Skip to main content
Top
Published in: Journal of Materials Science 21/2020

20-04-2020 | Energy materials

Tuning the interfaces of Co–Co2C with sodium and its relation to the higher alcohol production in Fischer–Tropsch synthesis

Authors: Yang Liu, Shun He, Ruoou Yang, Fanfei Sun, Yuqi Yang, Bingbao Mei, Jincan Kang, Dongshuang Wu, Zheng Jiang

Published in: Journal of Materials Science | Issue 21/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Catalytic conversion of the syngas into higher alcohols (HAs) via Fischer–Tropsch (F–T) synthesis is essential due to the widespread applications of HAs. The interfaces of cobalt and cobalt carbide (Co2C) are found to efficiently promote the HAs formation. However, the study on the links between structural evolution of Co–Co2C interfaces and HAs production is still lacking. In this work, Co3O4 with different contents of sodium (Na) as promoters was synthesized and high-pressure F–T reaction (3 MPa) was carried out in the aim of accelerating the Co2C formation and tuning the interfaces of Co–Co2C. XRD, (HR)TEM, ICP, XPS and XAFS were conducted to study the relationship between the variations of Co–Co2C interfaces and HAs production. With the increasing Na contents, the ratios of Co to Co2C decreased as revealed by XAFS and the selectivity of HAs was decreasing. The fitting results from EXAFS revealed that the ratio of Co to Co2C is in direct proportion to the selectivity of HAs. This work provides a theoretical guidance to tune the interfaces of Co–Co2C and improve the HAs production in F–T reaction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Colley SE, Copperthwaite RG, Hutchings GJ, Terblanche SP, Thackeray MM (1989) Identification of body-centred cubic cobalt and its importance in CO hydrogenation. Nature 339:129–130CrossRef Colley SE, Copperthwaite RG, Hutchings GJ, Terblanche SP, Thackeray MM (1989) Identification of body-centred cubic cobalt and its importance in CO hydrogenation. Nature 339:129–130CrossRef
2.
go back to reference Jenkins SJ, King DA (2000) A role for induced molecular polarization in catalytic promotion: CO coadsorbed with K on Co{101̄0}. J Am Chem Soc 122:10610–10614CrossRef Jenkins SJ, King DA (2000) A role for induced molecular polarization in catalytic promotion: CO coadsorbed with K on Co{101̄0}. J Am Chem Soc 122:10610–10614CrossRef
3.
go back to reference Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241CrossRef Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241CrossRef
4.
go back to reference Cheng QP, Tian Y, Lyu SS, Zhao N, Ma K, Ding T, Jiang Z, Wang LH, Zhang J, Zheng LR, Gao F, Dong L, Tsubaki N, Li XG (2018) Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nat Commun 9:3250CrossRef Cheng QP, Tian Y, Lyu SS, Zhao N, Ma K, Ding T, Jiang Z, Wang LH, Zhang J, Zheng LR, Gao F, Dong L, Tsubaki N, Li XG (2018) Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nat Commun 9:3250CrossRef
5.
go back to reference Yamane N, Wang Y, Li J, He YL, Zhang PP, Nguyen L, Tan L, Ai PP, Peng XB, Wang Y, Yang GH, Tsubaki N (2017) Building premium secondary reaction field with a miniaturized capsule catalyst to realize efficient synthesis of a liquid fuel directly from syngas. Catal Sci Technol 7:1996–2000CrossRef Yamane N, Wang Y, Li J, He YL, Zhang PP, Nguyen L, Tan L, Ai PP, Peng XB, Wang Y, Yang GH, Tsubaki N (2017) Building premium secondary reaction field with a miniaturized capsule catalyst to realize efficient synthesis of a liquid fuel directly from syngas. Catal Sci Technol 7:1996–2000CrossRef
6.
go back to reference Li J, He YL, Tan L, Zhang PP, Peng XB, Oruganti A, Yang GH, Abe H, Wang Y, Tsubaki N (2018) Integrated tunable synthesis of liquid fuels via Fischer–Tropsch technology. Nat Catal 1:787–793CrossRef Li J, He YL, Tan L, Zhang PP, Peng XB, Oruganti A, Yang GH, Abe H, Wang Y, Tsubaki N (2018) Integrated tunable synthesis of liquid fuels via Fischer–Tropsch technology. Nat Catal 1:787–793CrossRef
7.
go back to reference Peng XB, Cheng K, Kang JC, Gu B, Yu X, Zhang QH, Wang Y (2015) Impact of hydrogenolysis on the selectivity of the Fischer–Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew Chem Int Ed 54:4553–4556CrossRef Peng XB, Cheng K, Kang JC, Gu B, Yu X, Zhang QH, Wang Y (2015) Impact of hydrogenolysis on the selectivity of the Fischer–Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew Chem Int Ed 54:4553–4556CrossRef
8.
go back to reference Kang JC, Wang XJ, Peng XB, Yang YD, Cheng K, Zhang QH, Wang Y (2016) Mesoporous zeolite Y-supported Co nanoparticles as efficient Fischer–Tropsch catalysts for selective synthesis of diesel fuel. Ind Eng Chem Res 55:13008–13019CrossRef Kang JC, Wang XJ, Peng XB, Yang YD, Cheng K, Zhang QH, Wang Y (2016) Mesoporous zeolite Y-supported Co nanoparticles as efficient Fischer–Tropsch catalysts for selective synthesis of diesel fuel. Ind Eng Chem Res 55:13008–13019CrossRef
9.
go back to reference Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335:835–838CrossRef Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335:835–838CrossRef
10.
go back to reference Jiao F, Li JJ, Pan XL, Xiao JP, Li HB, Ma H, Wei MM, Pan Y, Zhou ZY, Li MR, Miao S, Li J, Zhu YF, Xiao D, He T, Yang JH, Qi F, Fu Q, Bao XH (2016) Selective conversion of syngas to light olefin. Science 351:1065–1068CrossRef Jiao F, Li JJ, Pan XL, Xiao JP, Li HB, Ma H, Wei MM, Pan Y, Zhou ZY, Li MR, Miao S, Li J, Zhu YF, Xiao D, He T, Yang JH, Qi F, Fu Q, Bao XH (2016) Selective conversion of syngas to light olefin. Science 351:1065–1068CrossRef
11.
go back to reference Corma A, Melo FV, Sauvanaud L, Ortega F (2005) Light cracked naphtha processing: controlling chemistry for maximum propylene production. Catal Today 107–108:699–706CrossRef Corma A, Melo FV, Sauvanaud L, Ortega F (2005) Light cracked naphtha processing: controlling chemistry for maximum propylene production. Catal Today 107–108:699–706CrossRef
12.
go back to reference Zhong LS, Yu F, An YL, Zhao YH, Sun YH, Li ZJ, Lin LJ, Lin YJ, Qi XZ, Dai YY, Gu L, Hu JS, Jin SF, Shen Q, Wang H (2016) Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538:84–87CrossRef Zhong LS, Yu F, An YL, Zhao YH, Sun YH, Li ZJ, Lin LJ, Lin YJ, Qi XZ, Dai YY, Gu L, Hu JS, Jin SF, Shen Q, Wang H (2016) Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538:84–87CrossRef
13.
go back to reference Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22:814–839CrossRef Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22:814–839CrossRef
14.
go back to reference Xiao K, Bao ZH, Qi XZ, Wang XX, Zhong LS, Fang KG, Lin MG, Sun YH (2013) Advances in bifunctional catalysis for higher alcohol synthesis from syngas. Chin J Catal 34:116–129CrossRef Xiao K, Bao ZH, Qi XZ, Wang XX, Zhong LS, Fang KG, Lin MG, Sun YH (2013) Advances in bifunctional catalysis for higher alcohol synthesis from syngas. Chin J Catal 34:116–129CrossRef
15.
go back to reference Ao M, Pham GH, Sunarso J, Tade MO, Liu SM (2018) Active centers of catalysts for higher alcohol synthesis from syngas: a review. ACS Catal 8:7025–7050CrossRef Ao M, Pham GH, Sunarso J, Tade MO, Liu SM (2018) Active centers of catalysts for higher alcohol synthesis from syngas: a review. ACS Catal 8:7025–7050CrossRef
16.
go back to reference Lin TJ, Qi XZ, Wang XX, Xia L, Wang CQ, Yu F, Wang H, Li SG, Zhong LS, Sun YH (2019) Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst. Angew Chem Int Ed 58:4627–4631CrossRef Lin TJ, Qi XZ, Wang XX, Xia L, Wang CQ, Yu F, Wang H, Li SG, Zhong LS, Sun YH (2019) Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst. Angew Chem Int Ed 58:4627–4631CrossRef
17.
go back to reference Cheng K, Zhou W, Kang JC, He S, Shi SL, Zhang QH, Pan Y, Wen W, Wang Y (2017) Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 3:334–347CrossRef Cheng K, Zhou W, Kang JC, He S, Shi SL, Zhang QH, Pan Y, Wen W, Wang Y (2017) Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 3:334–347CrossRef
18.
go back to reference Yang JH, Pan XL, Jiao F, Lia J, Bao XH (2017) Direct conversion of syngas to aromatics. Chem Commun 53:11146–11149CrossRef Yang JH, Pan XL, Jiao F, Lia J, Bao XH (2017) Direct conversion of syngas to aromatics. Chem Commun 53:11146–11149CrossRef
19.
go back to reference Liao PY, Zhang C, Zhang LJ, Yang YZ, Zhong LS, Wang H, Sun YH (2018) Higher alcohol synthesis via syngas over CoMn catalysts derived from hydrotalcite-like precursor. Catal Today 311:56–64CrossRef Liao PY, Zhang C, Zhang LJ, Yang YZ, Zhong LS, Wang H, Sun YH (2018) Higher alcohol synthesis via syngas over CoMn catalysts derived from hydrotalcite-like precursor. Catal Today 311:56–64CrossRef
20.
go back to reference Xu XD, Doesburg EBM, Scholten JJF (1987) Synthesis of higher alcohols from syngas recent patented catalysts and tentative on the mechanism. Catal Today 2:125–170CrossRef Xu XD, Doesburg EBM, Scholten JJF (1987) Synthesis of higher alcohols from syngas recent patented catalysts and tentative on the mechanism. Catal Today 2:125–170CrossRef
21.
go back to reference Zaman SF, Smith KJ (2012) A review of molybdenum catalysts for synthesis gas conversion to alcohols: catalysts, mechanisms and kinetics. Catal Rev Sci Eng 54:41–132CrossRef Zaman SF, Smith KJ (2012) A review of molybdenum catalysts for synthesis gas conversion to alcohols: catalysts, mechanisms and kinetics. Catal Rev Sci Eng 54:41–132CrossRef
22.
go back to reference Pei YP, Liu JX, Zhao YH, Ding YJ, Liu T, Dong WD, Zhu HJ, Su HY, Yan L, Li JL, Li WX (2015) High alcohol synthesis via Fischer–Tropsch reaction at cobalt metal/carbide interface. ACS Catal 5:3620–3624CrossRef Pei YP, Liu JX, Zhao YH, Ding YJ, Liu T, Dong WD, Zhu HJ, Su HY, Yan L, Li JL, Li WX (2015) High alcohol synthesis via Fischer–Tropsch reaction at cobalt metal/carbide interface. ACS Catal 5:3620–3624CrossRef
23.
go back to reference Zhao ZA, Lu W, Yang RO, Zhu HJ, Dong WD, Sun FF, Jiang Z, Lyu Y, Liu T, Du H, Ding YJ (2018) Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas. ACS Catal 8:228–241CrossRef Zhao ZA, Lu W, Yang RO, Zhu HJ, Dong WD, Sun FF, Jiang Z, Lyu Y, Liu T, Du H, Ding YJ (2018) Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas. ACS Catal 8:228–241CrossRef
24.
go back to reference Bahr H, Jessen V (1930) Die Kohlenoxyd-Spaltung am Kobalt. Ber Dtsch Chem Ges B 63:2226–2237CrossRef Bahr H, Jessen V (1930) Die Kohlenoxyd-Spaltung am Kobalt. Ber Dtsch Chem Ges B 63:2226–2237CrossRef
25.
go back to reference Yang YZ, Lin TJ, Qi XZ, Yu F, An YL, Li ZJ, Dai YY, Zhong LS, Wang H, Sun YH (2018) Direct synthesis of long-chain alcohols from syngas over CoMn catalysts. Appl Catal A General 549:179–187CrossRef Yang YZ, Lin TJ, Qi XZ, Yu F, An YL, Li ZJ, Dai YY, Zhong LS, Wang H, Sun YH (2018) Direct synthesis of long-chain alcohols from syngas over CoMn catalysts. Appl Catal A General 549:179–187CrossRef
26.
go back to reference Li ZJ, Zhong LS, Yu F, An YL, Dai YY, Yang YZ, Lin TJ, Li SG, Wang H, Gao P, Sun YH, He MY (2017) effects of sodium on the catalytic performance of comn catalysts for Fischer–Tropsch to olefin reactions. ACS Catal 7:3622–3631CrossRef Li ZJ, Zhong LS, Yu F, An YL, Dai YY, Yang YZ, Lin TJ, Li SG, Wang H, Gao P, Sun YH, He MY (2017) effects of sodium on the catalytic performance of comn catalysts for Fischer–Tropsch to olefin reactions. ACS Catal 7:3622–3631CrossRef
27.
go back to reference Yu HS, Wei XJ, Li J, Gu SQ, Zhang S, Wang LH, Ma JY, Li LN, Gao Q, Si R, Sun FF, Wang Y, Song F, Xu HJ, Yu XH, Zou Y, Wang JQ, Jiang Z, Huang YY (2015) The XAFS beamline of SSRF. Nucl Sci Tech 26:050102 Yu HS, Wei XJ, Li J, Gu SQ, Zhang S, Wang LH, Ma JY, Li LN, Gao Q, Si R, Sun FF, Wang Y, Song F, Xu HJ, Yu XH, Zou Y, Wang JQ, Jiang Z, Huang YY (2015) The XAFS beamline of SSRF. Nucl Sci Tech 26:050102
28.
go back to reference Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFIT. J Synchrotron Rad 12:537–541CrossRef Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFIT. J Synchrotron Rad 12:537–541CrossRef
29.
go back to reference He S, Wang W, Shen Z, Li GZ, Kang JC, Liu ZM, Wang GC, Zhang QH, Wang Y (2019) Carbon nanotube-supported bimetallic Cu–Fe catalysts for syngas conversion to higher alcohols. Molecular Catal 479:110610CrossRef He S, Wang W, Shen Z, Li GZ, Kang JC, Liu ZM, Wang GC, Zhang QH, Wang Y (2019) Carbon nanotube-supported bimetallic Cu–Fe catalysts for syngas conversion to higher alcohols. Molecular Catal 479:110610CrossRef
30.
go back to reference Pena D, Griboval-Constant A, Lecocq V (2013) Influence of operating conditions in a continuously stirred tank reactor on the formation of carbon species on alumina supported cobalt Fischer–Tropsch catalysts. Catal Today 215:43–51CrossRef Pena D, Griboval-Constant A, Lecocq V (2013) Influence of operating conditions in a continuously stirred tank reactor on the formation of carbon species on alumina supported cobalt Fischer–Tropsch catalysts. Catal Today 215:43–51CrossRef
31.
go back to reference Park SJ, Bae JW, Lee YJ (2011) Deactivation behaviors of Pt or Ru promoted Co/P-Al2O3 catalysts during slurry-phase Fischer–Tropsch synthesis. Catal Commun 12(6):539–543CrossRef Park SJ, Bae JW, Lee YJ (2011) Deactivation behaviors of Pt or Ru promoted Co/P-Al2O3 catalysts during slurry-phase Fischer–Tropsch synthesis. Catal Commun 12(6):539–543CrossRef
32.
go back to reference Height MJ, Howard JB, Tester JW (2005) Carbon nanotube formation and growth via particle-particle interaction. J Phys Chem B 109:12337–12346CrossRef Height MJ, Howard JB, Tester JW (2005) Carbon nanotube formation and growth via particle-particle interaction. J Phys Chem B 109:12337–12346CrossRef
33.
go back to reference Vander Wal RL, Ticich TM, Curtis VE (2001) Substrate-support interactions in metal-catalyzed carbon nanofiber growth. Carbon 39:2277–2289CrossRef Vander Wal RL, Ticich TM, Curtis VE (2001) Substrate-support interactions in metal-catalyzed carbon nanofiber growth. Carbon 39:2277–2289CrossRef
34.
go back to reference Zhou W, Cheng K, Kang JC, Zhou C, Subramanian V, Zhang QH, Wang Y (2019) New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48:3193–3228CrossRef Zhou W, Cheng K, Kang JC, Zhou C, Subramanian V, Zhang QH, Wang Y (2019) New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48:3193–3228CrossRef
35.
go back to reference Wu ZY, Xian DC, Natoli CR, Marcelli A, Paris E, Mottana A (2001) Symmetry dependence of x-ray absorption near-edge structure at the metal KK edge of 3d3d transition metal compounds. Appl Phys Lett 79:1918–1920CrossRef Wu ZY, Xian DC, Natoli CR, Marcelli A, Paris E, Mottana A (2001) Symmetry dependence of x-ray absorption near-edge structure at the metal KK edge of 3d3d transition metal compounds. Appl Phys Lett 79:1918–1920CrossRef
36.
go back to reference Yang RO, Xia ZM, Zhao ZA, Sun FF, Du XL, Yu HS, Gu SQ, Zhong LS, Zhao JT, Ding YJ, Jiang Z (2019) Characterization of CoMn catalyst by in situ X-ray absorption spectroscopy and wavelet analysis for Fischer–Tropsch to olefins reaction. J Energy Chem 32:118–123CrossRef Yang RO, Xia ZM, Zhao ZA, Sun FF, Du XL, Yu HS, Gu SQ, Zhong LS, Zhao JT, Ding YJ, Jiang Z (2019) Characterization of CoMn catalyst by in situ X-ray absorption spectroscopy and wavelet analysis for Fischer–Tropsch to olefins reaction. J Energy Chem 32:118–123CrossRef
Metadata
Title
Tuning the interfaces of Co–Co2C with sodium and its relation to the higher alcohol production in Fischer–Tropsch synthesis
Authors
Yang Liu
Shun He
Ruoou Yang
Fanfei Sun
Yuqi Yang
Bingbao Mei
Jincan Kang
Dongshuang Wu
Zheng Jiang
Publication date
20-04-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04612-8

Other articles of this Issue 21/2020

Journal of Materials Science 21/2020 Go to the issue

Premium Partners