Skip to main content
Top
Published in: Numerical Algorithms 4/2021

08-05-2020 | Original Paper

Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrödinger-Helmholtz equations

Authors: Yun-Bo Yang, Yao-Lin Jiang

Published in: Numerical Algorithms | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we establish unconditionally optimal error estimates for linearized backward Euler Galerkin finite element methods (FEMs) applied to nonlinear Schrödinger-Helmholtz equations. By using the temporal-spatial error splitting techniques, we split the error between the exact solution and the numerical solution into two parts which are called the temporal error and the spatial error. First, by introducing a time-discrete system, we prove the uniform boundedness for the solution of this time-discrete system in some strong norms and derive error estimates in temporal direction. Second, by the above achievements, we obtain the boundedness of the numerical solution in \(L^{\infty }\)-norm. Then, the optimal L2 error estimates for r-order FEMs are derived without any restriction on the time step size. Numerical results in both two- and three-dimensional spaces are provided to illustrate the theoretical predictions and demonstrate the efficiency of the methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adams, R.A., Fournier, J.J.: Sobolev Spaces. Academic press, New York (2003)MATH Adams, R.A., Fournier, J.J.: Sobolev Spaces. Academic press, New York (2003)MATH
2.
go back to reference Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)MathSciNetMATH Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)MathSciNetMATH
3.
go back to reference Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)MathSciNetMATH Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)MathSciNetMATH
4.
go back to reference Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)MathSciNetMATH Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)MathSciNetMATH
5.
go back to reference Bao, W., Mauser, N.J., Stimming, H.P.: Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger-Poisson-Xα model. Commun. Math. Sci. 1, 809–828 (2003)MathSciNetMATH Bao, W., Mauser, N.J., Stimming, H.P.: Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger-Poisson-Xα model. Commun. Math. Sci. 1, 809–828 (2003)MathSciNetMATH
6.
go back to reference Berezin, F.A., Shubin, M.A.: The Schrödinger Equation. Kluwer Academic Publishers, Dordrecht (1991)MATH Berezin, F.A., Shubin, M.A.: The Schrödinger Equation. Kluwer Academic Publishers, Dordrecht (1991)MATH
7.
go back to reference Bohun, S., Illner, R., Lange, H., Zweifel, P.F.: Error estimates for Galerkin approximations to the periodic Schrödinger-Poisson system. Z.MM Z. Angew. Math. Mech. 76, 7–13 (1996)MATH Bohun, S., Illner, R., Lange, H., Zweifel, P.F.: Error estimates for Galerkin approximations to the periodic Schrödinger-Poisson system. Z.MM Z. Angew. Math. Mech. 76, 7–13 (1996)MATH
8.
go back to reference Borz, A., Decker, E.: Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation. J. Comput. Appl. Math. 193, 65–88 (2006)MathSciNetMATH Borz, A., Decker, E.: Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation. J. Comput. Appl. Math. 193, 65–88 (2006)MathSciNetMATH
9.
go back to reference Bratsos, A.G.: A modified numerical scheme for the cubic Schrödinger equation. Numer. Methods Part Differ. Equ. 27, 608–620 (2011)MathSciNetMATH Bratsos, A.G.: A modified numerical scheme for the cubic Schrödinger equation. Numer. Methods Part Differ. Equ. 27, 608–620 (2011)MathSciNetMATH
10.
go back to reference Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)MATH Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)MATH
11.
go back to reference Cao, Y., Musslimani, Z.H., Titi, E.S.: Nonlinear Schrödinger-Helmholtz equation as numercal regularization of the nonlinear Schrödinger equation. Nonlinearity 21, 879–898 (2008)MathSciNetMATH Cao, Y., Musslimani, Z.H., Titi, E.S.: Nonlinear Schrödinger-Helmholtz equation as numercal regularization of the nonlinear Schrödinger equation. Nonlinearity 21, 879–898 (2008)MathSciNetMATH
12.
go back to reference Dehghan, M., Taleei, A.: Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method. Numer. Methods Part DifferNumer. Methods Part Differ. Equ. 26, 979–990 (2010)MATH Dehghan, M., Taleei, A.: Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method. Numer. Methods Part DifferNumer. Methods Part Differ. Equ. 26, 979–990 (2010)MATH
13.
go back to reference Douglas, J.J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)MathSciNetMATH Douglas, J.J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)MathSciNetMATH
14.
go back to reference Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)MathSciNetMATH Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)MathSciNetMATH
15.
go back to reference Evans, L.C.: Partial Differential Equations, 2nd edn. AMS, Providence (2010)MATH Evans, L.C.: Partial Differential Equations, 2nd edn. AMS, Providence (2010)MATH
16.
go back to reference Gao, H.: Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 52, 2574–2593 (2014)MathSciNetMATH Gao, H.: Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 52, 2574–2593 (2014)MathSciNetMATH
17.
go back to reference Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM J. Numer. Anal. 52, 1183–1202 (2014)MathSciNetMATH Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM J. Numer. Anal. 52, 1183–1202 (2014)MathSciNetMATH
18.
go back to reference Harrison, R., Moroz, I., Tod, K.P.: A numerical study of the Schrödinger-Newton equations. Nonlinearity 16, 101–122 (2003)MathSciNetMATH Harrison, R., Moroz, I., Tod, K.P.: A numerical study of the Schrödinger-Newton equations. Nonlinearity 16, 101–122 (2003)MathSciNetMATH
19.
go back to reference Hou, Y., Li, B., Sun, W.: Error estimates of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)MathSciNetMATH Hou, Y., Li, B., Sun, W.: Error estimates of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)MathSciNetMATH
21.
go back to reference Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for the second order time discretization. SIAM J. Numer. Anal. 2, 353–384 (1990)MATH Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for the second order time discretization. SIAM J. Numer. Anal. 2, 353–384 (1990)MATH
22.
go back to reference Leo, M.D., Rial, D.: Well posedness and smoothing effect of Schrödinger-Poisson equation. J. Math. Phys. 48, 093509 (2007)MathSciNetMATH Leo, M.D., Rial, D.: Well posedness and smoothing effect of Schrödinger-Poisson equation. J. Math. Phys. 48, 093509 (2007)MathSciNetMATH
23.
go back to reference Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Inter. J. Numer. Anal. Model. 10, 622–633 (2013)MathSciNetMATH Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Inter. J. Numer. Anal. Model. 10, 622–633 (2013)MathSciNetMATH
24.
go back to reference Li, B.: Mathematical Modeling, Analysis and Computation for Some Complex and Nonlinear Flow Problems. PhD Thesis. City University of Hong Kong, Hong Kong (2012) Li, B.: Mathematical Modeling, Analysis and Computation for Some Complex and Nonlinear Flow Problems. PhD Thesis. City University of Hong Kong, Hong Kong (2012)
25.
go back to reference Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)MathSciNetMATH Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)MathSciNetMATH
26.
go back to reference Li, B., Gao, H., Sun, W.W.: Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)MathSciNetMATH Li, B., Gao, H., Sun, W.W.: Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)MathSciNetMATH
27.
go back to reference Lu, T., Cai, W.: A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials. J. Comput. Appl. Math. 220, 588–614 (2008)MathSciNetMATH Lu, T., Cai, W.: A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials. J. Comput. Appl. Math. 220, 588–614 (2008)MathSciNetMATH
28.
go back to reference Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)MATH Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)MATH
29.
go back to reference Liao, H., Sun, Z., Shi, H.: Error estimate of fourth-order compact scheme for linear Schrödinger equations. SIAM J. Numer Anal. 47, 4381–4401 (2010)MathSciNetMATH Liao, H., Sun, Z., Shi, H.: Error estimate of fourth-order compact scheme for linear Schrödinger equations. SIAM J. Numer Anal. 47, 4381–4401 (2010)MathSciNetMATH
30.
go back to reference Masaki, S.: Energy solution to a Schrödinger-Poisson system in the two-dimensional whole space. SIAM J. Math. Anal. 43, 2719–2731 (2011)MathSciNetMATH Masaki, S.: Energy solution to a Schrödinger-Poisson system in the two-dimensional whole space. SIAM J. Math. Anal. 43, 2719–2731 (2011)MathSciNetMATH
31.
go back to reference Mu, M., Huang, Y.: An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)MathSciNetMATH Mu, M., Huang, Y.: An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)MathSciNetMATH
32.
go back to reference Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa (3) 20, 733–737 (1966)MathSciNetMATH Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa (3) 20, 733–737 (1966)MathSciNetMATH
33.
go back to reference Pathria, D.: Exact solutions for a generalized nonlinear Schrödinger equation. Phys. Scr. 39, 673–679 (1989) Pathria, D.: Exact solutions for a generalized nonlinear Schrödinger equation. Phys. Scr. 39, 673–679 (1989)
34.
go back to reference Pelinovsky, D.E., Afanasjev, V.V., Kivshar, Y.S.: Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. Phys. Rev. E 53, 1940–1953 (1996) Pelinovsky, D.E., Afanasjev, V.V., Kivshar, Y.S.: Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. Phys. Rev. E 53, 1940–1953 (1996)
35.
go back to reference Reichel, B., Leble, S.: On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations. Comput. Math. Appl. 55, 745–759 (2008)MathSciNetMATH Reichel, B., Leble, S.: On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations. Comput. Math. Appl. 55, 745–759 (2008)MathSciNetMATH
36.
go back to reference Sanz-Serna, J.M.: Methods for the numerical solution of nonlinear Schrödinger equation. Math. Comput. 43, 21–27 (1984)MATH Sanz-Serna, J.M.: Methods for the numerical solution of nonlinear Schrödinger equation. Math. Comput. 43, 21–27 (1984)MATH
37.
go back to reference Stimming, H.P.: The IVP for the Schrödinger-Poisson-Xα equation in one dimension. Math. Models Methods Appl. Sci. 8, 1169–1180 (2005)MathSciNetMATH Stimming, H.P.: The IVP for the Schrödinger-Poisson-Xα equation in one dimension. Math. Models Methods Appl. Sci. 8, 1169–1180 (2005)MathSciNetMATH
38.
go back to reference Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)MATH Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)MATH
39.
go back to reference Sun, W., Wang, J.: Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D. J. Comput. Appl. Math. 317, 685–699 (2017)MathSciNetMATH Sun, W., Wang, J.: Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D. J. Comput. Appl. Math. 317, 685–699 (2017)MathSciNetMATH
40.
go back to reference Sun, Z., Zhao, D.: On the \(L^{\infty }\) convergence of a difference scheme for coupled nonlinear Schrödinger. Comput. Math. Appl. 59, 3286–3300 (2010)MathSciNetMATH Sun, Z., Zhao, D.: On the \(L^{\infty }\) convergence of a difference scheme for coupled nonlinear Schrödinger. Comput. Math. Appl. 59, 3286–3300 (2010)MathSciNetMATH
41.
go back to reference Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATH Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATH
42.
go back to reference Tourigny, Y.: Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)MathSciNetMATH Tourigny, Y.: Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)MathSciNetMATH
43.
go back to reference Wang, J.: A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)MathSciNetMATH Wang, J.: A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)MathSciNetMATH
44.
go back to reference Zhang, Y., Dong, X.: On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system. J. Comput. Phys. 220, 2660–2676 (2011)MATH Zhang, Y., Dong, X.: On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system. J. Comput. Phys. 220, 2660–2676 (2011)MATH
45.
go back to reference Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. M2AN Math. Model. Numer. Anal. 35, 389–405 (2001)MathSciNetMATH Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. M2AN Math. Model. Numer. Anal. 35, 389–405 (2001)MathSciNetMATH
Metadata
Title
Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrödinger-Helmholtz equations
Authors
Yun-Bo Yang
Yao-Lin Jiang
Publication date
08-05-2020
Publisher
Springer US
Published in
Numerical Algorithms / Issue 4/2021
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-020-00942-5

Other articles of this Issue 4/2021

Numerical Algorithms 4/2021 Go to the issue

Premium Partner