Skip to main content

2019 | OriginalPaper | Buchkapitel

Unbalance Vibration Compensation Control Using Deep Network for Rotor System with Active Magnetic Bearings

verfasst von : Xuan Yao, Zhaobo Chen, Yinghou Jiao

Erschienen in: Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unbalance vibration directly affects the operational precision, stability and life of rotary machinery. Profiting from the active control speciality of active magnetic bearing (AMB), unbalance vibration of rotor system with AMBs can be compensated and controlled automatically. This paper considers unbalance vibration minimum for rotor system with AMBs. Deep learning theory is utilized to design a compensation controller, which is added to the PID feedback control. The structure of the compensation controller is established by a deep neural network with 2 hidden layers, and its operation algorithms are designed. Model of a 4-DOF rigid rotor with AMBs is established for controller parameter setting and simulation. The unbalance vibration control of different controllers at fixed rotational speed is simulated, and the control effects of the proposed controller are demonstrated via unbalance vibration analysis and control current analysis. This research provides a new adaptive control approach for AMB control of unbalance minimum compensation, and it can also be applied in other multi-dimension vibration control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schweitzer, G., Maslen, E.H.: Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer, Berlin (2009) Schweitzer, G., Maslen, E.H.: Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer, Berlin (2009)
2.
Zurück zum Zitat Chen, Q., Liu, G., Han, B.: Unbalance vibration suppression for AMBs system using adaptive notch filter. Mech. Syst. Signal Process. 93, 136–150 (2017)CrossRef Chen, Q., Liu, G., Han, B.: Unbalance vibration suppression for AMBs system using adaptive notch filter. Mech. Syst. Signal Process. 93, 136–150 (2017)CrossRef
3.
Zurück zum Zitat Hui, C., Shi, L., Wang, J., Yu, S.: Adaptive unbalance vibration control of active magnetic bearing systems for the HTR-10GT. In: International Conference on Nuclear Engineering, pp. 793–801. ASME, Xi’an (2010) Hui, C., Shi, L., Wang, J., Yu, S.: Adaptive unbalance vibration control of active magnetic bearing systems for the HTR-10GT. In: International Conference on Nuclear Engineering, pp. 793–801. ASME, Xi’an (2010)
4.
Zurück zum Zitat He, Y., Shi, L., Shi, Z., Sun, Z.: Unbalance compensation of a full scale test rig designed for HTR-10GT: a frequency-domain approach based on iterative learning control. Science and Technology and Nuclear Installations, pp. 1–15 (2017) He, Y., Shi, L., Shi, Z., Sun, Z.: Unbalance compensation of a full scale test rig designed for HTR-10GT: a frequency-domain approach based on iterative learning control. Science and Technology and Nuclear Installations, pp. 1–15 (2017)
5.
Zurück zum Zitat Tung, P.C., Tsai, M.T., Chen, K.Y., Fan, Y.H., Chou, F.C.: Design of model-based unbalance compensator with fuzzy gain tuning mechanism for an active magnetic bearing system. Expert Syst. Appl. 38(10), 12861–12868 (2011)CrossRef Tung, P.C., Tsai, M.T., Chen, K.Y., Fan, Y.H., Chou, F.C.: Design of model-based unbalance compensator with fuzzy gain tuning mechanism for an active magnetic bearing system. Expert Syst. Appl. 38(10), 12861–12868 (2011)CrossRef
6.
Zurück zum Zitat Kuseyri, İ.S.: Robust control and unbalance compensation of rotor/active magnetic bearing systems. J. Vib. Control 18(6), 817–832 (2012)MathSciNetCrossRef Kuseyri, İ.S.: Robust control and unbalance compensation of rotor/active magnetic bearing systems. J. Vib. Control 18(6), 817–832 (2012)MathSciNetCrossRef
7.
Zurück zum Zitat Fang, J., Xu, X., Xie, J.: Active vibration control of rotor imbalance in active magnetic bearing systems. J. Vib. Control 21(4), 684–700 (2013)CrossRef Fang, J., Xu, X., Xie, J.: Active vibration control of rotor imbalance in active magnetic bearing systems. J. Vib. Control 21(4), 684–700 (2013)CrossRef
8.
Zurück zum Zitat Okubo, S., Nakamura, Y., Wakui, S.: Unbalance vibration control for active magnetic bearing using automatic balancing system and peak-of-gain control. In: IEEE International Conference on Mechatronics, vol. 307, pp. 105–110. IEEE, Vicenza (2013) Okubo, S., Nakamura, Y., Wakui, S.: Unbalance vibration control for active magnetic bearing using automatic balancing system and peak-of-gain control. In: IEEE International Conference on Mechatronics, vol. 307, pp. 105–110. IEEE, Vicenza (2013)
9.
Zurück zum Zitat Heindel, S., Becker, F., Rinderknecht, S.: Unbalance and resonance elimination with active bearings on a Jeffcott rotor. Mech. Syst. Signal Process. 85, 339–353 (2017)CrossRef Heindel, S., Becker, F., Rinderknecht, S.: Unbalance and resonance elimination with active bearings on a Jeffcott rotor. Mech. Syst. Signal Process. 85, 339–353 (2017)CrossRef
10.
Zurück zum Zitat Qiao, X., Hu, G.: Active control for multinode unbalanced vibration of flexible spindle rotor system with active magnetic bearing. Shock Vib. 12, 1–9 (2017)MathSciNet Qiao, X., Hu, G.: Active control for multinode unbalanced vibration of flexible spindle rotor system with active magnetic bearing. Shock Vib. 12, 1–9 (2017)MathSciNet
11.
Zurück zum Zitat Saito, D., Waku, S.: Trial of applying unbalance vibration compensator to axial position of the rotor with active magnetic bearings. J. Jpn. Soc. Precis. Eng. 84(2), 210–208 (2018)CrossRef Saito, D., Waku, S.: Trial of applying unbalance vibration compensator to axial position of the rotor with active magnetic bearings. J. Jpn. Soc. Precis. Eng. 84(2), 210–208 (2018)CrossRef
12.
Zurück zum Zitat Cui, P.L., Zhao, G.Z., Fang, J.C., Li, H.T.: Adaptive control of unbalance vibration for magnetic bearings based on phase-shift notch filter within the whole frequency range. J. Vib. Shock 34(20), 16–20 (2015) Cui, P.L., Zhao, G.Z., Fang, J.C., Li, H.T.: Adaptive control of unbalance vibration for magnetic bearings based on phase-shift notch filter within the whole frequency range. J. Vib. Shock 34(20), 16–20 (2015)
13.
Zurück zum Zitat Jiang, K., Zhu, C., Chen, L.: Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system. IEEE Trans. Ind. Electron. 62(9), 5655–5664 (2015)CrossRef Jiang, K., Zhu, C., Chen, L.: Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system. IEEE Trans. Ind. Electron. 62(9), 5655–5664 (2015)CrossRef
14.
Zurück zum Zitat Paul, M., Hofmann, W., Steffani, H.F.: Compensation for unbalances with aid of neural networks. In: Proceedings of the Sixth International Symposium on Magnetic Bearings, pp. 693–701. Massachussetts Institute of Technology (MIT), Cambridge MA (1998) Paul, M., Hofmann, W., Steffani, H.F.: Compensation for unbalances with aid of neural networks. In: Proceedings of the Sixth International Symposium on Magnetic Bearings, pp. 693–701. Massachussetts Institute of Technology (MIT), Cambridge MA (1998)
15.
Zurück zum Zitat Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
16.
Zurück zum Zitat Punjani, A., Abbeel, P.: Deep learning helicopter dynamics models. In: IEEE International Conference on Robotics and Automation, pp. 3223–3230. IEEE, Seattle (2015) Punjani, A., Abbeel, P.: Deep learning helicopter dynamics models. In: IEEE International Conference on Robotics and Automation, pp. 3223–3230. IEEE, Seattle (2015)
17.
Zurück zum Zitat Hung, J.Y.: Magnetic bearing control using fuzzy logic. IEEE Trans. Ind. Appl. 31(6), 1492–1497 (1995)CrossRef Hung, J.Y.: Magnetic bearing control using fuzzy logic. IEEE Trans. Ind. Appl. 31(6), 1492–1497 (1995)CrossRef
18.
Zurück zum Zitat Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 26, pp. 8609–8613. IEEE, Vancouver (2013) Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 26, pp. 8609–8613. IEEE, Vancouver (2013)
19.
Zurück zum Zitat Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)CrossRef Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)CrossRef
20.
Zurück zum Zitat Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
Metadaten
Titel
Unbalance Vibration Compensation Control Using Deep Network for Rotor System with Active Magnetic Bearings
verfasst von
Xuan Yao
Zhaobo Chen
Yinghou Jiao
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-99262-4_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.