Skip to main content
Top

2020 | OriginalPaper | Chapter

10. Turbulente Strömungen

Authors : Joel H. Ferziger, Milovan Perić, Robert L. Street

Published in: Numerische Strömungsmechanik

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Dieses Kapitel befasst sich mit der Berechnung von turbulenten Strömungen. Die Art der Turbulenz und drei Methoden zu ihrer Simulation werden beschrieben: direkte und Large-Eddy-Simulation und Methoden, die auf Reynolds-gemittelten Navier-Stokes-Gleichungen basieren. Einige weit verbreitete Modelle in den beiden letztgenannten Ansätzen werden beschrieben, einschließlich Einzelheiten in Bezug auf Randbedingungen. Beispiele für die Anwendung dieser Ansätze, einschließlich des Vergleichs ihrer Ergebnisse, werden vorgestellt.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Es gibt auch Zweipunkteschließungen, die Gleichungen für die Korrelation der Geschwindigkeitskomponenten in zwei räumlichen Punkten oder, noch häufiger, die Fourier-Transformation dieser Gleichungen verwenden. Diese Methoden sind in der Praxis nicht weit verbreitet (Leschziner 2010) und werden am häufigsten in der Grundlagenforschung eingesetzt, sodass wir sie nicht weiter berücksichtigen werden. Lesieur (2010, 2011) präsentiert jedoch einen charmanten Rückblick mit gutem Einblick in ihre Geschichte und ihren Stand der Technik.
 
2
Durch Mittelung über „relativ“ große Volumen im Raum erhält man very large-eddy simulation (VLES). Wir werden später diskutieren (Abschn. 10.3.1 und 10.3.7), wie man „relativ“ definiert.
 
3
Es könnte schlimmer sein! Der NSF Bericht über simulationbasierte Ingenieurwissenschaften (2006) stellt tatsächlich fest, dass die Tyrannei der Skalen die Simulationsbemühungen in vielen Bereichen dominiert, einschließlich der Strömungsmechanik. Also, selbst für \(\mathrm{Re}_L \sim 10^7\) liegt das Längenskalenverhältnis in der Größenordnung von \(2\times 10^5\). Sie weisen jedoch darauf hin, dass für die Proteinfaltung das Zeitskalenverhältnis \(\sim 10^{12}\) ist, während für fortgeschrittenes Materialdesign das räumliche Skalenverhältnis \(\sim 10^{10}\) beträgt!
 
4
„Mesoskala“ bezieht sich auf Wettersysteme mit horizontalen Abmessungen, die im Allgemeinen von etwa 5 km bis zu mehreren hundert oder sogar \(10^3\) km reichen.
 
5
Achtung: Hier ist die Rede von einem Metallgitter, das im Fluid bewegt wird – man darf dieses Gitter nicht mit dem Rechengitter verwechseln!
 
6
Unterkritische Strömung um eine Kugel findet bei relativ niedrigen Reynolds-Zahlen statt, wenn der Widerstandsbeiwert keine Funktion der Reynolds-Zahl ist und die Grenzschicht vor der Ablösung laminar ist.
 
7
Chen und Jaw (1998) veranschaulichen die Bildung eines Ensemble-Mittelwerts in ihrer Abb. 1.8.
 
8
Der Leser mag bemerken, dass das Gitter hier nicht erwähnt wird. Die Filtergröße ist mindestens so groß wie das Gittermaß und oft deutlich größer. In traditionellen LES wird die Filterbreite gleich der Gittermaschenweite angenommen, und wir werden vorerst dieser Praxis folgen. In den Abschnitten 10.3.3.4 und 10.3.3.7 werden wir den Zusammenhang zwischen Gitter- und Filterweiten und wie sich das auf die Modellierung auswirkt untersuchen.
 
9
Die Filteroperation wird definiert, aber die Gleichungen werden i. Allg. nicht explizit gefiltert, wie auch im Fall von oben beschriebener Zeit- und Ensemblemittelung. In traditionellen LES sind die Gleichungen im Wesentlichen das Ergebnis eines impliziten und unbekannten Filters. Bose et al. (2010) haben den Wert der expliziten Filterung gezeigt.
 
10
Der anspruchsvolle Leser wird feststellen, dass wir den Koeffizienten \(C_S^2\), der eine Funktion von Raum und Zeit ist, still und leise aus der Testfiltermittelung in Gl. (10.17) herausgenommen haben; dies entspricht der Annahme, dass er über das Volumen des Testfilters konstant ist. Dies ist eine bequeme Wahl, aber nicht die einzig mögliche.
 
11
Es ist zu beachten, dass Carati et al. (2001) und Chow et al. (2005), sowie viele andere, die Spannungsdefinition als Geschwindigkeitsprodukt verwenden, ohne die Dichte einzubeziehen.
 
12
Dementsprechend hat die n-Ebene \(n+1\) Terme aus der Entwicklung (10.24); siehe den Anhang von Shi et al. (2018a) für eine Diskussion und eine Anwendung.
 
13
N.B.: Ein feines Gitter ist auch entlang der Wand für DNS erforderlich, aber in LES kann ein deutlich höheres Gitterseitenverhältnis (horizontal zu wandnormal) in der Nähe von Wänden oder dem Boden verwendet werden.
 
14
Bei Coriolis-beeinflussten Strömungen dreht sich der Geschwindigkeitsvektor mit Abstand von der Wand, und beide Komponenten können ungleich null sein, selbst wenn die Strömung weit von der Wand entfernt unidirektional ist; siehe Abschn. 10.3.4.3.
 
15
Die Potenzialtemperatur wird in der Meteorologie oft verwendet, weil sie sich zur Untersuchung der geschichteten Strömung in einem kompressiblen Medium (Luft) eignet; es ist die Temperatur, die ein Luftteilchen in einer Höhe z hätte, nachdem es zu Boden gebracht wurde, ohne Wärme mit seiner Umgebung auszutauschen (adiabat), d. h. \(\Theta (z)=T(z)[p_\mathrm{Boden})/p(z)]^{0{,}286}\).
 
16
Für Wetterprognosen wird ein endlicher Satz von Simulationen (die nicht unbedingt statistisch identisch sind) ensemble-gemittelt, um verbesserte Vorhersagen zu erzielen.
 
17
Für den instationären Fall mit persistenten Strukturen muss sich die Strömung nicht unbedingt monoton ändern und das Ergebnis könnte ähnlich aussehen wie in Abb. 10.6, wenn man sich vorstellt, dass die LES-Linie die kohärenten Strukturen in ensemble-gemittelter Strömung darstellt. Siehe Abb. 1.8 in Chen und Jaw (1998).
 
18
Die Ähnlichkeit mit den SGS-Reynolds-Spannungen, Gl. 10.11, ist offensichtlich.
 
19
Diese Beziehung spielt eine große Rolle in LES unter Verwendung eines TKE-basierten SGS-Modells; in diesem Fall wird \(L=\varDelta \) und es wird eine Proportionalitätskonstante in der Größenordnung von 1 verwendet.
 
20
Die NASA Turbulence Modeling Resource (NASA TMR) bietet Dokumentation für RANS-Turbulenzmodelle, einschließlich der neuesten (oft korrigierten) Versionen von Spalart-Allmaras, Menter, Wilcox und anderen Modellen sowie Verifikations- und Validierungstestfälle, Gitter und Datenbanken.
 
21
Es ist zu beachten, dass die Bezeichnungen „Hoch-Re“ und „Niedrig-Re“’ nichts mit der tatsächlichen Reynolds-Zahl für das jeweilige Strömungsproblem zu tun haben – sie hängen damit zusammen, wie nah an der Wand die Berechnungspunkte liegen und wie die Wandschubspannung berechnet wird.
 
22
Wenn die Wand rau ist, können wir die in Abschn. 10.3.3.3 hergeleitete und in Gl. (10.27) und (10.29) gegebene Bedingungen anwenden.
 
Literature
go back to reference Abe, K., Jang, Y.-J. & Leschziner, M. A. (2003). An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int. J. Heat Fluid Flow, 24, 181–198.CrossRef Abe, K., Jang, Y.-J. & Leschziner, M. A. (2003). An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int. J. Heat Fluid Flow, 24, 181–198.CrossRef
go back to reference Achenbach, E. (1972). Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech., 54, 565–575.ADSCrossRef Achenbach, E. (1972). Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech., 54, 565–575.ADSCrossRef
go back to reference Aspden, A., Nikiforakis, N., Dalziel, S. & Bell, J. (2008). Analysis of implicit LES methods. Comm. App. Math. and Comp. Sci., 3, 103–126.MathSciNetMATHCrossRef Aspden, A., Nikiforakis, N., Dalziel, S. & Bell, J. (2008). Analysis of implicit LES methods. Comm. App. Math. and Comp. Sci., 3, 103–126.MathSciNetMATHCrossRef
go back to reference Bakić, V. (2002). Experimental investigation of turbulent flows around a sphere (PhD Dissertation). Technical University of Hamburg-Harburg, Germany. Bakić, V. (2002). Experimental investigation of turbulent flows around a sphere (PhD Dissertation). Technical University of Hamburg-Harburg, Germany.
go back to reference Bardina, J., Ferziger, J. H. & Reynolds, W. C. (1980). Improved subgrid models for large-eddy simulation. In 13th Fluid and Plasma Dynamics Conf. (AIAA Paper 80-1357) Bardina, J., Ferziger, J. H. & Reynolds, W. C. (1980). Improved subgrid models for large-eddy simulation. In 13th Fluid and Plasma Dynamics Conf. (AIAA Paper 80-1357)
go back to reference Beare, R. J., MacVean, M. K., Holtslag, A. A. M., Cuxart, J., Esau, I., Golaz, J. C. & Sullivan, P. (2006). An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol., 118, 247–272.ADSCrossRef Beare, R. J., MacVean, M. K., Holtslag, A. A. M., Cuxart, J., Esau, I., Golaz, J. C. & Sullivan, P. (2006). An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol., 118, 247–272.ADSCrossRef
go back to reference Bermejo-Moreno, I., Pullin, D. I. & Horiuti, K. (2009). Geometry of enstrophy and dissipation, grid resolution effects and proximity issues in turbulence. J. Fluid Mech., 620, 121-166.ADSMATHCrossRef Bermejo-Moreno, I., Pullin, D. I. & Horiuti, K. (2009). Geometry of enstrophy and dissipation, grid resolution effects and proximity issues in turbulence. J. Fluid Mech., 620, 121-166.ADSMATHCrossRef
go back to reference Bewley, T., Moin, P. & Temam, R. (1994). Optimal control of turbulent channel flows. In Active control of vibration and noise (Bd. DE 75, S. 221–227). New York: Amer. Soc. Mech. Eng., Design Eng. Div. Bewley, T., Moin, P. & Temam, R. (1994). Optimal control of turbulent channel flows. In Active control of vibration and noise (Bd. DE 75, S. 221–227). New York: Amer. Soc. Mech. Eng., Design Eng. Div.
go back to reference Bhagatwala, A. & Lele, S. K. (2011). Interaction of a Taylor blast wave with isotropic turbulence. Phys. Fluids, 23, 035103.ADSCrossRef Bhagatwala, A. & Lele, S. K. (2011). Interaction of a Taylor blast wave with isotropic turbulence. Phys. Fluids, 23, 035103.ADSCrossRef
go back to reference Bhaskaran, R. & Lele, S. K. (2010). Large-eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade. J. Turbulence, 11, N6.ADSCrossRef Bhaskaran, R. & Lele, S. K. (2010). Large-eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade. J. Turbulence, 11, N6.ADSCrossRef
go back to reference Billard, F., Laurence, D. & Osman, K. (2015). Adaptive wall functions for an elliptic blending eddy-viscosity model applicable to any mesh topology. Flow Turb. Combust., 94, 817–842. Billard, F., Laurence, D. & Osman, K. (2015). Adaptive wall functions for an elliptic blending eddy-viscosity model applicable to any mesh topology. Flow Turb. Combust., 94, 817–842.
go back to reference Bodony, D. J. & Lele, S. K. (2008). Current status of jet noise predictions using large-eddy simulation. AIAA J., 46, 364–380.ADSCrossRef Bodony, D. J. & Lele, S. K. (2008). Current status of jet noise predictions using large-eddy simulation. AIAA J., 46, 364–380.ADSCrossRef
go back to reference Bose, S. T., Moin, P. & You, D. (2010). Grid-independent large-eddy simulation using explicit filtering. Phys. Fluids, 22, 105103.ADSCrossRef Bose, S. T., Moin, P. & You, D. (2010). Grid-independent large-eddy simulation using explicit filtering. Phys. Fluids, 22, 105103.ADSCrossRef
go back to reference Brès, G. A., Ham, F. E., Nichols, J. W. & Lele, S. K. (2017). Unstructured large-eddy simulations of supersonic jets. AIAA J., 55, 1164–1184.ADSCrossRef Brès, G. A., Ham, F. E., Nichols, J. W. & Lele, S. K. (2017). Unstructured large-eddy simulations of supersonic jets. AIAA J., 55, 1164–1184.ADSCrossRef
go back to reference Briggs, D. R., Ferziger, J. H., Koseff, J. R. & Monismith, S. G. (1996). Entrainment in a shear free mixing layer. J. Fluid Mech., 310, 215–241.ADSMATHCrossRef Briggs, D. R., Ferziger, J. H., Koseff, J. R. & Monismith, S. G. (1996). Entrainment in a shear free mixing layer. J. Fluid Mech., 310, 215–241.ADSMATHCrossRef
go back to reference Brigham, E. O. (1988). The fast Fourier transform and its applications. Englewood Cliffs, NJ: Prentice Hall. Brigham, E. O. (1988). The fast Fourier transform and its applications. Englewood Cliffs, NJ: Prentice Hall.
go back to reference Bryan, G. H., Wyngaard, J. C. & Fritsch, J. M. (2003). Resolution requirements for the simulation of deep moist convection. Mon. Weather Rev., 131, 2394—2416.ADSCrossRef Bryan, G. H., Wyngaard, J. C. & Fritsch, J. M. (2003). Resolution requirements for the simulation of deep moist convection. Mon. Weather Rev., 131, 2394—2416.ADSCrossRef
go back to reference Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. (2007). Spectral methods: Evolution to complex geometries and applications to fluid dynamics. Berlin: Springer.MATHCrossRef Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. (2007). Spectral methods: Evolution to complex geometries and applications to fluid dynamics. Berlin: Springer.MATHCrossRef
go back to reference Carati, D., Winckelmans, G. S. & Jeanmart, H. (2001). On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J. Fluid Mech., 441, 119–138.ADSMATHCrossRef Carati, D., Winckelmans, G. S. & Jeanmart, H. (2001). On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J. Fluid Mech., 441, 119–138.ADSMATHCrossRef
go back to reference Celik, I., Klein, M. & Janicka, J. (2009). Assessment measures for engineering LES applications. J. Fluids Engrg., 131, 031102.CrossRef Celik, I., Klein, M. & Janicka, J. (2009). Assessment measures for engineering LES applications. J. Fluids Engrg., 131, 031102.CrossRef
go back to reference Chen, C. J. & Jaw, S. Y. (1998). Fundamentals of turbulence modeling. Washington, D. C: Taylor & Francis. Chen, C. J. & Jaw, S. Y. (1998). Fundamentals of turbulence modeling. Washington, D. C: Taylor & Francis.
go back to reference Chen, Y., Ludwig, F. L. & Street, R. L. (2004b). Stably stratified flows near a notched transverse ridge across the salt lake valley. J. Appl. Meteor., 43, 1308–1328.ADSCrossRef Chen, Y., Ludwig, F. L. & Street, R. L. (2004b). Stably stratified flows near a notched transverse ridge across the salt lake valley. J. Appl. Meteor., 43, 1308–1328.ADSCrossRef
go back to reference Choi, H. & Moin, P. (1994). Effects of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys., 113, 1-4.ADSMATHCrossRef Choi, H. & Moin, P. (1994). Effects of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys., 113, 1-4.ADSMATHCrossRef
go back to reference Choi, H., Moin, P. & Kim, J. (1994). Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech., 262, 75-110.ADSMATHCrossRef Choi, H., Moin, P. & Kim, J. (1994). Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech., 262, 75-110.ADSMATHCrossRef
go back to reference Chow, F. K. & Moin, P. (2003). A further study of numerical errors in large-eddy simulations. J. Comput. Phys., 184, 366–380.ADSMATHCrossRef Chow, F. K. & Moin, P. (2003). A further study of numerical errors in large-eddy simulations. J. Comput. Phys., 184, 366–380.ADSMATHCrossRef
go back to reference Chow, F. K. & Street, R. L. (2009). Evaluation of turbulence closure models for large-eddy simulation over complex terrain: Flow over Askervein Hill. J. Appl. Meteor. and Climatology, 48, 1050–1065.ADSCrossRef Chow, F. K. & Street, R. L. (2009). Evaluation of turbulence closure models for large-eddy simulation over complex terrain: Flow over Askervein Hill. J. Appl. Meteor. and Climatology, 48, 1050–1065.ADSCrossRef
go back to reference Chow, F. K., Street, R. L., Xue, M. & Ferziger, J. (2005). Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci. 62, 2058–2077.ADSCrossRef Chow, F. K., Street, R. L., Xue, M. & Ferziger, J. (2005). Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci. 62, 2058–2077.ADSCrossRef
go back to reference Chow, F. K., Weigel, A. P., Street, R. L., Rotach, M. W. & Xue, M. (2006). High-resolution large-eddy simulations of flow in a steep Alpine valley. part i: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. and Climatology, 45, 63–86.ADSCrossRef Chow, F. K., Weigel, A. P., Street, R. L., Rotach, M. W. & Xue, M. (2006). High-resolution large-eddy simulations of flow in a steep Alpine valley. part i: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. and Climatology, 45, 63–86.ADSCrossRef
go back to reference Constantinescu, G. & Squires, K. (2004). Numerical investigations of flow over a sphere in the subcritical and supercritical regimes. Physics Fluids, 16, 1449–1466.ADSMATHCrossRef Constantinescu, G. & Squires, K. (2004). Numerical investigations of flow over a sphere in the subcritical and supercritical regimes. Physics Fluids, 16, 1449–1466.ADSMATHCrossRef
go back to reference Cooley, J.W. & Tukey, J.W. (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comput., 19, 297–301.MathSciNetMATHCrossRef Cooley, J.W. & Tukey, J.W. (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comput., 19, 297–301.MathSciNetMATHCrossRef
go back to reference Durbin, P. A. (2002). A perspective on recent developments in RANS modeling. In W. Rodi & N. Furyo (Hrsg.),Engrg. turbulence modelling and exp. (Bd. 5, S. 3–16). Durbin, P. A. (2002). A perspective on recent developments in RANS modeling. In W. Rodi & N. Furyo (Hrsg.),Engrg. turbulence modelling and exp. (Bd. 5, S. 3–16).
go back to reference Durbin, P. A. (1991). Near-wall turbulence closure modeling without ‘damping functions’. Theoret. Comput. Fluid Dynamics, 3, 1–13.ADSMATH Durbin, P. A. (1991). Near-wall turbulence closure modeling without ‘damping functions’. Theoret. Comput. Fluid Dynamics, 3, 1–13.ADSMATH
go back to reference Durbin, P. A. (2009). Limiters and wall treatments in applied turbulence modeling. Fluid Dyn. Res., 41, 012203.ADSMATHCrossRef Durbin, P. A. (2009). Limiters and wall treatments in applied turbulence modeling. Fluid Dyn. Res., 41, 012203.ADSMATHCrossRef
go back to reference Durbin, P. A. & Pettersson Reif, B. A. (2011). Statistical theory and modeling for turbulent flows (2. Aufl.). Chichester, England: Wiley.MATH Durbin, P. A. & Pettersson Reif, B. A. (2011). Statistical theory and modeling for turbulent flows (2. Aufl.). Chichester, England: Wiley.MATH
go back to reference El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer, G. & Johansson, A. V.(2013). Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust., 91,475–495.CrossRef El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer, G. & Johansson, A. V.(2013). Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust., 91,475–495.CrossRef
go back to reference Enriquez, R. M., Chow, F. K., Street, R. L. & Ludwig, F, L. (2010). Examination of the linear algebraic subgrid-scale stress [LASS] model, combined with reconstruction of the subfilterscale stress, for large-eddy simulation of the neutral atmospheric boundary layer. In 19th Conference on Boundary Layers and Turbulence, AMS, Paper 3A. (8 pages) Enriquez, R. M., Chow, F. K., Street, R. L. & Ludwig, F, L. (2010). Examination of the linear algebraic subgrid-scale stress [LASS] model, combined with reconstruction of the subfilterscale stress, for large-eddy simulation of the neutral atmospheric boundary layer. In 19th Conference on Boundary Layers and Turbulence, AMS, Paper 3A. (8 pages)
go back to reference Enriquez, R. M. (2013). Subgrid-scale turbulence modeling for improved large-eddy simulation of the atmospheric boundary layer (PhD Dissertation). Stanford University, Stanford, CA. Enriquez, R. M. (2013). Subgrid-scale turbulence modeling for improved large-eddy simulation of the atmospheric boundary layer (PhD Dissertation). Stanford University, Stanford, CA.
go back to reference Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flowsimulations. J. Comput. Phys., 161, 35–60.ADSMathSciNetMATHCrossRef Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flowsimulations. J. Comput. Phys., 161, 35–60.ADSMathSciNetMATHCrossRef
go back to reference Findikakis, A. N. & Street, R. L. (1979). An algebraic model for subgrid-scale turbulence in stratified flows. J. Atmos. Sci., 36, 1934–1949.ADSCrossRef Findikakis, A. N. & Street, R. L. (1979). An algebraic model for subgrid-scale turbulence in stratified flows. J. Atmos. Sci., 36, 1934–1949.ADSCrossRef
go back to reference Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. (1991). A dynamic subgrid-scale eddyviscosity model. Phys. Fluids A, 3, 1760–1765.ADSMATHCrossRef Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. (1991). A dynamic subgrid-scale eddyviscosity model. Phys. Fluids A, 3, 1760–1765.ADSMATHCrossRef
go back to reference Grinstein, F. F., Margolin, L. G. & Rider, W. J. (Hrsg.). (2007). Implicit large-eddy simulation: Computing turbulent fluid dynamics. Cambridge: Cambridge U. Press.MATH Grinstein, F. F., Margolin, L. G. & Rider, W. J. (Hrsg.). (2007). Implicit large-eddy simulation: Computing turbulent fluid dynamics. Cambridge: Cambridge U. Press.MATH
go back to reference Gullbrand, J. & Chow, F. K. (2003). The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech., 495, 323–341.ADSMATHCrossRef Gullbrand, J. & Chow, F. K. (2003). The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech., 495, 323–341.ADSMATHCrossRef
go back to reference Gyllenram, W. & Nilsson, H. (2006). Very large-eddy simulation of draft tube flow. In 23rd IAHR Symp. Yokohama. (10 pages) Gyllenram, W. & Nilsson, H. (2006). Very large-eddy simulation of draft tube flow. In 23rd IAHR Symp. Yokohama. (10 pages)
go back to reference Hadžić, I. (1999). Second-moment closure modelling of transitional and unsteady turbulent flows (PhD Dissertation). Delft University of Technology. Hadžić, I. (1999). Second-moment closure modelling of transitional and unsteady turbulent flows (PhD Dissertation). Delft University of Technology.
go back to reference Hanjalić, K. (2004). Closure models for incompressible turbulent flows (Bericht). Brussels, Belgium: Lecture Notes at the von Karman Institute for Fluid Dynamics. Hanjalić, K. (2004). Closure models for incompressible turbulent flows (Bericht). Brussels, Belgium: Lecture Notes at the von Karman Institute for Fluid Dynamics.
go back to reference Hanjalić, K. & Kenjereš, S. (2001). T-RANS simulation of deterministic eddy structure in flows driven by thermal buoyancy and Lorentz force. Flow Turbulence and Combustion, 66, 427–451.MATHCrossRef Hanjalić, K. & Kenjereš, S. (2001). T-RANS simulation of deterministic eddy structure in flows driven by thermal buoyancy and Lorentz force. Flow Turbulence and Combustion, 66, 427–451.MATHCrossRef
go back to reference Hanjalić, K. & Launder, B. E. (1976). Contribution towards a Reynolds-stress closure for low Reynolds number turbulence. J. Fluid Mech., 74, 593–610.ADSMATHCrossRef Hanjalić, K. & Launder, B. E. (1976). Contribution towards a Reynolds-stress closure for low Reynolds number turbulence. J. Fluid Mech., 74, 593–610.ADSMATHCrossRef
go back to reference Hanjalić, K. & Launder, B. E. (1980). Sensitizing the dissipation equation to irrotational strains. J. Fluids Engrg., 102, 34–40.CrossRef Hanjalić, K. & Launder, B. E. (1980). Sensitizing the dissipation equation to irrotational strains. J. Fluids Engrg., 102, 34–40.CrossRef
go back to reference Hatlee, S. C. & Wyngaard, J. C. (2007). Improved subfilter-scale models from the HATS field data. J. Atmos. Sci., 64, 1694-1705.ADSCrossRef Hatlee, S. C. & Wyngaard, J. C. (2007). Improved subfilter-scale models from the HATS field data. J. Atmos. Sci., 64, 1694-1705.ADSCrossRef
go back to reference Hu, F. Q., Hussaini, M. Y. & Manthey, J. L. (1996). Low-dissipation and low-dispersion Runge- Kutta schemes for computational acoustics. J. Comput. Phys., 124, 177–191.ADSMathSciNetMATHCrossRef Hu, F. Q., Hussaini, M. Y. & Manthey, J. L. (1996). Low-dissipation and low-dispersion Runge- Kutta schemes for computational acoustics. J. Comput. Phys., 124, 177–191.ADSMathSciNetMATHCrossRef
go back to reference Iaccarino, G., Ooi, A., Durbin, P. A. & Behnia, M. (2003). Reynolds averaged simulation of unsteady separated flow. Int. J. Heat and Fluid Flow, 24, 147–156CrossRef Iaccarino, G., Ooi, A., Durbin, P. A. & Behnia, M. (2003). Reynolds averaged simulation of unsteady separated flow. Int. J. Heat and Fluid Flow, 24, 147–156CrossRef
go back to reference Ishihara, T., Gotoh, T. & Kaneda, Y. (2009). Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech., 41, 165–180.ADSMathSciNetMATHCrossRef Ishihara, T., Gotoh, T. & Kaneda, Y. (2009). Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech., 41, 165–180.ADSMathSciNetMATHCrossRef
go back to reference Ivanell, S., Sørensen, J., Mikkelsen, R. & Henningson, D. (2009). Analysis of numerically generated wake structures. Wind Energy, 12, 63–80.ADSCrossRef Ivanell, S., Sørensen, J., Mikkelsen, R. & Henningson, D. (2009). Analysis of numerically generated wake structures. Wind Energy, 12, 63–80.ADSCrossRef
go back to reference Jacobson, M. Z. & Delucchi, M. A. (2009). A path to sustainable energy by 2030. Scientific American, 301, 58–65.ADSCrossRef Jacobson, M. Z. & Delucchi, M. A. (2009). A path to sustainable energy by 2030. Scientific American, 301, 58–65.ADSCrossRef
go back to reference Jakirlić, S. & Jovanović, J. (2010). On unified boundary conditions for improved predictions of near-wall turbulence. J. Fluid Mech., 656, 530–539.ADSMATHCrossRef Jakirlić, S. & Jovanović, J. (2010). On unified boundary conditions for improved predictions of near-wall turbulence. J. Fluid Mech., 656, 530–539.ADSMATHCrossRef
go back to reference Kaneda, Y. & Ishihara, T. (2006). High-resolution direct numerical simulation of turbulence. J. Turbulence, 7, N20.ADSCrossRef Kaneda, Y. & Ishihara, T. (2006). High-resolution direct numerical simulation of turbulence. J. Turbulence, 7, N20.ADSCrossRef
go back to reference Kang, S., Iaccarino, G., Ham, F. & Moin, P. (2009). Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method. J. Comput. Phys., 228, 6753–6772.ADSMATHCrossRef Kang, S., Iaccarino, G., Ham, F. & Moin, P. (2009). Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method. J. Comput. Phys., 228, 6753–6772.ADSMATHCrossRef
go back to reference Kawai, S. & Lele, S. K. (2010). Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J., 48, 2063–2083.ADSCrossRef Kawai, S. & Lele, S. K. (2010). Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J., 48, 2063–2083.ADSCrossRef
go back to reference Kenjereš, S. & Hanjalić, K. (1999). Transient analysis of Rayleigh-Bénard convection with a RANS model. Int. J. Heat Fluid Flow, 20, 329–340.CrossRef Kenjereš, S. & Hanjalić, K. (1999). Transient analysis of Rayleigh-Bénard convection with a RANS model. Int. J. Heat Fluid Flow, 20, 329–340.CrossRef
go back to reference Kenjereš, S. & Hanjalić, K. (2002). Combined effects of terrain orography and thermal stratification on pollutant dispersion in a town valley: a T-RANS simulation. J. Turbulence, 3, N26.ADSMATHCrossRef Kenjereš, S. & Hanjalić, K. (2002). Combined effects of terrain orography and thermal stratification on pollutant dispersion in a town valley: a T-RANS simulation. J. Turbulence, 3, N26.ADSMATHCrossRef
go back to reference Kim, J., Moin, P. & Moser, R. D. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177, 133–166.ADSMATHCrossRef Kim, J., Moin, P. & Moser, R. D. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177, 133–166.ADSMATHCrossRef
go back to reference Kim, J., Kim, D. & Choi, H. (2001). An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys., 171, 132–150.ADSMathSciNetMATHCrossRef Kim, J., Kim, D. & Choi, H. (2001). An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys., 171, 132–150.ADSMathSciNetMATHCrossRef
go back to reference Konan, N. A., Simonin, O. & Squires, K. D. (2011). Detached-eddy simulations and particle Lagrangian tracking of horizontal rough wall turbulent channel flow. J. Turbulence, 12, N22.ADSCrossRef Konan, N. A., Simonin, O. & Squires, K. D. (2011). Detached-eddy simulations and particle Lagrangian tracking of horizontal rough wall turbulent channel flow. J. Turbulence, 12, N22.ADSCrossRef
go back to reference Kosović, B. (1997). Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336, 151–182.ADSMATHCrossRef Kosović, B. (1997). Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336, 151–182.ADSMATHCrossRef
go back to reference Lardeau, S. (2018). Consistent strain/stress lag eddy-viscosity model for hybrid RANS/LES. In Y. Hoarau, S. H. Peng, D. Schwamborn & A. Revell (Hrsg.), Progress in Hybrid RANS-LES Modelling (S. 39-51). Springer, Cham.CrossRef Lardeau, S. (2018). Consistent strain/stress lag eddy-viscosity model for hybrid RANS/LES. In Y. Hoarau, S. H. Peng, D. Schwamborn & A. Revell (Hrsg.), Progress in Hybrid RANS-LES Modelling (S. 39-51). Springer, Cham.CrossRef
go back to reference Launder, B. E. & Spalding, D. B. (1974). The numerical computation of turbulent flows. Comput. Meth. Appl. Mech. and Engr., 3, 269–289.ADSMATHCrossRef Launder, B. E. & Spalding, D. B. (1974). The numerical computation of turbulent flows. Comput. Meth. Appl. Mech. and Engr., 3, 269–289.ADSMATHCrossRef
go back to reference Launder, B. E., Reece, G. J. & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68, 537–566.ADSMATHCrossRef Launder, B. E., Reece, G. J. & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68, 537–566.ADSMATHCrossRef
go back to reference Leder, A. (1992). Abgelöste Strömungen. Physikalische Grundlagen. Wiesbaden, Germany: Vieweg.CrossRef Leder, A. (1992). Abgelöste Strömungen. Physikalische Grundlagen. Wiesbaden, Germany: Vieweg.CrossRef
go back to reference Lee, M. & Moser, R. D. (2015). Direct numerical simulation of turbulent channel flow up to Ret \(\approx \) 5200. J. Fluid Mech., 774, 395–415.ADSCrossRef Lee, M. & Moser, R. D. (2015). Direct numerical simulation of turbulent channel flow up to Ret \(\approx \) 5200. J. Fluid Mech., 774, 395–415.ADSCrossRef
go back to reference Leonard, A. & Wray, A. A. (1982). Anewnumerical method for the simulation of three dimensional flow in a pipe. In E. Krause (Hrsg.), Eighth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, (Bd. 170). Berlin: Springer. Leonard, A. & Wray, A. A. (1982). Anewnumerical method for the simulation of three dimensional flow in a pipe. In E. Krause (Hrsg.), Eighth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, (Bd. 170). Berlin: Springer.
go back to reference Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L. & Antonia, R. A. (2003). Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech., 491, 229–238.ADSMATHCrossRef Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L. & Antonia, R. A. (2003). Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech., 491, 229–238.ADSMATHCrossRef
go back to reference Leschziner, M. A. (2010). Reynolds-averaged Navier-Stokes methods. In R. Blockley & W. Shyy (Hrsg.), Encyclopedia of aerospace engineering (S. 1–13). Leschziner, M. A. (2010). Reynolds-averaged Navier-Stokes methods. In R. Blockley & W. Shyy (Hrsg.), Encyclopedia of aerospace engineering (S. 1–13).
go back to reference Lesieur, M. (2010). Two-point closure based on large-eddy simulations in turbulence, Part 2: Inhomogeneous cases. Discrete Contin. Dyn. Sys., 28. Lesieur, M. (2010). Two-point closure based on large-eddy simulations in turbulence, Part 2: Inhomogeneous cases. Discrete Contin. Dyn. Sys., 28.
go back to reference Lesieur, M. (2011). Two-point closure based on large-eddy simulations in turbulence, Part 1: Isotropic turbulence. Discrete Contin. Dyn. Sys., Ser. S, 4, 155–168.MATH Lesieur, M. (2011). Two-point closure based on large-eddy simulations in turbulence, Part 1: Isotropic turbulence. Discrete Contin. Dyn. Sys., Ser. S, 4, 155–168.MATH
go back to reference Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A, 4, 633–635.ADSCrossRef Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A, 4, 633–635.ADSCrossRef
go back to reference Louda, P., Kozel, K. & Příhoda, J. (2008). Numerical solution of 2D and 3D viscous incompressible steady and unsteady flows using artificial compressibility method. Int. J. Numer. Methods Fluids, 56, 1399–1407.ADSMathSciNetMATHCrossRef Louda, P., Kozel, K. & Příhoda, J. (2008). Numerical solution of 2D and 3D viscous incompressible steady and unsteady flows using artificial compressibility method. Int. J. Numer. Methods Fluids, 56, 1399–1407.ADSMathSciNetMATHCrossRef
go back to reference Lu, H. & Porté-Agel, F. (2011). Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids, 23, 065101.ADSCrossRef Lu, H. & Porté-Agel, F. (2011). Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids, 23, 065101.ADSCrossRef
go back to reference Ludwig, F. L., Chow, F. K. & Street, R. L. (2009). Effect of turbulence models and spatial resolution on resolved velocity structure and momentum fluxes in large-eddy simulations of neutral boundary layer flow. J. Appl. Meteor. and Climatology, 48, 1161–1180.ADSCrossRef Ludwig, F. L., Chow, F. K. & Street, R. L. (2009). Effect of turbulence models and spatial resolution on resolved velocity structure and momentum fluxes in large-eddy simulations of neutral boundary layer flow. J. Appl. Meteor. and Climatology, 48, 1161–1180.ADSCrossRef
go back to reference Lumley, J. L. (1979). Computational modeling of turbulent flows. Advances Appl. Mech., 18, 123–176.MATHCrossRef Lumley, J. L. (1979). Computational modeling of turbulent flows. Advances Appl. Mech., 18, 123–176.MATHCrossRef
go back to reference Marstorp, L., Brethouwer, G., Grundestam, O. & Johansson, A. V. (2009). Explicit algebraic subgrid stress models with application to rotating channel flow. J. Fluid Mech., 639, 403–432.ADSMATHCrossRef Marstorp, L., Brethouwer, G., Grundestam, O. & Johansson, A. V. (2009). Explicit algebraic subgrid stress models with application to rotating channel flow. J. Fluid Mech., 639, 403–432.ADSMATHCrossRef
go back to reference Matheou, G. & Chung, D. (2014). Large-eddy simulation of stratified turbulence. Part II: Application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci., 71, 4439–4460.ADSCrossRef Matheou, G. & Chung, D. (2014). Large-eddy simulation of stratified turbulence. Part II: Application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci., 71, 4439–4460.ADSCrossRef
go back to reference Mellor, G. L. & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophysics, 20, 851–875.ADSCrossRef Mellor, G. L. & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophysics, 20, 851–875.ADSCrossRef
go back to reference Meneveau, C., Lund, T. S. & Cabot, W. H. (1996). A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech., 319, 353–385.ADSMATHCrossRef Meneveau, C., Lund, T. S. & Cabot, W. H. (1996). A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech., 319, 353–385.ADSMATHCrossRef
go back to reference Menter, F. R., Kuntz, M. & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. In K. Hanjalic, Y. Nagano & M. Tummers (Hrsg.), Turbulence, heat and mass transfer, 4 (S. 625-632). (Proc. 4th Int. Symp. Turb., Heat and Mass Trans., Begell House, Inc) Menter, F. R., Kuntz, M. & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. In K. Hanjalic, Y. Nagano & M. Tummers (Hrsg.), Turbulence, heat and mass transfer, 4 (S. 625-632). (Proc. 4th Int. Symp. Turb., Heat and Mass Trans., Begell House, Inc)
go back to reference Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 32, 1598–1605.ADSCrossRef Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 32, 1598–1605.ADSCrossRef
go back to reference Meyers, J., Geurts, B. J. & Sagaut, P. (2007). A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J. Comput. Phys., 227, 156-173.ADSMathSciNetMATHCrossRef Meyers, J., Geurts, B. J. & Sagaut, P. (2007). A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J. Comput. Phys., 227, 156-173.ADSMathSciNetMATHCrossRef
go back to reference Michioka, T. & Chow, F. K. (2008). High-resolution large-eddy simulations of scalar transport in atmospheric boundary layer flow over complex terrain. J. Appl. Meteor. and Climatology, 47, 3150–3169.ADSCrossRef Michioka, T. & Chow, F. K. (2008). High-resolution large-eddy simulations of scalar transport in atmospheric boundary layer flow over complex terrain. J. Appl. Meteor. and Climatology, 47, 3150–3169.ADSCrossRef
go back to reference Moeng, C.-H. & Sullivan, P. P. (2015). Large-eddy simulation. In Encyclop. Atmos. Sci. (2. Aufl., Bd. 4, S. 232–240). Academic Press. Moeng, C.-H. & Sullivan, P. P. (2015). Large-eddy simulation. In Encyclop. Atmos. Sci. (2. Aufl., Bd. 4, S. 232–240). Academic Press.
go back to reference Moser, R. D., Moin, P. & Leonard, A. (1983). A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow. J. Comput. Phys., 52, 524–544.ADSMathSciNetMATHCrossRef Moser, R. D., Moin, P. & Leonard, A. (1983). A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow. J. Comput. Phys., 52, 524–544.ADSMathSciNetMATHCrossRef
go back to reference Orlandi, P. & Leonardi, S. (2008). Direct numerical simulation of three-dimensional turbulent rough channels: parameterization and flow physics. J. Fluid Mech., 606, 399–415.ADSMATHCrossRef Orlandi, P. & Leonardi, S. (2008). Direct numerical simulation of three-dimensional turbulent rough channels: parameterization and flow physics. J. Fluid Mech., 606, 399–415.ADSMATHCrossRef
go back to reference Pal, A., Sarkar, S., Posa, A. & Balaras, E. (2017). Direct numerical simulation of stratified flow past a sphere at a subcritical Reynolds number of 3700 and moderate Froude number. J. Fluid Mech., 826, 5–31.ADSMathSciNetMATHCrossRef Pal, A., Sarkar, S., Posa, A. & Balaras, E. (2017). Direct numerical simulation of stratified flow past a sphere at a subcritical Reynolds number of 3700 and moderate Froude number. J. Fluid Mech., 826, 5–31.ADSMathSciNetMATHCrossRef
go back to reference Patel, V. C., Rodi, W. & Scheuerer, G. (1985). Turbulence models for near-wall and low-Reynolds number flows: a review. AIAA J., 23, 1308–1319.ADSMathSciNetCrossRef Patel, V. C., Rodi, W. & Scheuerer, G. (1985). Turbulence models for near-wall and low-Reynolds number flows: a review. AIAA J., 23, 1308–1319.ADSMathSciNetCrossRef
go back to reference Piomelli, U. (2008). Wall-layer models for large-eddy simulations. Progress in Aerospace Sci., 44, 437-446. Piomelli, U. (2008). Wall-layer models for large-eddy simulations. Progress in Aerospace Sci., 44, 437-446.
go back to reference Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge Univ. Press. Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge Univ. Press.
go back to reference Popovac, M. & Hanjalić, K. (2007). Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow Turb. Combust., 78, 177–202.MATHCrossRef Popovac, M. & Hanjalić, K. (2007). Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow Turb. Combust., 78, 177–202.MATHCrossRef
go back to reference Porté-Agel, F., Meneveau, C. & Parlange, M. B. (2000). A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech., 415, 261–284.ADSMathSciNetMATHCrossRef Porté-Agel, F., Meneveau, C. & Parlange, M. B. (2000). A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech., 415, 261–284.ADSMathSciNetMATHCrossRef
go back to reference Rasam, A., Brethouwer, G. & Johansson, A. V. (2013). An explicit algebraic model for the subgrid-scale passive scalar flux. J. Fluid Mech., 721, 541–577.ADSMathSciNetMATHCrossRef Rasam, A., Brethouwer, G. & Johansson, A. V. (2013). An explicit algebraic model for the subgrid-scale passive scalar flux. J. Fluid Mech., 721, 541–577.ADSMathSciNetMATHCrossRef
go back to reference Reichardt, H. (1951). Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. Angew. Math. Mech., 31, 208–219.MATHCrossRef Reichardt, H. (1951). Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. Angew. Math. Mech., 31, 208–219.MATHCrossRef
go back to reference Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. London, Ser. A, 186, 123–164. Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. London, Ser. A, 186, 123–164.
go back to reference Rider, W. J. (2007). Effective subgrid modeling from the ILES simulation of compressible turbulence. J. Fluids Engrg., 129, 1493–1496.CrossRef Rider, W. J. (2007). Effective subgrid modeling from the ILES simulation of compressible turbulence. J. Fluids Engrg., 129, 1493–1496.CrossRef
go back to reference Rodi, W., Constantinescu, G. & Stoesser, T. (2013). Large-eddy simulation in hydraulics. London: Taylor & Francis.CrossRef Rodi, W., Constantinescu, G. & Stoesser, T. (2013). Large-eddy simulation in hydraulics. London: Taylor & Francis.CrossRef
go back to reference Rogallo, R. S. (1981). Numerical experiments in homogeneous turbulence (Bericht Nr. 81315). Ames Research Center, CA: NASA. Rogallo, R. S. (1981). Numerical experiments in homogeneous turbulence (Bericht Nr. 81315). Ames Research Center, CA: NASA.
go back to reference Sagaut, P. (2006). Large-eddy simulation for incompressible flows: An introduction (3. Aufl.). Berlin: Springer.MATH Sagaut, P. (2006). Large-eddy simulation for incompressible flows: An introduction (3. Aufl.). Berlin: Springer.MATH
go back to reference Schlatter, P. & Örlü, R. (2010). Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech., 659, 116–126.ADSMATHCrossRef Schlatter, P. & Örlü, R. (2010). Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech., 659, 116–126.ADSMATHCrossRef
go back to reference Seidl, V., Muzaferija, S. & Peric, M. (1998). Parallel DNS with local grid refinement. App. Sci. Res., 59, 379-394.MATHCrossRef Seidl, V., Muzaferija, S. & Peric, M. (1998). Parallel DNS with local grid refinement. App. Sci. Res., 59, 379-394.MATHCrossRef
go back to reference Shah, K. B. & Ferziger, J. H. (1995). Large-eddy simulations of flow past a cubic obstacle. In Ann. Research Briefs. Stanford, CA:Center for Turbulence Research. Shah, K. B. & Ferziger, J. H. (1995). Large-eddy simulations of flow past a cubic obstacle. In Ann. Research Briefs. Stanford, CA:Center for Turbulence Research.
go back to reference Shah, K. B. & Ferziger, J. H. (1997). A fluid mechanicians view of wind engineering: Large-eddy simulation of flow over a cubical obstacle. J. Wind Engrg. Industrial Aerodyn., 67 & 68, 211–224. Shah, K. B. & Ferziger, J. H. (1997). A fluid mechanicians view of wind engineering: Large-eddy simulation of flow over a cubical obstacle. J. Wind Engrg. Industrial Aerodyn., 67 & 68, 211–224.
go back to reference Shi, X., Hagen, H. L., Chow, F. K., Bryan, G. H. & Street, R. L. (2018a). Large-eddy simulation of the stratocumulus-capped boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 75, 611–637.ADSCrossRef Shi, X., Hagen, H. L., Chow, F. K., Bryan, G. H. & Street, R. L. (2018a). Large-eddy simulation of the stratocumulus-capped boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 75, 611–637.ADSCrossRef
go back to reference Shi, X., Chow, F. K., Street, R. L. & Bryan, G. H. (2018b). An evaluation of LES turbulence models for scalar mixing in the stratocumulus-capped boundary layer. J. Atmos. Sci., 75, 1499–1507.ADSCrossRef Shi, X., Chow, F. K., Street, R. L. & Bryan, G. H. (2018b). An evaluation of LES turbulence models for scalar mixing in the stratocumulus-capped boundary layer. J. Atmos. Sci., 75, 1499–1507.ADSCrossRef
go back to reference Shih, T. H. & Liu, N. S. (2009). A very-large-eddy simulation of the nonreacting flow in a singleelement lean direct injection combustor using PRNS with a nonlinear subscale model (Bericht Nr. 2009-21564). Cleveland, OH: NASA Glenn Research Center. Shih, T. H. & Liu, N. S. (2009). A very-large-eddy simulation of the nonreacting flow in a singleelement lean direct injection combustor using PRNS with a nonlinear subscale model (Bericht Nr. 2009-21564). Cleveland, OH: NASA Glenn Research Center.
go back to reference Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Part I: The basic experiment. Monthly Weather Rev., 91, 99–164.ADSCrossRef Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Part I: The basic experiment. Monthly Weather Rev., 91, 99–164.ADSCrossRef
go back to reference Smits, A. J. & Marusic, I. (2013). Wall-bounded turbulence. Physics Today, 66, 25–30.CrossRef Smits, A. J. & Marusic, I. (2013). Wall-bounded turbulence. Physics Today, 66, 25–30.CrossRef
go back to reference Smits, A. J., McKeon, B. J. & Marusic, I. (2011). High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech., 43, 353–375.ADSMATHCrossRef Smits, A. J., McKeon, B. J. & Marusic, I. (2011). High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech., 43, 353–375.ADSMATHCrossRef
go back to reference Smolarkiewicz, P. K. & Margolin, L. G. (2007). Studies in geophysics. In F. Grinstein, L. Margolin & W. Rider (Hrsg.), Implicit large-eddy simulation: Computing turbulent fluid dynamics (Kap. 14). Cambridge: Cambridge U. Press. Smolarkiewicz, P. K. & Margolin, L. G. (2007). Studies in geophysics. In F. Grinstein, L. Margolin & W. Rider (Hrsg.), Implicit large-eddy simulation: Computing turbulent fluid dynamics (Kap. 14). Cambridge: Cambridge U. Press.
go back to reference Smolarkiewicz, P. K. & Prusa, J. M. (2002). VLES modelling of geophysical fluids with nonoscillatory forward-in-time schemes. Int. J. Numer. Methods Fluids, 39, 799–819.ADSMathSciNetMATHCrossRef Smolarkiewicz, P. K. & Prusa, J. M. (2002). VLES modelling of geophysical fluids with nonoscillatory forward-in-time schemes. Int. J. Numer. Methods Fluids, 39, 799–819.ADSMathSciNetMATHCrossRef
go back to reference Spalart, P. R. & Allmaras, S. R. (1994). A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1, 5–21. Spalart, P. R. & Allmaras, S. R. (1994). A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1, 5–21.
go back to reference Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K. & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn., 20, 181–195.MATHCrossRef Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K. & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn., 20, 181–195.MATHCrossRef
go back to reference Sta. Maria, M. & Jacobson, M. (2009). Investigating the effect of large wind farms on the energy in the atmosphere. Energies, 2, 816–838. Sta. Maria, M. & Jacobson, M. (2009). Investigating the effect of large wind farms on the energy in the atmosphere. Energies, 2, 816–838.
go back to reference Stoll, R. & Porté-Agel, F. (2006). Effect of roughness on surface boundary conditions for large-eddy simulation. Boundary-Layer Meteorol., 118, 169–187.ADSCrossRef Stoll, R. & Porté-Agel, F. (2006). Effect of roughness on surface boundary conditions for large-eddy simulation. Boundary-Layer Meteorol., 118, 169–187.ADSCrossRef
go back to reference Stoll, R. & Porté-Agel, F. (2008). Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Boundary-Layer Meteorol., 126, 1–28.ADSCrossRef Stoll, R. & Porté-Agel, F. (2008). Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Boundary-Layer Meteorol., 126, 1–28.ADSCrossRef
go back to reference Stolz, S., Adams, N. A. & Kleiser, L. (2001). An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids., 13, 997–1015.ADSMATHCrossRef Stolz, S., Adams, N. A. & Kleiser, L. (2001). An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids., 13, 997–1015.ADSMATHCrossRef
go back to reference Sullivan, P. P. & Patton, E. G. (2011). The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 2395–2415.ADSCrossRef Sullivan, P. P. & Patton, E. G. (2011). The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 2395–2415.ADSCrossRef
go back to reference Sullivan, P. P., Horst, T. W., Lenschow, D. H., Moeng, C. H. & J.C., W. (2003). Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech. 482, 101–139. Sullivan, P. P., Horst, T. W., Lenschow, D. H., Moeng, C. H. & J.C., W. (2003). Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech. 482, 101–139.
go back to reference Taneda, S. (1978). Visual observations of the flow past a sphere at Reynolds numbers between 10\(^4\) and 10\(^6\). J. Fluid Mech., 85, 187–192.ADSCrossRef Taneda, S. (1978). Visual observations of the flow past a sphere at Reynolds numbers between 10\(^4\) and 10\(^6\). J. Fluid Mech., 85, 187–192.ADSCrossRef
go back to reference Tennekes, H. & Lumley, J. L. (1976). A first course in turbulence. Cambridge, MA: MIT Press.MATH Tennekes, H. & Lumley, J. L. (1976). A first course in turbulence. Cambridge, MA: MIT Press.MATH
go back to reference Viswanathan, A. K., Squires, K. D. & Forsythe, J. R. (2008). Detached-eddy simulation around a forebody with rotary motion. AIAA J., 46, 2191–2201.ADSCrossRef Viswanathan, A. K., Squires, K. D. & Forsythe, J. R. (2008). Detached-eddy simulation around a forebody with rotary motion. AIAA J., 46, 2191–2201.ADSCrossRef
go back to reference Wallin, S. & Johansson, A. V. (2000). An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech., 403, 89–132.ADSMathSciNetMATHCrossRef Wallin, S. & Johansson, A. V. (2000). An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech., 403, 89–132.ADSMathSciNetMATHCrossRef
go back to reference Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A. & Janicka, J. (2004). Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat and Fluid Flow, 25, 528–536.CrossRef Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A. & Janicka, J. (2004). Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat and Fluid Flow, 25, 528–536.CrossRef
go back to reference Wikstrom, P. M., Wallin, S. & Johansson, A. V. (2000). Derivation and investigation of a new explicit algebraic model for the passive scalar flux. Physics of Fluids, 12, 688–702.ADSMATHCrossRef Wikstrom, P. M., Wallin, S. & Johansson, A. V. (2000). Derivation and investigation of a new explicit algebraic model for the passive scalar flux. Physics of Fluids, 12, 688–702.ADSMATHCrossRef
go back to reference Wilcox, D. C. (2006). Turbulence modeling for CFD (3. Aufl.). La Cañada, CA: DCW Industries, Inc. Wilcox, D. C. (2006). Turbulence modeling for CFD (3. Aufl.). La Cañada, CA: DCW Industries, Inc.
go back to reference Wong, V. C. & Lilly, D. K. (1994). A comparison of two dynamic subgrid closure methods for turbulent thermal convection. Phys. Fluids, 6, 1016–1023.ADSMATHCrossRef Wong, V. C. & Lilly, D. K. (1994). A comparison of two dynamic subgrid closure methods for turbulent thermal convection. Phys. Fluids, 6, 1016–1023.ADSMATHCrossRef
go back to reference Wosnik, M., Castillo, L. & George, W. K. (2000). A theory for turbulent pipe and channel flows. J. Fluid Mech., 412, 115–145.ADSMATHCrossRef Wosnik, M., Castillo, L. & George, W. K. (2000). A theory for turbulent pipe and channel flows. J. Fluid Mech., 412, 115–145.ADSMATHCrossRef
go back to reference Wu, X. & Moin, P. (2011). Evidence for the persistence of hairpin forest in turbulent, zero-pressuregradient flat-plate boundary layers. In 7th int. symp. on turbulence and shear flow phenom. (TSFP-7), Paper 6A4P. Ottawa, Canada. Wu, X. & Moin, P. (2011). Evidence for the persistence of hairpin forest in turbulent, zero-pressuregradient flat-plate boundary layers. In 7th int. symp. on turbulence and shear flow phenom. (TSFP-7), Paper 6A4P. Ottawa, Canada.
go back to reference Wu, X. & Moin, P. (2009). Direct numerical simulation of turbulence in a nominally zero-pressuregradient flat-plate boundary layer. J. Fluid Mech., 630, 5–41.ADSMathSciNetMATHCrossRef Wu, X. & Moin, P. (2009). Direct numerical simulation of turbulence in a nominally zero-pressuregradient flat-plate boundary layer. J. Fluid Mech., 630, 5–41.ADSMathSciNetMATHCrossRef
go back to reference Wyngaard, J. C. (2004). Toward numerical modeling in the „Terra Incognita“. J. Atmos. Sci., 61, 1816–1826.ADSCrossRef Wyngaard, J. C. (2004). Toward numerical modeling in the „Terra Incognita“. J. Atmos. Sci., 61, 1816–1826.ADSCrossRef
go back to reference Xue, M. (2000). High-order monotonic numerical diffusion and smoothing. Mon. Weather Rev., 128, 2853-2864.ADSCrossRef Xue, M. (2000). High-order monotonic numerical diffusion and smoothing. Mon. Weather Rev., 128, 2853-2864.ADSCrossRef
go back to reference Xue, M., Drogemeier, K. K. & Wong, V. (2000). The advanced regional prediction system (ARPS) – a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol. Atmos. Phys., 75, 161-193.ADSCrossRef Xue, M., Drogemeier, K. K. & Wong, V. (2000). The advanced regional prediction system (ARPS) – a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol. Atmos. Phys., 75, 161-193.ADSCrossRef
go back to reference Ye, T., Mittal, R., Udaykumar, H. S. & Shyy, W. (1999). An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys., 156, 209–240.ADSMathSciNetMATHCrossRef Ye, T., Mittal, R., Udaykumar, H. S. & Shyy, W. (1999). An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys., 156, 209–240.ADSMathSciNetMATHCrossRef
go back to reference Zang, Y., Street, R. L. & Koseff, J. R. (1993). A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A, 5, 3186–3196.ADSMATHCrossRef Zang, Y., Street, R. L. & Koseff, J. R. (1993). A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A, 5, 3186–3196.ADSMATHCrossRef
go back to reference Zhou, B. & Chow, F. K. (2011). Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci. 68, 2142–2155.ADSCrossRef Zhou, B. & Chow, F. K. (2011). Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci. 68, 2142–2155.ADSCrossRef
Metadata
Title
Turbulente Strömungen
Authors
Joel H. Ferziger
Milovan Perić
Robert L. Street
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46544-8_10

Premium Partner