Skip to main content
Top

2019 | OriginalPaper | Chapter

Unbalance Vibration Compensation Control Using Deep Network for Rotor System with Active Magnetic Bearings

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Unbalance vibration directly affects the operational precision, stability and life of rotary machinery. Profiting from the active control speciality of active magnetic bearing (AMB), unbalance vibration of rotor system with AMBs can be compensated and controlled automatically. This paper considers unbalance vibration minimum for rotor system with AMBs. Deep learning theory is utilized to design a compensation controller, which is added to the PID feedback control. The structure of the compensation controller is established by a deep neural network with 2 hidden layers, and its operation algorithms are designed. Model of a 4-DOF rigid rotor with AMBs is established for controller parameter setting and simulation. The unbalance vibration control of different controllers at fixed rotational speed is simulated, and the control effects of the proposed controller are demonstrated via unbalance vibration analysis and control current analysis. This research provides a new adaptive control approach for AMB control of unbalance minimum compensation, and it can also be applied in other multi-dimension vibration control.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schweitzer, G., Maslen, E.H.: Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer, Berlin (2009) Schweitzer, G., Maslen, E.H.: Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer, Berlin (2009)
2.
go back to reference Chen, Q., Liu, G., Han, B.: Unbalance vibration suppression for AMBs system using adaptive notch filter. Mech. Syst. Signal Process. 93, 136–150 (2017)CrossRef Chen, Q., Liu, G., Han, B.: Unbalance vibration suppression for AMBs system using adaptive notch filter. Mech. Syst. Signal Process. 93, 136–150 (2017)CrossRef
3.
go back to reference Hui, C., Shi, L., Wang, J., Yu, S.: Adaptive unbalance vibration control of active magnetic bearing systems for the HTR-10GT. In: International Conference on Nuclear Engineering, pp. 793–801. ASME, Xi’an (2010) Hui, C., Shi, L., Wang, J., Yu, S.: Adaptive unbalance vibration control of active magnetic bearing systems for the HTR-10GT. In: International Conference on Nuclear Engineering, pp. 793–801. ASME, Xi’an (2010)
4.
go back to reference He, Y., Shi, L., Shi, Z., Sun, Z.: Unbalance compensation of a full scale test rig designed for HTR-10GT: a frequency-domain approach based on iterative learning control. Science and Technology and Nuclear Installations, pp. 1–15 (2017) He, Y., Shi, L., Shi, Z., Sun, Z.: Unbalance compensation of a full scale test rig designed for HTR-10GT: a frequency-domain approach based on iterative learning control. Science and Technology and Nuclear Installations, pp. 1–15 (2017)
5.
go back to reference Tung, P.C., Tsai, M.T., Chen, K.Y., Fan, Y.H., Chou, F.C.: Design of model-based unbalance compensator with fuzzy gain tuning mechanism for an active magnetic bearing system. Expert Syst. Appl. 38(10), 12861–12868 (2011)CrossRef Tung, P.C., Tsai, M.T., Chen, K.Y., Fan, Y.H., Chou, F.C.: Design of model-based unbalance compensator with fuzzy gain tuning mechanism for an active magnetic bearing system. Expert Syst. Appl. 38(10), 12861–12868 (2011)CrossRef
6.
go back to reference Kuseyri, İ.S.: Robust control and unbalance compensation of rotor/active magnetic bearing systems. J. Vib. Control 18(6), 817–832 (2012)MathSciNetCrossRef Kuseyri, İ.S.: Robust control and unbalance compensation of rotor/active magnetic bearing systems. J. Vib. Control 18(6), 817–832 (2012)MathSciNetCrossRef
7.
go back to reference Fang, J., Xu, X., Xie, J.: Active vibration control of rotor imbalance in active magnetic bearing systems. J. Vib. Control 21(4), 684–700 (2013)CrossRef Fang, J., Xu, X., Xie, J.: Active vibration control of rotor imbalance in active magnetic bearing systems. J. Vib. Control 21(4), 684–700 (2013)CrossRef
8.
go back to reference Okubo, S., Nakamura, Y., Wakui, S.: Unbalance vibration control for active magnetic bearing using automatic balancing system and peak-of-gain control. In: IEEE International Conference on Mechatronics, vol. 307, pp. 105–110. IEEE, Vicenza (2013) Okubo, S., Nakamura, Y., Wakui, S.: Unbalance vibration control for active magnetic bearing using automatic balancing system and peak-of-gain control. In: IEEE International Conference on Mechatronics, vol. 307, pp. 105–110. IEEE, Vicenza (2013)
9.
go back to reference Heindel, S., Becker, F., Rinderknecht, S.: Unbalance and resonance elimination with active bearings on a Jeffcott rotor. Mech. Syst. Signal Process. 85, 339–353 (2017)CrossRef Heindel, S., Becker, F., Rinderknecht, S.: Unbalance and resonance elimination with active bearings on a Jeffcott rotor. Mech. Syst. Signal Process. 85, 339–353 (2017)CrossRef
10.
go back to reference Qiao, X., Hu, G.: Active control for multinode unbalanced vibration of flexible spindle rotor system with active magnetic bearing. Shock Vib. 12, 1–9 (2017)MathSciNet Qiao, X., Hu, G.: Active control for multinode unbalanced vibration of flexible spindle rotor system with active magnetic bearing. Shock Vib. 12, 1–9 (2017)MathSciNet
11.
go back to reference Saito, D., Waku, S.: Trial of applying unbalance vibration compensator to axial position of the rotor with active magnetic bearings. J. Jpn. Soc. Precis. Eng. 84(2), 210–208 (2018)CrossRef Saito, D., Waku, S.: Trial of applying unbalance vibration compensator to axial position of the rotor with active magnetic bearings. J. Jpn. Soc. Precis. Eng. 84(2), 210–208 (2018)CrossRef
12.
go back to reference Cui, P.L., Zhao, G.Z., Fang, J.C., Li, H.T.: Adaptive control of unbalance vibration for magnetic bearings based on phase-shift notch filter within the whole frequency range. J. Vib. Shock 34(20), 16–20 (2015) Cui, P.L., Zhao, G.Z., Fang, J.C., Li, H.T.: Adaptive control of unbalance vibration for magnetic bearings based on phase-shift notch filter within the whole frequency range. J. Vib. Shock 34(20), 16–20 (2015)
13.
go back to reference Jiang, K., Zhu, C., Chen, L.: Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system. IEEE Trans. Ind. Electron. 62(9), 5655–5664 (2015)CrossRef Jiang, K., Zhu, C., Chen, L.: Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system. IEEE Trans. Ind. Electron. 62(9), 5655–5664 (2015)CrossRef
14.
go back to reference Paul, M., Hofmann, W., Steffani, H.F.: Compensation for unbalances with aid of neural networks. In: Proceedings of the Sixth International Symposium on Magnetic Bearings, pp. 693–701. Massachussetts Institute of Technology (MIT), Cambridge MA (1998) Paul, M., Hofmann, W., Steffani, H.F.: Compensation for unbalances with aid of neural networks. In: Proceedings of the Sixth International Symposium on Magnetic Bearings, pp. 693–701. Massachussetts Institute of Technology (MIT), Cambridge MA (1998)
15.
go back to reference Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
16.
go back to reference Punjani, A., Abbeel, P.: Deep learning helicopter dynamics models. In: IEEE International Conference on Robotics and Automation, pp. 3223–3230. IEEE, Seattle (2015) Punjani, A., Abbeel, P.: Deep learning helicopter dynamics models. In: IEEE International Conference on Robotics and Automation, pp. 3223–3230. IEEE, Seattle (2015)
17.
go back to reference Hung, J.Y.: Magnetic bearing control using fuzzy logic. IEEE Trans. Ind. Appl. 31(6), 1492–1497 (1995)CrossRef Hung, J.Y.: Magnetic bearing control using fuzzy logic. IEEE Trans. Ind. Appl. 31(6), 1492–1497 (1995)CrossRef
18.
go back to reference Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 26, pp. 8609–8613. IEEE, Vancouver (2013) Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 26, pp. 8609–8613. IEEE, Vancouver (2013)
19.
go back to reference Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)CrossRef Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)CrossRef
20.
go back to reference Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
Metadata
Title
Unbalance Vibration Compensation Control Using Deep Network for Rotor System with Active Magnetic Bearings
Authors
Xuan Yao
Zhaobo Chen
Yinghou Jiao
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-99262-4_6

Premium Partners