Skip to main content
Top

2021 | OriginalPaper | Chapter

3. Uncertain Power from a Hydro-Kinetic Turbine in Steady Flow

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter examines the influence of uncertainty in bed friction on hydro-kinetic power extracted from steady flow through a strait represented by a one-dimensional open channel in the stream-wise direction. The flow is driven by a constant head difference between the channel ends. First, an analytic closed-form solution for the power in terms of bed roughness coefficient \(C_d\) from a steady one-dimensional model is derived. Next, three methods for the propagation of uncertainty from bed friction to power estimates are compared.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
An \( m \times m\) system of partial differential equations of the form of a conservation law \(\partial _t \mathbf {q} + \partial _x \mathbf {f} = \mathbf {s}\) may be classified by considering the quasi-linear form \(\partial _t \mathbf {q} + \mathbf {A} \partial _x \mathbf {q} = \mathbf {s}\). Here \(\mathbf {A}\) is the Jacobian matrix \(\mathbf {A} = \partial _{\mathbf {q}} \mathbf {f}\), with eigenvalues \(\lambda _i\), \(i=1, 2, \ldots , m\). A \(2 \times 2\) system with two distinct and real eigenvalues is strictly hyperbolic and has two linearly independent eigenvectors defining the characteristics of the system (see [16]).
 
Literature
1.
go back to reference Bryden IG, Grinsted T, Melville GT (2004) Assessing the potential of a simple tidal channel to deliver useful energy. Appl Ocean Res 26(5):198–204CrossRef Bryden IG, Grinsted T, Melville GT (2004) Assessing the potential of a simple tidal channel to deliver useful energy. Appl Ocean Res 26(5):198–204CrossRef
2.
go back to reference Cao B (2015) Tidal stream power from an array of devices. Bachelor’s thesis, University of Edinburgh, United Kingdom Cao B (2015) Tidal stream power from an array of devices. Bachelor’s thesis, University of Edinburgh, United Kingdom
3.
go back to reference Fraccarollo L, Toro EF (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J Hydraul Res 33(6):843–864CrossRef Fraccarollo L, Toro EF (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J Hydraul Res 33(6):843–864CrossRef
4.
5.
go back to reference Godunov SK (1959) РазностыЙ метод численного расчета разрывных решениЙ уравнениЙ гидродинамики A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat Sb 47(3):271–306 Godunov SK (1959) РазностыЙ   метод  численного  расчета  разрывных  решениЙ  уравнениЙ  гидродинамики  A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat Sb 47(3):271–306
6.
go back to reference Goutal N, Maurel F (1997) Proceedings of the 2\(^{\text{nd}}\) workshop on dam-break wave simulation. Technical Report HE-43/97/016/B, Electricité de France, Direction des études et recherches Goutal N, Maurel F (1997) Proceedings of the 2\(^{\text{nd}}\) workshop on dam-break wave simulation. Technical Report HE-43/97/016/B, Electricité de France, Direction des études et recherches
7.
go back to reference Hammer F (2018) Tidal power resource assessment for a tidal strait. Master’s thesis, University of Edinburgh, United Kingdom Hammer F (2018) Tidal power resource assessment for a tidal strait. Master’s thesis, University of Edinburgh, United Kingdom
8.
go back to reference Hirsch C (2007) Numerical computation of internal and external flows. Butterworth-Heinemann Hirsch C (2007) Numerical computation of internal and external flows. Butterworth-Heinemann
9.
go back to reference Liang Q, Borthwick AGL (2009) Adaptive quadtree simulation of shallow flows with wet - dry fronts over complex topography. Comput Fluids 38(2):221–234MathSciNetCrossRef Liang Q, Borthwick AGL (2009) Adaptive quadtree simulation of shallow flows with wet - dry fronts over complex topography. Comput Fluids 38(2):221–234MathSciNetCrossRef
10.
go back to reference MATLAB (2018) version 9.3 (R2017b). The MathWorks Inc., Natick, Massachusetts MATLAB (2018) version 9.3 (R2017b). The MathWorks Inc., Natick, Massachusetts
11.
go back to reference Papoulis A (1991) Probability, random variables, and stochastic processes. McGraw-Hill, New YorkMATH Papoulis A (1991) Probability, random variables, and stochastic processes. McGraw-Hill, New YorkMATH
12.
go back to reference Rogers BD, Borthwick AGL, Taylor PH (2003) Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J Comput Phys 192(2):422–451MathSciNetCrossRef Rogers BD, Borthwick AGL, Taylor PH (2003) Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J Comput Phys 192(2):422–451MathSciNetCrossRef
13.
go back to reference Rogers BD, Fujihara M, Borthwick AGL (2001) Adaptive Q-tree Godunov-type scheme for shallow water equations. Int J Numer Methods Fluids 35:247–280CrossRef Rogers BD, Fujihara M, Borthwick AGL (2001) Adaptive Q-tree Godunov-type scheme for shallow water equations. Int J Numer Methods Fluids 35:247–280CrossRef
14.
go back to reference Toro EF (1992) Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Philos Trans Phys Sci Eng 338(1649):43–68MathSciNetMATH Toro EF (1992) Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Philos Trans Phys Sci Eng 338(1649):43–68MathSciNetMATH
15.
go back to reference Toro EF (2001) Shock-capturing methods for free-surface shallow flows. Wiley Toro EF (2001) Shock-capturing methods for free-surface shallow flows. Wiley
16.
go back to reference Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer, Berlin HeidelbergCrossRef Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer, Berlin HeidelbergCrossRef
17.
go back to reference Toro EF, Spruce M, Speares W (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4:25–34CrossRef Toro EF, Spruce M, Speares W (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4:25–34CrossRef
18.
go back to reference Ying X, Wang S (2008) Improved implementation of the HLL approximate Riemann solver for one-dimensional open channel flows. J Hydraul Res 46(1):21–34MathSciNetCrossRef Ying X, Wang S (2008) Improved implementation of the HLL approximate Riemann solver for one-dimensional open channel flows. J Hydraul Res 46(1):21–34MathSciNetCrossRef
Metadata
Title
Uncertain Power from a Hydro-Kinetic Turbine in Steady Flow
Author
Monika Johanna Kreitmair
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-57658-5_3