Skip to main content
Top
Published in: Quantum Information Processing 11/2016

01-11-2016

Two-photon phase gate with linear optical elements and atom–cavity system

Authors: Yi-Hao Kang, Yan Xia, Pei-Min Lu

Published in: Quantum Information Processing | Issue 11/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a protocol for implementing \(\pi \) phase gate of two photons with linear optical elements and an atom–cavity system. The evolution of the atom–cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A., Zhiliba, A.I.: Can the states of the W-class be suitable for teleportation. Phys. Lett. A 314, 267 (2003)ADSMathSciNetCrossRefMATH Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A., Zhiliba, A.I.: Can the states of the W-class be suitable for teleportation. Phys. Lett. A 314, 267 (2003)ADSMathSciNetCrossRefMATH
2.
go back to reference Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATH Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATH
3.
go back to reference Liu, X.S., Long, G.L., Tong, D.M., Feng, L.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)ADSCrossRef Liu, X.S., Long, G.L., Tong, D.M., Feng, L.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)ADSCrossRef
4.
go back to reference Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSCrossRef Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSCrossRef
5.
go back to reference Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459 (2006)ADSCrossRef Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459 (2006)ADSCrossRef
6.
go back to reference Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)ADSCrossRef Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)ADSCrossRef
7.
go back to reference Shor, P.W.: Algorithms for quantum computing: discrete log and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, vol. 124. IEEE Computer Society Press, Los Alamitos, CA (1994) Shor, P.W.: Algorithms for quantum computing: discrete log and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, vol. 124. IEEE Computer Society Press, Los Alamitos, CA (1994)
8.
go back to reference Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)MathSciNetCrossRefMATH Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)MathSciNetCrossRefMATH
9.
go back to reference Xu, H., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)ADSCrossRef Xu, H., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)ADSCrossRef
10.
go back to reference Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRef Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRef
12.
go back to reference DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)ADSCrossRef DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)ADSCrossRef
13.
go back to reference Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)ADSMathSciNetCrossRefMATH Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)ADSMathSciNetCrossRefMATH
14.
go back to reference Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)ADSMathSciNetCrossRefMATH Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)ADSMathSciNetCrossRefMATH
15.
go back to reference Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2004)ADSCrossRef Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2004)ADSCrossRef
16.
go back to reference Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344 (1998)ADSCrossRef Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344 (1998)ADSCrossRef
17.
go back to reference Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941 (2004)ADSCrossRef Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941 (2004)ADSCrossRef
18.
go back to reference Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)ADSCrossRef Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)ADSCrossRef
19.
go back to reference Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSCrossRef Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSCrossRef
20.
go back to reference Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRef Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRef
21.
go back to reference Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 212 (2014) Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 212 (2014)
22.
go back to reference Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 2241 (2013) Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 2241 (2013)
23.
go back to reference Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRef Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRef
24.
go back to reference Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRef Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRef
25.
go back to reference Wu, H.Z., Yang, Z.B., Zheng, S.B.: Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade. Phys. Rev. A 82, 034307 (2010)ADSCrossRef Wu, H.Z., Yang, Z.B., Zheng, S.B.: Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade. Phys. Rev. A 82, 034307 (2010)ADSCrossRef
26.
go back to reference Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)ADSCrossRef Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)ADSCrossRef
27.
go back to reference Chudzicki, C., Chuang, I.L., Shapiro, J.H.: Deterministic and cascadable conditional phase gate for photonic qubits. Phys. Rev. A 87, 042325 (2013)ADSCrossRef Chudzicki, C., Chuang, I.L., Shapiro, J.H.: Deterministic and cascadable conditional phase gate for photonic qubits. Phys. Rev. A 87, 042325 (2013)ADSCrossRef
29.
go back to reference Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)ADSCrossRef Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)ADSCrossRef
30.
go back to reference McKeever, J., Buck, J.R., Boozer, A.D., Kuzmich, A., Nägerl, H.C., Stamper-Kurn, D.M., Kimble, H.J.: State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003)ADSCrossRef McKeever, J., Buck, J.R., Boozer, A.D., Kuzmich, A., Nägerl, H.C., Stamper-Kurn, D.M., Kimble, H.J.: State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003)ADSCrossRef
31.
go back to reference Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005)ADSCrossRef Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005)ADSCrossRef
32.
go back to reference Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295 (1990)ADSCrossRef Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295 (1990)ADSCrossRef
35.
go back to reference Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys. Conf. Ser. 196, 012017 (2009)ADSCrossRefMATH Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys. Conf. Ser. 196, 012017 (2009)ADSCrossRefMATH
36.
go back to reference Facchi, P., Pascazio, S., Scardicchio, A., Schulman, L.S.: Zeno dynamics yields ordinary constraints. Phys. Rev. A 65, 012108 (2001)ADSCrossRef Facchi, P., Pascazio, S., Scardicchio, A., Schulman, L.S.: Zeno dynamics yields ordinary constraints. Phys. Rev. A 65, 012108 (2001)ADSCrossRef
37.
go back to reference Facchi, P., Pascazioand, S.: Quantum Zeno and inverse quantum Zeno effects, chap.3. In: Wolf, E. (ed.) Progress in Optics, vol. 42, p. 147. Elsevier, Amsterdam (2001) Facchi, P., Pascazioand, S.: Quantum Zeno and inverse quantum Zeno effects, chap.3. In: Wolf, E. (ed.) Progress in Optics, vol. 42, p. 147. Elsevier, Amsterdam (2001)
38.
go back to reference Li, W.A., Huang, G.Y.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322 (2011)ADSCrossRef Li, W.A., Huang, G.Y.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322 (2011)ADSCrossRef
39.
go back to reference Chen, Y.H., Xia, Y., Song, J.: Deterministic generation of singlet states for N-atoms in coupled cavities via quantum Zeno dynamics. Quantum Inf. Process. 13, 1857 (2014)ADSMathSciNetCrossRefMATH Chen, Y.H., Xia, Y., Song, J.: Deterministic generation of singlet states for N-atoms in coupled cavities via quantum Zeno dynamics. Quantum Inf. Process. 13, 1857 (2014)ADSMathSciNetCrossRefMATH
40.
go back to reference Luis, A.: Quantum-state preparation and control via the Zeno effect. Phys. Rev. A 63, 052112 (2001)ADSCrossRef Luis, A.: Quantum-state preparation and control via the Zeno effect. Phys. Rev. A 63, 052112 (2001)ADSCrossRef
41.
go back to reference Shao, X.Q., Chen, L., Zhang, S., Yeon, K.H.: Fast CNOT gate via quantum Zeno dynamics. J. Phys. B At. Mol. Opt. Phys. 42, 165507 (2009)ADSCrossRef Shao, X.Q., Chen, L., Zhang, S., Yeon, K.H.: Fast CNOT gate via quantum Zeno dynamics. J. Phys. B At. Mol. Opt. Phys. 42, 165507 (2009)ADSCrossRef
43.
go back to reference Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)ADSCrossRef Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)ADSCrossRef
44.
go back to reference Sheng, Y.B., Deng, F.G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81, 042332 (2010)ADSCrossRef Sheng, Y.B., Deng, F.G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81, 042332 (2010)ADSCrossRef
45.
go back to reference Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)ADSCrossRef Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)ADSCrossRef
46.
go back to reference Kang, Y.H., Xia, Y., Lu, P.M.: Efficient preparation of Greenberger–Horne–Zeilinger state and W state of atoms with the help of the controlled phase flip gates in quantum nodes connected by collective-noise channels. J. Mod. Opt. 62, 449 (2015)ADSMathSciNetCrossRef Kang, Y.H., Xia, Y., Lu, P.M.: Efficient preparation of Greenberger–Horne–Zeilinger state and W state of atoms with the help of the controlled phase flip gates in quantum nodes connected by collective-noise channels. J. Mod. Opt. 62, 449 (2015)ADSMathSciNetCrossRef
47.
go back to reference Spillane, S.M., Kippenberg, T.J., Vahala, K.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)ADSCrossRef Spillane, S.M., Kippenberg, T.J., Vahala, K.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)ADSCrossRef
48.
go back to reference Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)CrossRef Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)CrossRef
49.
go back to reference Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)ADSCrossRef Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)ADSCrossRef
50.
go back to reference Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287 (1985)ADSCrossRef Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287 (1985)ADSCrossRef
51.
go back to reference Zou, X.B., Zhang, S.L., Li, K., Guo, G.C.: Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors. Phys. Rev. A 75, 034302 (2007)ADSCrossRef Zou, X.B., Zhang, S.L., Li, K., Guo, G.C.: Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors. Phys. Rev. A 75, 034302 (2007)ADSCrossRef
52.
go back to reference Song, J., Xia, Y., Song, H.S., Guo, J.L., Nie, J.: Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities. Euro. Phys. Lett. 80, 60001 (2007) Song, J., Xia, Y., Song, H.S., Guo, J.L., Nie, J.: Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities. Euro. Phys. Lett. 80, 60001 (2007)
53.
go back to reference Eibl, M., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)ADSCrossRef Eibl, M., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)ADSCrossRef
54.
go back to reference Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)ADSCrossRef Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)ADSCrossRef
55.
go back to reference Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)ADSCrossRef Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)ADSCrossRef
56.
go back to reference Mikami, H., Li, Y., Kobayashi, T.: Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion. Phys. Rev. A 70, 052308 (2004)ADSCrossRef Mikami, H., Li, Y., Kobayashi, T.: Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion. Phys. Rev. A 70, 052308 (2004)ADSCrossRef
57.
go back to reference Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)ADSCrossRef Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)ADSCrossRef
58.
go back to reference Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)ADSCrossRef Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)ADSCrossRef
59.
go back to reference Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)ADSMathSciNetCrossRef Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)ADSMathSciNetCrossRef
60.
go back to reference Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 044305 (2012) Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 044305 (2012)
61.
go back to reference Ota, Y., Ashhab, S., Nori, F.: Implementing general measurements on linear optical and solid-state qubits. Phys. Rev. A 85, 043808 (2012)ADSCrossRef Ota, Y., Ashhab, S., Nori, F.: Implementing general measurements on linear optical and solid-state qubits. Phys. Rev. A 85, 043808 (2012)ADSCrossRef
Metadata
Title
Two-photon phase gate with linear optical elements and atom–cavity system
Authors
Yi-Hao Kang
Yan Xia
Pei-Min Lu
Publication date
01-11-2016
Publisher
Springer US
Published in
Quantum Information Processing / Issue 11/2016
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1429-2

Other articles of this Issue 11/2016

Quantum Information Processing 11/2016 Go to the issue