei W, Feng YY et al (2019) High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon 149:281–289 Lv F, Qin MM, Zhang F, Yu HT, Gao L, Lv P, Wei W, Feng YY et al (2019) High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon 149:281–289
44.
go back to reference Zhang SD, Gao L, Han JC, Li ZX, Zu GQ, Ran X, Sun YG (2019) Through-thickness thermal conductivity enhancement and tensile response of carbon fiber-reinforced polymer composites. Compos Part B Eng 165:183–192 Zhang SD, Gao L, Han JC, Li ZX, Zu GQ, Ran X, Sun YG (2019) Through-thickness thermal conductivity enhancement and tensile response of carbon fiber-reinforced polymer composites. Compos Part B Eng 165:183–192
45.
go back to reference Huang HS, Ganguli S, Roy AK (2013) Prediction of the transverse thermal conductivity of pitch-based carbon fibers. J Compos Mater 48(11):1383–1390 Huang HS, Ganguli S, Roy AK (2013) Prediction of the transverse thermal conductivity of pitch-based carbon fibers. J Compos Mater 48(11):1383–1390
46.
go back to reference Alway-Cooper RM, Theodore M, Anderson DP, Ogale AA (2012) Transient heat flow in unidirectional fiber–polymer composites during laser flash analysis: experimental measurements and finite element modeling. J Compos Mater 47(19):2399–2411 Alway-Cooper RM, Theodore M, Anderson DP, Ogale AA (2012) Transient heat flow in unidirectional fiber–polymer composites during laser flash analysis: experimental measurements and finite element modeling. J Compos Mater 47(19):2399–2411
47.
go back to reference Sung DH, Kim M, Park YB (2018) Prediction of thermal conductivities of carbon-containing fiber-reinforced and multiscale hybrid composites. Compos Part B Eng 133:232–239 Sung DH, Kim M, Park YB (2018) Prediction of thermal conductivities of carbon-containing fiber-reinforced and multiscale hybrid composites. Compos Part B Eng 133:232–239
48.
go back to reference Macias JD, Bante-Guerra J, Cervantes-Alvarez F, Rodrìguez-Gattorno G, Arés-Muzio O, Romero-Paredes H, Arancibia-Bulnes CA, Ramos-Sánchez V et al (2019) Thermal characterization of carbon fiber-reinforced carbon composites. Appl Compos Mater 26(1):321–337 Macias JD, Bante-Guerra J, Cervantes-Alvarez F, Rodrìguez-Gattorno G, Arés-Muzio O, Romero-Paredes H, Arancibia-Bulnes CA, Ramos-Sánchez V et al (2019) Thermal characterization of carbon fiber-reinforced carbon composites. Appl Compos Mater 26(1):321–337
49.
go back to reference Lee YS, Lee SY, Kim KS, Noda S, Shim SE, Yang CM (2019) Effective heat transfer pathways of thermally conductive networks formed by one-dimensional carbon materials with different sizes. Polymers 11(10):1661 Lee YS, Lee SY, Kim KS, Noda S, Shim SE, Yang CM (2019) Effective heat transfer pathways of thermally conductive networks formed by one-dimensional carbon materials with different sizes. Polymers 11(10):1661
50.
go back to reference Kelly BT (1968) Theory of the effect of crystallite boundaries on the principal thermal conductivities of highly oriented graphite. Carbon 6(1):71–80 Kelly BT (1968) Theory of the effect of crystallite boundaries on the principal thermal conductivities of highly oriented graphite. Carbon 6(1):71–80
Metadata
Title
Tuning anisotropic thermal conductivity of unidirectional carbon/carbon composites by incorporating carbonaceous fillers
Authors
Guanming Yuan
You Li
Xiangyi Long
Zhengwei Cui
Zhijun Dong
Ye Cong
Jiang Zhang
Xuanke Li
Publication date
20-01-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04357-4

Other articles of this Issue 12/2020

Journal of Materials Science 12/2020 Go to the issue

Premium Partners