Skip to main content
Top
Published in: Journal of Materials Science 3/2018

16-10-2017 | Ceramics

Ultrasonic disintegration of tungsten trioxide pseudomorphs after ammonium paratungstate as a route for stable aqueous sols of nanocrystalline WO3

Authors: T. O. Shekunova, A. E. Baranchikov, A. D. Yapryntsev, P. G. Rudakovskaya, O. S. Ivanova, Yu. A. Karavanova, M. A. Kalinina, M. N. Rumyantseva, S. G. Dorofeev, V. K. Ivanov

Published in: Journal of Materials Science | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new facile method is proposed for the preparation of aqueous sols of highly crystalline tungsten trioxide with a particle size of 60–150 nm, containing no organic stabilizers/surfactants. These sols possess high sedimentation stability, which is quite unusual for inorganic colloidal systems containing relatively large particles, with a rather high density (ρ c(WO3) = 7.3 g/cm3). The method is based on the thermal decomposition of ammonium paratungstate, followed by dispersing the resulting powders in water under ultrasonic treatment. Thermal decomposition of ammonium paratungstate, and the composition and structure of the resulting tungsten trioxide and its aqueous dispersions, were investigated with thermal analysis combined with the mass spectrometry of gaseous thermolysis products, powder X-ray diffraction, scanning electron microscopy, low-temperature nitrogen adsorption, IR spectroscopy and dynamic light scattering. It has been demonstrated that the high sedimentation stability of WO3 results from electrostatic stabilization, which might be caused by the formation of tungstic acid on the surface of WO3 particles when they come into contact with water. The nanocrystalline WO3 obtained can be used to produce gas sensors for ammonia.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-Zadeh K (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Funct Mater 21:2175–2196CrossRef Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-Zadeh K (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Funct Mater 21:2175–2196CrossRef
2.
go back to reference Michalak F, Rault L, Aldebert P (1992) Electrochromism with colloidal WO3 and IrO2. Opt Mater Technol Energy Eff Sol Energy Convers XI Chromogenics Smart Windows 1728:278–288 Michalak F, Rault L, Aldebert P (1992) Electrochromism with colloidal WO3 and IrO2. Opt Mater Technol Energy Eff Sol Energy Convers XI Chromogenics Smart Windows 1728:278–288
3.
go back to reference He T, Yao J (2007) Photochromic materials based on tungsten oxide. J Mater Chem 17:4547–4557CrossRef He T, Yao J (2007) Photochromic materials based on tungsten oxide. J Mater Chem 17:4547–4557CrossRef
4.
go back to reference Bedja I, Hotchandani S, Kamat PV (1993) Photoelectrochemistry of quantized tungsten trioxide colloids: electron storage, electrochromic, and photoelectrochromic effects. J Phys Chem 97:11064–11070CrossRef Bedja I, Hotchandani S, Kamat PV (1993) Photoelectrochemistry of quantized tungsten trioxide colloids: electron storage, electrochromic, and photoelectrochromic effects. J Phys Chem 97:11064–11070CrossRef
5.
go back to reference Kalhori H, Ranjbar M, Salamati H, Coey JMD (2016) Flower-like nanostructures of WO3: fabrication and characterization of their in-liquid gasochromic effect. Sens Actuators B 225:535–543CrossRef Kalhori H, Ranjbar M, Salamati H, Coey JMD (2016) Flower-like nanostructures of WO3: fabrication and characterization of their in-liquid gasochromic effect. Sens Actuators B 225:535–543CrossRef
6.
go back to reference Kamat PV, Vinodgopal K (1996) Sonochromic effect in WO3 colloidal suspensions. Langmuir 12:5739–5741CrossRef Kamat PV, Vinodgopal K (1996) Sonochromic effect in WO3 colloidal suspensions. Langmuir 12:5739–5741CrossRef
7.
go back to reference Yamazaki S, Yamate T, Adachi K (2013) Photocatalytic activity of aqueous WO3 sol for the degradation of orange II and 4-chlorophenol. Appl Catal A 454:30–36CrossRef Yamazaki S, Yamate T, Adachi K (2013) Photocatalytic activity of aqueous WO3 sol for the degradation of orange II and 4-chlorophenol. Appl Catal A 454:30–36CrossRef
8.
go back to reference Takeuchi M, Shimizu Y, Yamagawa H, Nakamuro T, Anpo M (2011) Preparation of the visible light responsive N3–doped WO3 photocatalyst by a thermal decomposition of ammonium paratungstate. Appl Catal B 110:1–5CrossRef Takeuchi M, Shimizu Y, Yamagawa H, Nakamuro T, Anpo M (2011) Preparation of the visible light responsive N3–doped WO3 photocatalyst by a thermal decomposition of ammonium paratungstate. Appl Catal B 110:1–5CrossRef
9.
go back to reference Szilágyi IM, Fórizs B, Rosseler O, Szegedi Á, Németh P, Király P, Tárkányi G, Vajna B, Varga-Josepovits K, László K, Tóth AL, Baranyai P, Leskelä M (2012) WO3 photocatalysts: influence of structure and composition. J Catal 294:119–127CrossRef Szilágyi IM, Fórizs B, Rosseler O, Szegedi Á, Németh P, Király P, Tárkányi G, Vajna B, Varga-Josepovits K, László K, Tóth AL, Baranyai P, Leskelä M (2012) WO3 photocatalysts: influence of structure and composition. J Catal 294:119–127CrossRef
10.
go back to reference Nandiyanto ABD, Arutanti O, Ogi T, Iskandar F, Kim TO, Okuyama K (2013) Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chem Eng Sci 101:523–532CrossRef Nandiyanto ABD, Arutanti O, Ogi T, Iskandar F, Kim TO, Okuyama K (2013) Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chem Eng Sci 101:523–532CrossRef
11.
go back to reference Alexander BD, Kulesza P, Rutkowska I, Solarska R, Augustynski J (2008) Metal oxide photoanodes for solar hydrogen production. J Mater Chem 18:2298–2303CrossRef Alexander BD, Kulesza P, Rutkowska I, Solarska R, Augustynski J (2008) Metal oxide photoanodes for solar hydrogen production. J Mater Chem 18:2298–2303CrossRef
12.
go back to reference Mansour SAA, Mohamed MA, Zaki MI (1988) Thermal decomposition and the creation of reactive solid surfaces. V. The genesis course of the WO3 catalyst from its ammonium paratungstate precursor. Thermochim Acta 129:187–196CrossRef Mansour SAA, Mohamed MA, Zaki MI (1988) Thermal decomposition and the creation of reactive solid surfaces. V. The genesis course of the WO3 catalyst from its ammonium paratungstate precursor. Thermochim Acta 129:187–196CrossRef
13.
go back to reference Ross JRH (2012) Heterogeneous catalysis. Fundamentals and applications. Elsevier, Amsterdam Ross JRH (2012) Heterogeneous catalysis. Fundamentals and applications. Elsevier, Amsterdam
14.
go back to reference Siciliano T, Tepore A, Micocci G, Serra A, Manno D, Filippo E (2008) WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuators B 133:321–326CrossRef Siciliano T, Tepore A, Micocci G, Serra A, Manno D, Filippo E (2008) WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuators B 133:321–326CrossRef
15.
go back to reference Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B 192:607–627CrossRef Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B 192:607–627CrossRef
16.
go back to reference Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B 160:580–591CrossRef Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B 160:580–591CrossRef
17.
go back to reference Long H, Zeng W, Zhang H (2015) Synthesis of WO3 and its gas sensing: a review. J Mater Sci Mater Electron 26:4698–4707CrossRef Long H, Zeng W, Zhang H (2015) Synthesis of WO3 and its gas sensing: a review. J Mater Sci Mater Electron 26:4698–4707CrossRef
18.
go back to reference Sawada S (1956) Thermal and electrical properties of tungsten oxide (WO3). J Phys Soc Jpn 11:1237–1246CrossRef Sawada S (1956) Thermal and electrical properties of tungsten oxide (WO3). J Phys Soc Jpn 11:1237–1246CrossRef
19.
go back to reference Tilley RJD (1995) The crystal chemistry of the higher tungsten oxides. Int J Refract Met Hard Mater 13:93–109CrossRef Tilley RJD (1995) The crystal chemistry of the higher tungsten oxides. Int J Refract Met Hard Mater 13:93–109CrossRef
20.
go back to reference Bartha L, Kiss AB, Szalay T (1995) Chemistry of tungsten oxide bronzes. Int J Refract Met Hard Mater 13:77–91CrossRef Bartha L, Kiss AB, Szalay T (1995) Chemistry of tungsten oxide bronzes. Int J Refract Met Hard Mater 13:77–91CrossRef
21.
go back to reference Vogt T, Woodward PM, Hunter BA (1999) The high-temperature phases of WO3. J Solid State Chem 144:209–215CrossRef Vogt T, Woodward PM, Hunter BA (1999) The high-temperature phases of WO3. J Solid State Chem 144:209–215CrossRef
22.
go back to reference Boulova M, Lucazeau G (2002) Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy. J Solid State Chem 167:425–434CrossRef Boulova M, Lucazeau G (2002) Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy. J Solid State Chem 167:425–434CrossRef
23.
go back to reference Vaddiraju S, Chandrasekaran H, Sunkara MK (2003) Vapor phase synthesis of tungsten nanowires. J Am Chem Soc 125:10792–10793CrossRef Vaddiraju S, Chandrasekaran H, Sunkara MK (2003) Vapor phase synthesis of tungsten nanowires. J Am Chem Soc 125:10792–10793CrossRef
24.
go back to reference Soultanidis N, Zhou W, Kiely CJ, Wong MS (2012) Solvothermal synthesis of ultrasmall tungsten oxide nanoparticles. Langmuir 28:17771–17777CrossRef Soultanidis N, Zhou W, Kiely CJ, Wong MS (2012) Solvothermal synthesis of ultrasmall tungsten oxide nanoparticles. Langmuir 28:17771–17777CrossRef
25.
go back to reference Choi HG, Jung YH, Kim DK (2005) Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Ceram Soc 88:1684–1686CrossRef Choi HG, Jung YH, Kim DK (2005) Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Ceram Soc 88:1684–1686CrossRef
26.
go back to reference Koltypin Y, Nikitenko SI, Gedanken A (2002) The sonochemical preparation of tungsten oxide nanoparticles. J Mater Chem 12:1107–1110CrossRef Koltypin Y, Nikitenko SI, Gedanken A (2002) The sonochemical preparation of tungsten oxide nanoparticles. J Mater Chem 12:1107–1110CrossRef
27.
go back to reference Contado C, Argazzi R (2011) Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO3 colloids for photoelectrochemical uses. J Chromatogr A 1218:4179–4187CrossRef Contado C, Argazzi R (2011) Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO3 colloids for photoelectrochemical uses. J Chromatogr A 1218:4179–4187CrossRef
28.
go back to reference Nenadovic MT, Rajh T, Micic OI, Nozik AJ (1984) Electron transfer reactions and flat-band potentials of tungsten(VI) oxide colloids. J Phys Chem 88:5827–5830CrossRef Nenadovic MT, Rajh T, Micic OI, Nozik AJ (1984) Electron transfer reactions and flat-band potentials of tungsten(VI) oxide colloids. J Phys Chem 88:5827–5830CrossRef
29.
go back to reference Sheng T, Chavvakula PP, Cao B, Yue N, Zhang Y, Zhang H (2014) Growth of ultra-long sodium tungsten oxide and tungsten oxide nanowires: effects of impurity and residue deposition. J Cryst Growth 395:61–67CrossRef Sheng T, Chavvakula PP, Cao B, Yue N, Zhang Y, Zhang H (2014) Growth of ultra-long sodium tungsten oxide and tungsten oxide nanowires: effects of impurity and residue deposition. J Cryst Growth 395:61–67CrossRef
30.
go back to reference Iwu KO, Galeckas A, Rauwel P, Kuznetsov AY, Norby T (2012) “One-dimensional WO3 and its hydrate: one-step synthesis, structural and spectroscopic characterization. J Solid State Chem 185:245–252CrossRef Iwu KO, Galeckas A, Rauwel P, Kuznetsov AY, Norby T (2012) “One-dimensional WO3 and its hydrate: one-step synthesis, structural and spectroscopic characterization. J Solid State Chem 185:245–252CrossRef
31.
go back to reference Zhang H, Duan G, Li Y, Xu X, Dai Z, Cai W (2012) Leaf-like tungsten oxide nanoplatelets induced by laser ablation in liquid and subsequent aging. Cryst Growth Des 12:2646–2652CrossRef Zhang H, Duan G, Li Y, Xu X, Dai Z, Cai W (2012) Leaf-like tungsten oxide nanoplatelets induced by laser ablation in liquid and subsequent aging. Cryst Growth Des 12:2646–2652CrossRef
32.
go back to reference Petrícek V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Krist 229:345–352 Petrícek V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Krist 229:345–352
33.
go back to reference Saltykov SA (1976) Stereometricheskaya metallographiya (Stereometric metallography). Metallurgiya: Moscow, Russia. (In Russian) Saltykov SA (1976) Stereometricheskaya metallographiya (Stereometric metallography). Metallurgiya: Moscow, Russia. (In Russian)
34.
go back to reference Vander Voort GF (1984) Metallography: principles and practice. ASM International, New York Vander Voort GF (1984) Metallography: principles and practice. ASM International, New York
35.
go back to reference van Put JW, Verkroost TW, Sonneveld EJ (1990) X-ray powder diffraction data and unit cells of ammonium paratungstate tetrahydrate. Powder Diffr 5:167–169CrossRef van Put JW, Verkroost TW, Sonneveld EJ (1990) X-ray powder diffraction data and unit cells of ammonium paratungstate tetrahydrate. Powder Diffr 5:167–169CrossRef
36.
go back to reference Fait MJG, Lunk HJ, Feist M, Schneider M, Dann JN, Frisk TA (2008) Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions. Characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochim Acta 469:12–22CrossRef Fait MJG, Lunk HJ, Feist M, Schneider M, Dann JN, Frisk TA (2008) Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions. Characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochim Acta 469:12–22CrossRef
37.
go back to reference Fait MJG, Moukhina E, Feist M, Lunk HJ (2016) Thermal decomposition of ammonium paratungstate tetrahydrate: new insights by a combined thermal and kinetic analysis. Thermochim Acta 637:38–50CrossRef Fait MJG, Moukhina E, Feist M, Lunk HJ (2016) Thermal decomposition of ammonium paratungstate tetrahydrate: new insights by a combined thermal and kinetic analysis. Thermochim Acta 637:38–50CrossRef
38.
go back to reference French GJ, Sale FR (1981) A re-investigation of the thermal decomposition of ammonium paratungstate. J Mater Sci 16:3427–3436CrossRef French GJ, Sale FR (1981) A re-investigation of the thermal decomposition of ammonium paratungstate. J Mater Sci 16:3427–3436CrossRef
39.
go back to reference Kalpakli AO, Arabaci A, Kahruman C, Yusufoglu I (2013) Thermal decomposition of ammonium paratungstate hydrate in air and inert gas atmospheres. Int J Refract Met Hard Mater 37:106–116CrossRef Kalpakli AO, Arabaci A, Kahruman C, Yusufoglu I (2013) Thermal decomposition of ammonium paratungstate hydrate in air and inert gas atmospheres. Int J Refract Met Hard Mater 37:106–116CrossRef
40.
go back to reference van Put JW (1995) Crystallisation and processing of ammonium paratungstate (APT). Int J Refract Met Hard Mater 13:61–76CrossRef van Put JW (1995) Crystallisation and processing of ammonium paratungstate (APT). Int J Refract Met Hard Mater 13:61–76CrossRef
41.
go back to reference Howard CJ, Stokes HT (2005) Structures and phase transitions in perovskites—a group-theoretical approach. Acta Cryst. A A61:93–111CrossRef Howard CJ, Stokes HT (2005) Structures and phase transitions in perovskites—a group-theoretical approach. Acta Cryst. A A61:93–111CrossRef
42.
go back to reference Sawada S (1010) Thermal and electrical properties and crystal structure of tungsten oxide at high temperatures. Phys Rev 1953:91 Sawada S (1010) Thermal and electrical properties and crystal structure of tungsten oxide at high temperatures. Phys Rev 1953:91
43.
go back to reference Leute V (1966) Das Wolframtrioxid und seine Reaktion mit den Oxiden zweiwertiger Metalle. Z Phys Chem 48:307–318CrossRef Leute V (1966) Das Wolframtrioxid und seine Reaktion mit den Oxiden zweiwertiger Metalle. Z Phys Chem 48:307–318CrossRef
44.
45.
go back to reference Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Min Mag 66:689–708CrossRef Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Min Mag 66:689–708CrossRef
46.
go back to reference Rodriguez-Navarro C, Kudlacz K, Ruiz-Agudo E (2012) The mechanism of thermal decomposition of dolomite: new insights from 2D-XRD and TEM analyses. Am Mineral 97:38–51CrossRef Rodriguez-Navarro C, Kudlacz K, Ruiz-Agudo E (2012) The mechanism of thermal decomposition of dolomite: new insights from 2D-XRD and TEM analyses. Am Mineral 97:38–51CrossRef
47.
go back to reference Shukla AK, Ercius P, Gautam ARS, Cabana J, Dahmen U (2014) Electron tomography analysis of reaction path during formation of nanoporous NiO by solid state decomposition. Cryst Growth Des 14:2453–2459CrossRef Shukla AK, Ercius P, Gautam ARS, Cabana J, Dahmen U (2014) Electron tomography analysis of reaction path during formation of nanoporous NiO by solid state decomposition. Cryst Growth Des 14:2453–2459CrossRef
48.
go back to reference Zaikovskii VI, Plyasova LM, Ziborov AV, Prudnikova OY, Yur’eva TM (1991) The thermal decomposition of zinc hydroxocarbonate. J Struct Chem 31:692–697CrossRef Zaikovskii VI, Plyasova LM, Ziborov AV, Prudnikova OY, Yur’eva TM (1991) The thermal decomposition of zinc hydroxocarbonate. J Struct Chem 31:692–697CrossRef
49.
go back to reference Diehl R, Brandt G, Salje E (1978) The crystal structure of triclinic WO3. Acta Crystallogr Sect B 34:1105–1111CrossRef Diehl R, Brandt G, Salje E (1978) The crystal structure of triclinic WO3. Acta Crystallogr Sect B 34:1105–1111CrossRef
50.
go back to reference Woodward PM, Sleight AW, Vogt T (1995) Structure refinement of triclinic tungsten trioxide. J Phys Chem Solids 56:1305–1315CrossRef Woodward PM, Sleight AW, Vogt T (1995) Structure refinement of triclinic tungsten trioxide. J Phys Chem Solids 56:1305–1315CrossRef
51.
go back to reference Bevan DJM, Shelton JP, Anderson JS (1948) 351. Properties of some simple oxides and spinels at high temperatures. J Chem Soc 56:1305–1315 Bevan DJM, Shelton JP, Anderson JS (1948) 351. Properties of some simple oxides and spinels at high temperatures. J Chem Soc 56:1305–1315
52.
go back to reference Merkle R, Maier J (2005) On the Tammann-rule. Z Anorg Allg Chemie 631:1163–1166CrossRef Merkle R, Maier J (2005) On the Tammann-rule. Z Anorg Allg Chemie 631:1163–1166CrossRef
53.
go back to reference Perrin D (1969) Dissociation constants of inorganic acids and bases in aqueous solution. Pure Appl Chem 20:133–236CrossRef Perrin D (1969) Dissociation constants of inorganic acids and bases in aqueous solution. Pure Appl Chem 20:133–236CrossRef
54.
go back to reference Cruywagen JJ (2000) Protonation, oligomerization, and condensation reactions of vanadate(V), molybdate(VI), and tungstate (VI). Adv Inorg Chem 49:127–182CrossRef Cruywagen JJ (2000) Protonation, oligomerization, and condensation reactions of vanadate(V), molybdate(VI), and tungstate (VI). Adv Inorg Chem 49:127–182CrossRef
55.
go back to reference Nakagawa I, Shimanouchi T (1964) Infrared absorption spectra of aquo complexes and the nature of co-ordination bonds. Spectrochim Acta 20:429–439CrossRef Nakagawa I, Shimanouchi T (1964) Infrared absorption spectra of aquo complexes and the nature of co-ordination bonds. Spectrochim Acta 20:429–439CrossRef
56.
go back to reference Kung MC, Kung HH (1985) IR studies of NH3, pyridine, CO, and NO adsorbed on transition metal oxides. Catal Rev 27:425–460CrossRef Kung MC, Kung HH (1985) IR studies of NH3, pyridine, CO, and NO adsorbed on transition metal oxides. Catal Rev 27:425–460CrossRef
57.
go back to reference Rout CS, Hegde M, Govindaraj A, Rao CNR (2007) Ammonia sensors based on metal oxide nanostructures. Nanotechnology 18:205504CrossRef Rout CS, Hegde M, Govindaraj A, Rao CNR (2007) Ammonia sensors based on metal oxide nanostructures. Nanotechnology 18:205504CrossRef
58.
go back to reference Gurlo A, Sahm M, Oprea A, Barsan N, Weimar U (2004) A p- to n-transition on α-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens Actuators B 102:291–298CrossRef Gurlo A, Sahm M, Oprea A, Barsan N, Weimar U (2004) A p- to n-transition on α-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens Actuators B 102:291–298CrossRef
59.
go back to reference Wu Y-Q, Hu M, Wei X-Y (2014) A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor. Chin Phys B. 23:40704CrossRef Wu Y-Q, Hu M, Wei X-Y (2014) A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor. Chin Phys B. 23:40704CrossRef
Metadata
Title
Ultrasonic disintegration of tungsten trioxide pseudomorphs after ammonium paratungstate as a route for stable aqueous sols of nanocrystalline WO3
Authors
T. O. Shekunova
A. E. Baranchikov
A. D. Yapryntsev
P. G. Rudakovskaya
O. S. Ivanova
Yu. A. Karavanova
M. A. Kalinina
M. N. Rumyantseva
S. G. Dorofeev
V. K. Ivanov
Publication date
16-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 3/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1668-3

Other articles of this Issue 3/2018

Journal of Materials Science 3/2018 Go to the issue

Premium Partners