Skip to main content
Top
Published in:
Cover of the book

2016 | OriginalPaper | Chapter

1. Understanding Asphaltene Aggregation and Precipitation Through Theoretical and Computational Studies

Authors : Cuiying Jian, Tian Tang

Published in: New Frontiers in Oil and Gas Exploration

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Asphaltenes are known to cause serious problems during the processing of petroleum compounds due to their aggregation and precipitation behaviors. Despite the significant amount of experimental works that have been performed, large debates still exist in literature. Parallel with experimental work, great efforts have been spent from theoretical and computational perspectives to predict asphaltene behaviors under given conditions, to provide atomic/molecular information on their aggregation as well as precipitation, and to further shed lights on existing debates. This chapter presents a detailed review of previous theoretical and computational works on asphaltene aggregation and precipitation. Theoretical models developed, systems simulated, and the key findings are summarized; and discrepancies among those works are highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hall, C. A., & Day, J. W., Jr. (2009). Revisiting the limits to growth after peak oil. American Scientist, 97, 230–237.CrossRef Hall, C. A., & Day, J. W., Jr. (2009). Revisiting the limits to growth after peak oil. American Scientist, 97, 230–237.CrossRef
2.
go back to reference David, A. (1973). Asphaltene flocculation during solvent stimulation of heavy oils. AIChE (American Institute of Chemical Engineers) Symposium Series, 69, 56–61. David, A. (1973). Asphaltene flocculation during solvent stimulation of heavy oils. AIChE (American Institute of Chemical Engineers) Symposium Series, 69, 56–61.
3.
go back to reference Lichaa, P. (1977). Asphaltene deposition problem in Venezuela crudes-usage of asphaltenes in emulsion stability. Oil Sands, 609. Lichaa, P. (1977). Asphaltene deposition problem in Venezuela crudes-usage of asphaltenes in emulsion stability. Oil Sands, 609.
4.
go back to reference Ali Mansoori, G. (1997). Modeling of asphaltene and other heavy organic depositions. Journal of Petroleum Science and Engineering, 17, 101–111.CrossRef Ali Mansoori, G. (1997). Modeling of asphaltene and other heavy organic depositions. Journal of Petroleum Science and Engineering, 17, 101–111.CrossRef
5.
go back to reference Gaspar, A., Zellermann, E., Lababidi, S., Reece, J., & Schrader, W. (2012). Characterization of saturates, aromatics, resins, and asphaltenes heavy crude oil fractions by atmospheric pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy and Fuels, 26, 3481–3487.CrossRef Gaspar, A., Zellermann, E., Lababidi, S., Reece, J., & Schrader, W. (2012). Characterization of saturates, aromatics, resins, and asphaltenes heavy crude oil fractions by atmospheric pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy and Fuels, 26, 3481–3487.CrossRef
6.
go back to reference Jewell, D., Weber, J., Bunger, J., Plancher, H., & Latham, D. (1972). Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates. Analytical Chemistry, 44, 1391–1395.CrossRef Jewell, D., Weber, J., Bunger, J., Plancher, H., & Latham, D. (1972). Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates. Analytical Chemistry, 44, 1391–1395.CrossRef
7.
go back to reference Mitchell, D. L., & Speight, J. G. (1973). The solubility of asphaltenes in hydrocarbon solvents. Fuel, 52, 149–152.CrossRef Mitchell, D. L., & Speight, J. G. (1973). The solubility of asphaltenes in hydrocarbon solvents. Fuel, 52, 149–152.CrossRef
8.
go back to reference Permsukarome, P., Chang, C., & Fogler, H. S. (1997). Kinetic study of asphaltene dissolution in amphiphile/alkane solutions. Industrial and Engineering Chemistry Research, 36, 3960–3967.CrossRef Permsukarome, P., Chang, C., & Fogler, H. S. (1997). Kinetic study of asphaltene dissolution in amphiphile/alkane solutions. Industrial and Engineering Chemistry Research, 36, 3960–3967.CrossRef
9.
go back to reference Speight, J. G., Long, R. B., Trowbridge, T. D., & Linden, N. (1982). On the definition of asphaltenes. American Chemical Society, Division of Petroleum Chemistry, 27, 268–275. Speight, J. G., Long, R. B., Trowbridge, T. D., & Linden, N. (1982). On the definition of asphaltenes. American Chemical Society, Division of Petroleum Chemistry, 27, 268–275.
10.
go back to reference Kokal, S. L., Sayegh, S. G., & Asphaltenes (1995). The cholesterol of petroleum. In 9th SPE Middle East Oil Show Conference, Manama, Bahrain, March 11−14, 1995; Society of Petroleum Engineers: Richardson, Texas, SPE 29787. Kokal, S. L., Sayegh, S. G., & Asphaltenes (1995). The cholesterol of petroleum. In 9th SPE Middle East Oil Show Conference, Manama, Bahrain, March 11−14, 1995; Society of Petroleum Engineers: Richardson, Texas, SPE 29787.
11.
go back to reference de la Cruz, M., José, L., Argüelles-Vivas, F. J., Matías-Pérez, V., Durán-Valencia, C. de l. A., & López-Ramírez, S. (2009). Asphaltene-induced precipitation and deposition during pressure depletion on a porous medium: an experimental investigation and modeling approach. Energy and Fuels, 23, 5611–5625.CrossRef de la Cruz, M., José, L., Argüelles-Vivas, F. J., Matías-Pérez, V., Durán-Valencia, C. de l. A., & López-Ramírez, S. (2009). Asphaltene-induced precipitation and deposition during pressure depletion on a porous medium: an experimental investigation and modeling approach. Energy and Fuels, 23, 5611–5625.CrossRef
12.
go back to reference Vafaie-Sefti, M., & Mousavi-Dehghani, S. (2006). Application of association theory to the prediction of asphaltene deposition: Deposition due to natural depletion and miscible gas injection processes in petroleum reservoirs. Fluid Phase Equilibria, 247, 182–189.CrossRef Vafaie-Sefti, M., & Mousavi-Dehghani, S. (2006). Application of association theory to the prediction of asphaltene deposition: Deposition due to natural depletion and miscible gas injection processes in petroleum reservoirs. Fluid Phase Equilibria, 247, 182–189.CrossRef
13.
go back to reference Cosultchi, A., Rossbach, P., & Hernández‐Calderon, I. (2003). XPS analysis of petroleum well tubing adherence. Surface and Interface Analysis, 35, 239–245.CrossRef Cosultchi, A., Rossbach, P., & Hernández‐Calderon, I. (2003). XPS analysis of petroleum well tubing adherence. Surface and Interface Analysis, 35, 239–245.CrossRef
14.
go back to reference Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212, 17–60.CrossRef Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212, 17–60.CrossRef
15.
go back to reference Gawel, I., Bociarska, D., & Biskupski, P. (2005). Effect of asphaltenes on hydroprocessing of heavy oils and residua. Applied Catalysis A: General, 295, 89–94.CrossRef Gawel, I., Bociarska, D., & Biskupski, P. (2005). Effect of asphaltenes on hydroprocessing of heavy oils and residua. Applied Catalysis A: General, 295, 89–94.CrossRef
16.
go back to reference Park, S. J., & Ali Mansoori, G. (1988). Aggregation and deposition of heavy organics in petroleum crudes. Energy Sources, 10, 109–125.CrossRef Park, S. J., & Ali Mansoori, G. (1988). Aggregation and deposition of heavy organics in petroleum crudes. Energy Sources, 10, 109–125.CrossRef
17.
go back to reference Andersen, S. I., & Birdi, K. S. (1991). Aggregation of asphaltenes as determined by calorimetry. Journal of Colloid and Interface Science, 142, 497–502.CrossRef Andersen, S. I., & Birdi, K. S. (1991). Aggregation of asphaltenes as determined by calorimetry. Journal of Colloid and Interface Science, 142, 497–502.CrossRef
18.
go back to reference Leon, O., Rogel, E., Espidel, J., & Torres, G. (2000). Asphaltenes: structural characterization, self-association, and stability behavior. Energy and Fuels, 14, 6–10.CrossRef Leon, O., Rogel, E., Espidel, J., & Torres, G. (2000). Asphaltenes: structural characterization, self-association, and stability behavior. Energy and Fuels, 14, 6–10.CrossRef
19.
go back to reference Speight, J., Wernick, D., Gould, K., Overfield, R., & Rao, B. (1985). Molecular weight and association of asphaltenes: A critical review. Oil & Gas Science and Technology, 40, 51–61. Speight, J., Wernick, D., Gould, K., Overfield, R., & Rao, B. (1985). Molecular weight and association of asphaltenes: A critical review. Oil & Gas Science and Technology, 40, 51–61.
20.
go back to reference Strausz, O. P., Safarik, I., Lown, E., & Morales-Izquierdo, A. (2008). A critique of asphaltene fluorescence decay and depolarization-based claims about molecular weight and molecular architecture. Energy and Fuels, 22, 1156–1166.CrossRef Strausz, O. P., Safarik, I., Lown, E., & Morales-Izquierdo, A. (2008). A critique of asphaltene fluorescence decay and depolarization-based claims about molecular weight and molecular architecture. Energy and Fuels, 22, 1156–1166.CrossRef
21.
go back to reference Strausz, O. P., Mojelsky, T. W., Faraji, F., Lown, E. M., & Peng, P. (1999). Additional structural details on Athabasca asphaltene and their ramifications. Energy and Fuels, 13, 207–227.CrossRef Strausz, O. P., Mojelsky, T. W., Faraji, F., Lown, E. M., & Peng, P. (1999). Additional structural details on Athabasca asphaltene and their ramifications. Energy and Fuels, 13, 207–227.CrossRef
22.
go back to reference Mullins, O. C., Sabbah, H., Eyssautier, J., Pomerantz, A. E., Barré, L., Andrews, A. B., et al. (2012). Advances in asphaltene science and the Yen–Mullins model. Energy and Fuels, 26, 3986–4003.CrossRef Mullins, O. C., Sabbah, H., Eyssautier, J., Pomerantz, A. E., Barré, L., Andrews, A. B., et al. (2012). Advances in asphaltene science and the Yen–Mullins model. Energy and Fuels, 26, 3986–4003.CrossRef
23.
go back to reference Strausz, O. P., Mojelsky, T. W., & Lown, E. M. (1992). The molecular structure of asphaltene: an unfolding story. Fuel, 71, 1355–1363.CrossRef Strausz, O. P., Mojelsky, T. W., & Lown, E. M. (1992). The molecular structure of asphaltene: an unfolding story. Fuel, 71, 1355–1363.CrossRef
24.
go back to reference Dickie, J. P., & Yen, T. F. (1967). Macrostructures of the asphaltic fractions by various instrumental methods. Analytical Chemistry, 39, 1847–1852.CrossRef Dickie, J. P., & Yen, T. F. (1967). Macrostructures of the asphaltic fractions by various instrumental methods. Analytical Chemistry, 39, 1847–1852.CrossRef
25.
go back to reference Mullins, O. C. (2011). The asphaltenes. Annual Review of Analytical Chemistry, 4, 393–418.CrossRef Mullins, O. C. (2011). The asphaltenes. Annual Review of Analytical Chemistry, 4, 393–418.CrossRef
26.
go back to reference Sabbah, H., Morrow, A. L., Pomerantz, A. E., Mullins, O. C., Tan, X., Gray, M. R., et al. (2010). Comparing laser desorption/laser ionization mass spectra of asphaltenes and model compounds. Energy and Fuels, 24, 3589–3594.CrossRef Sabbah, H., Morrow, A. L., Pomerantz, A. E., Mullins, O. C., Tan, X., Gray, M. R., et al. (2010). Comparing laser desorption/laser ionization mass spectra of asphaltenes and model compounds. Energy and Fuels, 24, 3589–3594.CrossRef
27.
go back to reference Sabbah, H., Morrow, A. L., Pomerantz, A. E., & Zare, R. N. (2011). Evidence for island structures as the dominant architecture of asphaltenes. Energy and Fuels, 25, 1597–1604.CrossRef Sabbah, H., Morrow, A. L., Pomerantz, A. E., & Zare, R. N. (2011). Evidence for island structures as the dominant architecture of asphaltenes. Energy and Fuels, 25, 1597–1604.CrossRef
28.
go back to reference Hortal, A. R., Hurtado, P., Martínez-Haya, B., & Mullins, O. C. (2007). Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments. Energy and Fuels, 21, 2863–2868.CrossRef Hortal, A. R., Hurtado, P., Martínez-Haya, B., & Mullins, O. C. (2007). Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments. Energy and Fuels, 21, 2863–2868.CrossRef
29.
go back to reference Groenzin, H., & Mullins, O. C. (1999). Asphaltene molecular size and structure. Journal of Physical Chemistry A, 103, 11237–11245.CrossRef Groenzin, H., & Mullins, O. C. (1999). Asphaltene molecular size and structure. Journal of Physical Chemistry A, 103, 11237–11245.CrossRef
30.
go back to reference Groenzin, H., & Mullins, O. C. (2000). Molecular size and structure of asphaltenes from various sources. Energy and Fuels, 14, 677–684.CrossRef Groenzin, H., & Mullins, O. C. (2000). Molecular size and structure of asphaltenes from various sources. Energy and Fuels, 14, 677–684.CrossRef
31.
go back to reference Andrews, A. B., Guerra, R. E., Mullins, O. C., & Sen, P. N. (2006). Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. Journal of Physical Chemistry A, 110, 8093–8097.CrossRef Andrews, A. B., Guerra, R. E., Mullins, O. C., & Sen, P. N. (2006). Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. Journal of Physical Chemistry A, 110, 8093–8097.CrossRef
32.
go back to reference Bergmann, U., Groenzin, H., Mullins, O. C., Glatzel, P., Fetzer, J., & Cramer, S. (2003). Carbon K-edge X-ray Raman spectroscopy supports simple, yet powerful description of aromatic hydrocarbons and asphaltenes. Chemical Physics Letters, 369, 184–191.CrossRef Bergmann, U., Groenzin, H., Mullins, O. C., Glatzel, P., Fetzer, J., & Cramer, S. (2003). Carbon K-edge X-ray Raman spectroscopy supports simple, yet powerful description of aromatic hydrocarbons and asphaltenes. Chemical Physics Letters, 369, 184–191.CrossRef
33.
go back to reference Pinkston, D. S., Duan, P., Gallardo, V. A., Habicht, S. C., Tan, X., Qian, K., et al. (2009). Analysis of asphaltenes and asphaltene model compounds by laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Energy and Fuels, 23, 5564–5570.CrossRef Pinkston, D. S., Duan, P., Gallardo, V. A., Habicht, S. C., Tan, X., Qian, K., et al. (2009). Analysis of asphaltenes and asphaltene model compounds by laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Energy and Fuels, 23, 5564–5570.CrossRef
34.
go back to reference Qian, K., Edwards, K. E., Siskin, M., Olmstead, W. N., Mennito, A. S., Dechert, G. J., et al. (2007). Desorption and ionization of heavy petroleum molecules and measurement of molecular weight distributions. Energy and Fuels, 21, 1042–1047.CrossRef Qian, K., Edwards, K. E., Siskin, M., Olmstead, W. N., Mennito, A. S., Dechert, G. J., et al. (2007). Desorption and ionization of heavy petroleum molecules and measurement of molecular weight distributions. Energy and Fuels, 21, 1042–1047.CrossRef
35.
go back to reference Lisitza, N. V., Freed, D. E., Sen, P. N., & Song, Y. (2009). Study of Asphaltene Nanoaggregation by Nuclear Magnetic Resonance (NMR). Energy and Fuels, 23, 1189–1193.CrossRef Lisitza, N. V., Freed, D. E., Sen, P. N., & Song, Y. (2009). Study of Asphaltene Nanoaggregation by Nuclear Magnetic Resonance (NMR). Energy and Fuels, 23, 1189–1193.CrossRef
36.
go back to reference Bouhadda, Y., Bormann, D., Sheu, E., Bendedouch, D., Krallafa, A., & Daaou, M. (1855–1864). Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction. Fuel, 2007, 86. Bouhadda, Y., Bormann, D., Sheu, E., Bendedouch, D., Krallafa, A., & Daaou, M. (1855–1864). Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction. Fuel, 2007, 86.
37.
go back to reference Payzant, J., Rubinstein, I., Hogg, A., & Strausz, O. (1979). Field-ionization mass spectrometry: application to geochemical analysis. Geochimica et Cosmochimica Acta, 43, 1187–1193.CrossRef Payzant, J., Rubinstein, I., Hogg, A., & Strausz, O. (1979). Field-ionization mass spectrometry: application to geochemical analysis. Geochimica et Cosmochimica Acta, 43, 1187–1193.CrossRef
38.
go back to reference Rubinstein, I., & Strausz, O. (1979). Thermal treatment of the Athabasca oil sand bitumen and its component parts. Geochimica et Cosmochimica Acta, 43, 1887–1893.CrossRef Rubinstein, I., & Strausz, O. (1979). Thermal treatment of the Athabasca oil sand bitumen and its component parts. Geochimica et Cosmochimica Acta, 43, 1887–1893.CrossRef
39.
go back to reference Rubinstein, I., Spyckerelle, C., & Strausz, O. (1979). Pyrolysis of asphaltenes: a source of geochemical information. Geochimica et Cosmochimica Acta, 43, 1–6.CrossRef Rubinstein, I., Spyckerelle, C., & Strausz, O. (1979). Pyrolysis of asphaltenes: a source of geochemical information. Geochimica et Cosmochimica Acta, 43, 1–6.CrossRef
40.
go back to reference Calemma, V., Rausa, R., D’Anton, P., & Montanari, L. (1998). Characterization of asphaltenes molecular structure. Energy and Fuels, 12, 422–428.CrossRef Calemma, V., Rausa, R., D’Anton, P., & Montanari, L. (1998). Characterization of asphaltenes molecular structure. Energy and Fuels, 12, 422–428.CrossRef
41.
go back to reference Ferris, S., Black, E., & Clelland, J. (1967). Aromatic structure in asphalt fractions. Industrial and Engineering Chemistry Product Research and Development, 6, 127–132.CrossRef Ferris, S., Black, E., & Clelland, J. (1967). Aromatic structure in asphalt fractions. Industrial and Engineering Chemistry Product Research and Development, 6, 127–132.CrossRef
42.
go back to reference Su, Y., Artok, L., Murata, S., & Nomura, M. (1998). Structural analysis of the asphaltene fraction of an arabian mixture by a ruthenium-ion-catalyzed oxidation reaction. Energy and Fuels, 12, 1265–1271.CrossRef Su, Y., Artok, L., Murata, S., & Nomura, M. (1998). Structural analysis of the asphaltene fraction of an arabian mixture by a ruthenium-ion-catalyzed oxidation reaction. Energy and Fuels, 12, 1265–1271.CrossRef
43.
go back to reference Murgich, J., Abanero, J. A., & Strausz, O. P. (1999). Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand. Energy and Fuels, 13, 278–286.CrossRef Murgich, J., Abanero, J. A., & Strausz, O. P. (1999). Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand. Energy and Fuels, 13, 278–286.CrossRef
44.
go back to reference Artok, L., Su, Y., Hirose, Y., Hosokawa, M., Murata, S., & Nomura, M. (1999). Structure and reactivity of petroleum-derived asphaltene. Energy and Fuels, 13, 287–296.CrossRef Artok, L., Su, Y., Hirose, Y., Hosokawa, M., Murata, S., & Nomura, M. (1999). Structure and reactivity of petroleum-derived asphaltene. Energy and Fuels, 13, 287–296.CrossRef
45.
go back to reference Siskin, M., Kelemen, S., Eppig, C., Brown, L., & Afeworki, M. (2006). Asphaltene molecular structure and chemical influences on the morphology of coke produced in delayed coking. Energy and Fuels, 20, 1227–1234.CrossRef Siskin, M., Kelemen, S., Eppig, C., Brown, L., & Afeworki, M. (2006). Asphaltene molecular structure and chemical influences on the morphology of coke produced in delayed coking. Energy and Fuels, 20, 1227–1234.CrossRef
46.
go back to reference Gray, M. R. (2003). Consistency of asphaltene chemical structures with pyrolysis and coking behavior. Energy and Fuels, 17, 1566–1569.CrossRef Gray, M. R. (2003). Consistency of asphaltene chemical structures with pyrolysis and coking behavior. Energy and Fuels, 17, 1566–1569.CrossRef
47.
go back to reference Karimi, A., Qian, K., Olmstead, W. N., Freund, H., Yung, C., & Gray, M. R. (2011). Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis. Energy and Fuels, 25, 3581–3589.CrossRef Karimi, A., Qian, K., Olmstead, W. N., Freund, H., Yung, C., & Gray, M. R. (2011). Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis. Energy and Fuels, 25, 3581–3589.CrossRef
48.
go back to reference Ralston, C. Y., Mitra-Kirtley, S., & Mullins, O. C. (1996). Small population of one to three fused-aromatic ring moieties in asphaltenes. Energy and Fuels, 10, 623–630.CrossRef Ralston, C. Y., Mitra-Kirtley, S., & Mullins, O. C. (1996). Small population of one to three fused-aromatic ring moieties in asphaltenes. Energy and Fuels, 10, 623–630.CrossRef
49.
go back to reference Buenrostro-Gonzalez, E., Groenzin, H., Lira-Galeana, C., & Mullins, O. C. (2001). The overriding chemical principles that define asphaltenes. Energy and Fuels, 15, 972–978.CrossRef Buenrostro-Gonzalez, E., Groenzin, H., Lira-Galeana, C., & Mullins, O. C. (2001). The overriding chemical principles that define asphaltenes. Energy and Fuels, 15, 972–978.CrossRef
50.
go back to reference Groenzin, H., Mullins, O. C., Eser, S., Mathews, J., Yang, M., & Jones, D. (2003). Molecular size of asphaltene solubility fractions. Energy and Fuels, 17, 498–503.CrossRef Groenzin, H., Mullins, O. C., Eser, S., Mathews, J., Yang, M., & Jones, D. (2003). Molecular size of asphaltene solubility fractions. Energy and Fuels, 17, 498–503.CrossRef
51.
go back to reference Badre, S., Carla Goncalves, C., Norinaga, K., Gustavson, G., & Mullins, O. C. (2006). Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen. Fuel, 85, 1–11.CrossRef Badre, S., Carla Goncalves, C., Norinaga, K., Gustavson, G., & Mullins, O. C. (2006). Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen. Fuel, 85, 1–11.CrossRef
52.
go back to reference Mullins, O. (2009). C. Rebuttal to Strausz et al. regarding time-resolved fluorescence depolarization of asphaltenes. Energy and Fuels, 23, 2845–2854.CrossRef Mullins, O. (2009). C. Rebuttal to Strausz et al. regarding time-resolved fluorescence depolarization of asphaltenes. Energy and Fuels, 23, 2845–2854.CrossRef
53.
go back to reference Nalwaya, V., Tantayakom, V., Piumsomboon, P., & Fogler, S. (1999). Studies on asphaltenes through analysis of polar fractions. Industrial and Engineering Chemistry Research, 38, 964–972.CrossRef Nalwaya, V., Tantayakom, V., Piumsomboon, P., & Fogler, S. (1999). Studies on asphaltenes through analysis of polar fractions. Industrial and Engineering Chemistry Research, 38, 964–972.CrossRef
54.
go back to reference Kaminski, T. J., Fogler, H. S., Wolf, N., Wattana, P., & Mairal, A. (2000). Classification of asphaltenes via fractionation and the effect of heteroatom content on dissolution kinetics. Energy and Fuels, 14, 25–30.CrossRef Kaminski, T. J., Fogler, H. S., Wolf, N., Wattana, P., & Mairal, A. (2000). Classification of asphaltenes via fractionation and the effect of heteroatom content on dissolution kinetics. Energy and Fuels, 14, 25–30.CrossRef
55.
go back to reference Fish, R. H., Komlenic, J. J., & Wines, B. K. (1984). Characterization and comparison of vanadyl and nickel compounds in heavy crude petroleums and asphaltenes by reverse-phase and size-exclusion liquid chromatography/graphite furnace atomic absorption spectrometry. Analytical Chemistry, 56, 2452–2460.CrossRef Fish, R. H., Komlenic, J. J., & Wines, B. K. (1984). Characterization and comparison of vanadyl and nickel compounds in heavy crude petroleums and asphaltenes by reverse-phase and size-exclusion liquid chromatography/graphite furnace atomic absorption spectrometry. Analytical Chemistry, 56, 2452–2460.CrossRef
56.
go back to reference Ancheyta, J., Centeno, G., Trejo, F., Marroquin, G., Garcia, J., Tenorio, E., et al. (2002). Extraction and characterization of asphaltenes from different crude oils and solvents. Energy and Fuels, 16, 1121–1127.CrossRef Ancheyta, J., Centeno, G., Trejo, F., Marroquin, G., Garcia, J., Tenorio, E., et al. (2002). Extraction and characterization of asphaltenes from different crude oils and solvents. Energy and Fuels, 16, 1121–1127.CrossRef
57.
go back to reference George, G. N., & Gorbaty, M. L. (1989). Sulfur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds. Journal of the American Chemical Society, 111, 3182–3186.CrossRef George, G. N., & Gorbaty, M. L. (1989). Sulfur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds. Journal of the American Chemical Society, 111, 3182–3186.CrossRef
58.
go back to reference Waldo, G. S., Mullins, O. C., Penner-Hahn, J. E., & Cramer, S. (1992). Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption spectroscopy. Fuel, 71, 53–57.CrossRef Waldo, G. S., Mullins, O. C., Penner-Hahn, J. E., & Cramer, S. (1992). Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption spectroscopy. Fuel, 71, 53–57.CrossRef
59.
go back to reference Kelemen, S., George, G., & Gorbaty, M. (1990). Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy (XPS) approach. Fuel, 69, 939–944.CrossRef Kelemen, S., George, G., & Gorbaty, M. (1990). Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy (XPS) approach. Fuel, 69, 939–944.CrossRef
60.
go back to reference Mitra-Kirtley, S., Mullins, O. C., Van Elp, J., George, S. J., Chen, J., & Cramer, S. P. (1993). Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. Journal of the American Chemical Society, 115, 252–258.CrossRef Mitra-Kirtley, S., Mullins, O. C., Van Elp, J., George, S. J., Chen, J., & Cramer, S. P. (1993). Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. Journal of the American Chemical Society, 115, 252–258.CrossRef
61.
go back to reference Desando, M. A., & Ripmeester, J. A. (2002). Chemical derivatization of Athabasca oil sand asphaltene for analysis of hydroxyl and carboxyl groups via nuclear magnetic resonance spectroscopy. Fuel, 81, 1305–1319.CrossRef Desando, M. A., & Ripmeester, J. A. (2002). Chemical derivatization of Athabasca oil sand asphaltene for analysis of hydroxyl and carboxyl groups via nuclear magnetic resonance spectroscopy. Fuel, 81, 1305–1319.CrossRef
62.
go back to reference Moschopedis, S. E., & Speight, J. G. (1976). Oxygen functions in asphaltenes. Fuel, 55, 334–336.CrossRef Moschopedis, S. E., & Speight, J. G. (1976). Oxygen functions in asphaltenes. Fuel, 55, 334–336.CrossRef
63.
go back to reference Ignasiak, T., Strausz, O. P., & Montgomery, D. S. (1977). Oxygen distribution and hydrogen bonding in Athabasca asphaltene. Fuel, 56, 359–365.CrossRef Ignasiak, T., Strausz, O. P., & Montgomery, D. S. (1977). Oxygen distribution and hydrogen bonding in Athabasca asphaltene. Fuel, 56, 359–365.CrossRef
64.
go back to reference Mullins, O. C. (2010). The modified Yen model. Energy and Fuels, 24, 2179–2207.CrossRef Mullins, O. C. (2010). The modified Yen model. Energy and Fuels, 24, 2179–2207.CrossRef
65.
go back to reference Yen, T. (1974). Structure of petroleum asphaltene and its significance. Energy Sources, 1, 447–463.CrossRef Yen, T. (1974). Structure of petroleum asphaltene and its significance. Energy Sources, 1, 447–463.CrossRef
66.
go back to reference Andreatta, G., Goncalves, C. C., Buffin, G., Bostrom, N., Quintella, C. M., Arteaga-Larios, F., et al. (2005). Nanoaggregates and structure-function relations in asphaltenes. Energy and Fuels, 19, 1282–1289.CrossRef Andreatta, G., Goncalves, C. C., Buffin, G., Bostrom, N., Quintella, C. M., Arteaga-Larios, F., et al. (2005). Nanoaggregates and structure-function relations in asphaltenes. Energy and Fuels, 19, 1282–1289.CrossRef
67.
go back to reference Zeng, H., Song, Y., Johnson, D. L., & Mullins, O. C. (2009). Critical nanoaggregate concentration of asphaltenes by direct-current (DC) electrical conductivity. Energy and Fuels, 23, 1201–1208.CrossRef Zeng, H., Song, Y., Johnson, D. L., & Mullins, O. C. (2009). Critical nanoaggregate concentration of asphaltenes by direct-current (DC) electrical conductivity. Energy and Fuels, 23, 1201–1208.CrossRef
68.
go back to reference Andersen, S. I., del Rio, J. M., Khvostitchenko, D., Shakir, S., & Lira-Galeana, C. (2001). Interaction and solubilization of water by petroleum asphaltenes in organic solution. Langmuir, 17, 307–313.CrossRef Andersen, S. I., del Rio, J. M., Khvostitchenko, D., Shakir, S., & Lira-Galeana, C. (2001). Interaction and solubilization of water by petroleum asphaltenes in organic solution. Langmuir, 17, 307–313.CrossRef
69.
go back to reference Evdokimov, I., Eliseev, N. Y., & Akhmetov, B. (2003). Assembly of asphaltene molecular aggregates as studied by near-UV/visible spectroscopy: I. Structure of the absorbance spectrum. Journal of Petroleum Science and Engineering, 37, 135–143.CrossRef Evdokimov, I., Eliseev, N. Y., & Akhmetov, B. (2003). Assembly of asphaltene molecular aggregates as studied by near-UV/visible spectroscopy: I. Structure of the absorbance spectrum. Journal of Petroleum Science and Engineering, 37, 135–143.CrossRef
70.
go back to reference Evdokimov, I., Eliseev, N. Y., & Akhmetov, B. (2003). Assembly of asphaltene molecular aggregates as studied by near-UV/visible spectroscopy: II. Concentration dependencies of absorptivities. Journal of Petroleum Science and Engineering, 37, 145–152.CrossRef Evdokimov, I., Eliseev, N. Y., & Akhmetov, B. (2003). Assembly of asphaltene molecular aggregates as studied by near-UV/visible spectroscopy: II. Concentration dependencies of absorptivities. Journal of Petroleum Science and Engineering, 37, 145–152.CrossRef
71.
go back to reference Hoepfner, M. P., & Fogler, H. S. (2013). Multiscale scattering investigations of asphaltene cluster breakup, nanoaggregate dissociation, and molecular ordering. Langmuir, 29, 15423–15432.CrossRef Hoepfner, M. P., & Fogler, H. S. (2013). Multiscale scattering investigations of asphaltene cluster breakup, nanoaggregate dissociation, and molecular ordering. Langmuir, 29, 15423–15432.CrossRef
72.
go back to reference Tanaka, R., Hunt, J. E., Winans, R. E., Thiyagarajan, P., Sato, S., & Takanohashi, T. (2003). Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering. Energy and Fuels, 17, 127–134.CrossRef Tanaka, R., Hunt, J. E., Winans, R. E., Thiyagarajan, P., Sato, S., & Takanohashi, T. (2003). Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering. Energy and Fuels, 17, 127–134.CrossRef
73.
go back to reference Gawrys, K. L., & Kilpatrick, P. K. (2005). Asphaltenic aggregates are polydisperse oblate cylinders. Journal of Colloid and Interface Science, 288, 325–334.CrossRef Gawrys, K. L., & Kilpatrick, P. K. (2005). Asphaltenic aggregates are polydisperse oblate cylinders. Journal of Colloid and Interface Science, 288, 325–334.CrossRef
74.
go back to reference Eyssautier, J., Levitz, P., Espinat, D., Jestin, J., Gummel, J., Grillo, I., et al. (2011). Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering. Journal of Physical Chemistry B, 115, 6827–6837.CrossRef Eyssautier, J., Levitz, P., Espinat, D., Jestin, J., Gummel, J., Grillo, I., et al. (2011). Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering. Journal of Physical Chemistry B, 115, 6827–6837.CrossRef
75.
go back to reference Seki, H., & Kumata, F. (2000). Structural change of petroleum asphaltenes and resins by hydrodemetallization. Energy and Fuels, 14, 980–985.CrossRef Seki, H., & Kumata, F. (2000). Structural change of petroleum asphaltenes and resins by hydrodemetallization. Energy and Fuels, 14, 980–985.CrossRef
76.
go back to reference Soorghali, F., Zolghadr, A., & Ayatollahi, S. (2014). Effect of resins on asphaltene deposition and the changes of surface properties at different pressures: A microstructure study. Energy and Fuels, 28, 2415–2421.CrossRef Soorghali, F., Zolghadr, A., & Ayatollahi, S. (2014). Effect of resins on asphaltene deposition and the changes of surface properties at different pressures: A microstructure study. Energy and Fuels, 28, 2415–2421.CrossRef
77.
go back to reference González, G., Neves, G. B. M., Saraiva, S. M., Lucas, E. F., & Anjos de Sousa, M. d. (2003). Electrokinetic characterization of asphaltenes and the asphaltenes-resins interaction. Energy and Fuels, 17, 879–886.CrossRef González, G., Neves, G. B. M., Saraiva, S. M., Lucas, E. F., & Anjos de Sousa, M. d. (2003). Electrokinetic characterization of asphaltenes and the asphaltenes-resins interaction. Energy and Fuels, 17, 879–886.CrossRef
78.
go back to reference Mullins, O. C., Betancourt, S. S., Cribbs, M. E., Dubost, F. X., Creek, J. L., Andrews, A. B., et al. (2007). The colloidal structure of crude oil and the structure of oil reservoirs. Energy and Fuels, 21, 2785–2794.CrossRef Mullins, O. C., Betancourt, S. S., Cribbs, M. E., Dubost, F. X., Creek, J. L., Andrews, A. B., et al. (2007). The colloidal structure of crude oil and the structure of oil reservoirs. Energy and Fuels, 21, 2785–2794.CrossRef
79.
go back to reference Sedghi, M., & Goual, L. (2009). Role of resins on asphaltene stability. Energy and Fuels, 24, 2275–2280.CrossRef Sedghi, M., & Goual, L. (2009). Role of resins on asphaltene stability. Energy and Fuels, 24, 2275–2280.CrossRef
80.
go back to reference Breure, B., Subramanian, D., Leys, J., Peters, C. J., & Anisimov, M. A. (2012). Modeling asphaltene aggregation with a single compound. Energy and Fuels, 27, 172–176.CrossRef Breure, B., Subramanian, D., Leys, J., Peters, C. J., & Anisimov, M. A. (2012). Modeling asphaltene aggregation with a single compound. Energy and Fuels, 27, 172–176.CrossRef
81.
go back to reference Tan, X., Fenniri, H., & Gray, M. R. (2007). Pyrene derivatives of 2, 2′-Bipyridine as models for asphaltenes: synthesis, characterization, and supramolecular organization. Energy and Fuels, 22, 715–720.CrossRef Tan, X., Fenniri, H., & Gray, M. R. (2007). Pyrene derivatives of 2, 2′-Bipyridine as models for asphaltenes: synthesis, characterization, and supramolecular organization. Energy and Fuels, 22, 715–720.CrossRef
82.
go back to reference Gray, M. R., Tykwinski, R. R., Stryker, J. M., & Tan, X. (2011). Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy and Fuels, 25, 3125–3134.CrossRef Gray, M. R., Tykwinski, R. R., Stryker, J. M., & Tan, X. (2011). Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy and Fuels, 25, 3125–3134.CrossRef
83.
go back to reference Murgich, J. (2002). Intermolecular forces in aggregates of asphaltenes and resins. Petroleum Science and Technology, 20, 983–997.CrossRef Murgich, J. (2002). Intermolecular forces in aggregates of asphaltenes and resins. Petroleum Science and Technology, 20, 983–997.CrossRef
84.
go back to reference Tan, X., Fenniri, H., & Gray, M. R. (2009). Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding. Energy and Fuels, 23, 3687–3693.CrossRef Tan, X., Fenniri, H., & Gray, M. R. (2009). Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding. Energy and Fuels, 23, 3687–3693.CrossRef
85.
go back to reference Stoyanov, S. R., Yin, C., Gray, M. R., Stryker, J. M., Gusarov, S., & Kovalenko, A. (2010). Computational and experimental study of the structure, binding preferences, and spectroscopy of nickel (II) and vanadyl porphyrins in petroleum. Journal of Physical Chemistry B, 114, 2180–2188.CrossRef Stoyanov, S. R., Yin, C., Gray, M. R., Stryker, J. M., Gusarov, S., & Kovalenko, A. (2010). Computational and experimental study of the structure, binding preferences, and spectroscopy of nickel (II) and vanadyl porphyrins in petroleum. Journal of Physical Chemistry B, 114, 2180–2188.CrossRef
86.
go back to reference Rogel, E. (1928–1937). Asphaltene aggregation: a molecular thermodynamic approach. Langmuir, 2002, 18. Rogel, E. (1928–1937). Asphaltene aggregation: a molecular thermodynamic approach. Langmuir, 2002, 18.
87.
go back to reference Rogel, E. (2004). Thermodynamic modeling of asphaltene aggregation. Langmuir, 20, 1003–1012.CrossRef Rogel, E. (2004). Thermodynamic modeling of asphaltene aggregation. Langmuir, 20, 1003–1012.CrossRef
88.
go back to reference Rogel, E. (2008). Molecular thermodynamic approach to the formation of mixed asphaltene−resin aggregates. Energy and Fuels, 22, 3922–3929.CrossRef Rogel, E. (2008). Molecular thermodynamic approach to the formation of mixed asphaltene−resin aggregates. Energy and Fuels, 22, 3922–3929.CrossRef
89.
go back to reference Agrawala, M., & Yarranton, H. W. (2001). An asphaltene association model analogous to linear polymerization. Industrial and Engineering Chemistry Research, 40, 4664–4672.CrossRef Agrawala, M., & Yarranton, H. W. (2001). An asphaltene association model analogous to linear polymerization. Industrial and Engineering Chemistry Research, 40, 4664–4672.CrossRef
90.
go back to reference Zhang, L., Shi, Q., Zhao, C., Zhang, N., Chung, K. H., Xu, C., et al. (2013). Hindered stepwise aggregation model for molecular weight determination of heavy petroleum fractions by vapor pressure osmometry (VPO). Energy and Fuels, 27, 1331–1336.CrossRef Zhang, L., Shi, Q., Zhao, C., Zhang, N., Chung, K. H., Xu, C., et al. (2013). Hindered stepwise aggregation model for molecular weight determination of heavy petroleum fractions by vapor pressure osmometry (VPO). Energy and Fuels, 27, 1331–1336.CrossRef
91.
go back to reference Zhang, L., Zhao, S., Xu, Z., Chung, K. H., Zhao, C., Zhang, N., et al. (2014). Molecular weight and aggregation of heavy petroleum fractions measured by vapor pressure osmometry and hindered stepwise aggregation model. Energy and Fuels, 28, 6179–6187.CrossRef Zhang, L., Zhao, S., Xu, Z., Chung, K. H., Zhao, C., Zhang, N., et al. (2014). Molecular weight and aggregation of heavy petroleum fractions measured by vapor pressure osmometry and hindered stepwise aggregation model. Energy and Fuels, 28, 6179–6187.CrossRef
92.
go back to reference Acevedo, S., Caetano, M., Ranaudo, M. A., & Jaimes, B. (2011). Simulation of asphaltene aggregation and related properties using an equilibrium-based mathematical model. Energy and Fuels, 25, 3544–3551.CrossRef Acevedo, S., Caetano, M., Ranaudo, M. A., & Jaimes, B. (2011). Simulation of asphaltene aggregation and related properties using an equilibrium-based mathematical model. Energy and Fuels, 25, 3544–3551.CrossRef
93.
go back to reference Andersen, S. I., & Speight, J. G. (1999). Thermodynamic models for asphaltene solubility and precipitation. Journal of Petroleum Science and Engineering, 22, 53–66.CrossRef Andersen, S. I., & Speight, J. G. (1999). Thermodynamic models for asphaltene solubility and precipitation. Journal of Petroleum Science and Engineering, 22, 53–66.CrossRef
94.
go back to reference Hirschberg, A., DeJong, L., Schipper, B., & Meijer, J. (1984). Influence of temperature and pressure on asphaltene flocculation. Society of Petroleum Engineers Journal, 24, 283–293.CrossRef Hirschberg, A., DeJong, L., Schipper, B., & Meijer, J. (1984). Influence of temperature and pressure on asphaltene flocculation. Society of Petroleum Engineers Journal, 24, 283–293.CrossRef
95.
go back to reference Leontaritis, K., & Mansoori, G. (1987). Asphaltene flocculation during oil production and processing: A thermodynamic colloidal model. In Proceedings of the SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, Feb 4−5 1987; Society of Petroleum Engineers: Richardson, Texas. SPE 16258. Leontaritis, K., & Mansoori, G. (1987). Asphaltene flocculation during oil production and processing: A thermodynamic colloidal model. In Proceedings of the SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, Feb 4−5 1987; Society of Petroleum Engineers: Richardson, Texas. SPE 16258.
96.
go back to reference Flory, P. J. (1942). Thermodynamics of high polymer solutions. Journal of Chemical Physics, 10, 51–61.CrossRef Flory, P. J. (1942). Thermodynamics of high polymer solutions. Journal of Chemical Physics, 10, 51–61.CrossRef
97.
go back to reference Huggins, M. L. (1941). Solutions of long chain compounds. Journal of Chemical Physics, 9, 440–440.CrossRef Huggins, M. L. (1941). Solutions of long chain compounds. Journal of Chemical Physics, 9, 440–440.CrossRef
98.
go back to reference Victorov, A. I., & Firoozabadi, A. (1996). Thermodynamic micellizatin model of asphaltene precipitation from petroleum fluids. AICHE Journal, 42, 1753–1764.CrossRef Victorov, A. I., & Firoozabadi, A. (1996). Thermodynamic micellizatin model of asphaltene precipitation from petroleum fluids. AICHE Journal, 42, 1753–1764.CrossRef
99.
go back to reference Pan, H., & Firoozabadi, A. (1998). Thermodynamic micellization model for asphaltene aggregation and precipitation in petroleum fluids. SPE Production & Facilities, 13, 118–127.CrossRef Pan, H., & Firoozabadi, A. (1998). Thermodynamic micellization model for asphaltene aggregation and precipitation in petroleum fluids. SPE Production & Facilities, 13, 118–127.CrossRef
100.
go back to reference Hinze, W. L., & Pramauro, E. (1993). A critical review of surfactant-mediated phase separations (cloud-point extractions): Theory and applications. Critical Reviews in Analytical Chemistry, 24, 133–177.CrossRef Hinze, W. L., & Pramauro, E. (1993). A critical review of surfactant-mediated phase separations (cloud-point extractions): Theory and applications. Critical Reviews in Analytical Chemistry, 24, 133–177.CrossRef
101.
go back to reference Peng, D., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial and Engineering Chemistry Fundamentals, 15, 59–64.CrossRef Peng, D., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial and Engineering Chemistry Fundamentals, 15, 59–64.CrossRef
102.
go back to reference Ashoori, S., Shahsavani, B., Ahmadi, M. A., & Rezaei, A. (2014). Developing thermodynamic micellization approach to model asphaltene precipitation behavior. Journal of Dispersion Science and Technology, 35, 1325–1338.CrossRef Ashoori, S., Shahsavani, B., Ahmadi, M. A., & Rezaei, A. (2014). Developing thermodynamic micellization approach to model asphaltene precipitation behavior. Journal of Dispersion Science and Technology, 35, 1325–1338.CrossRef
103.
go back to reference Wu, J., Prausnitz, J. M., & Firoozabadi, A. (1998). Molecular‐thermodynamic framework for asphaltene‐oil equilibria. AICHE Journal, 44, 1188–1199.CrossRef Wu, J., Prausnitz, J. M., & Firoozabadi, A. (1998). Molecular‐thermodynamic framework for asphaltene‐oil equilibria. AICHE Journal, 44, 1188–1199.CrossRef
104.
go back to reference Victorov, A. I., & Smirnova, N. A. (1998). Thermodynamic model of petroleum fluids containing polydisperse asphaltene aggregates. Industrial and Engineering Chemistry Research, 37, 3242–3251.CrossRef Victorov, A. I., & Smirnova, N. A. (1998). Thermodynamic model of petroleum fluids containing polydisperse asphaltene aggregates. Industrial and Engineering Chemistry Research, 37, 3242–3251.CrossRef
105.
go back to reference Victorov, A. I., & Smirnova, N. A. (1999). Description of asphaltene polydispersity and precipitation by means of thermodynamic model of self-assembly. Fluid Phase Equilibria, 158, 471–480.CrossRef Victorov, A. I., & Smirnova, N. A. (1999). Description of asphaltene polydispersity and precipitation by means of thermodynamic model of self-assembly. Fluid Phase Equilibria, 158, 471–480.CrossRef
106.
go back to reference Scott, R., & Hildebrand, J. (1951). The solubility of nonelectrolytes. New York: Reinhold. Scott, R., & Hildebrand, J. (1951). The solubility of nonelectrolytes. New York: Reinhold.
107.
go back to reference Correra, S., & Donaggio, F. (2000). Onset-constrained colloidal asphaltene model. In Proceedings of the International Symposium on Formation Damage, Lafayette, LA, Feb 23–24 2000; Society of Petroleum Engineers: Richardson, Texas; SPE 58724. Correra, S., & Donaggio, F. (2000). Onset-constrained colloidal asphaltene model. In Proceedings of the International Symposium on Formation Damage, Lafayette, LA, Feb 23–24 2000; Society of Petroleum Engineers: Richardson, Texas; SPE 58724.
108.
go back to reference Correra, S., & Merino-Garcia, D. (2007). Simplifying the thermodynamic modeling of asphaltenes in upstream operations. Energy and Fuels, 21, 1243–1247.CrossRef Correra, S., & Merino-Garcia, D. (2007). Simplifying the thermodynamic modeling of asphaltenes in upstream operations. Energy and Fuels, 21, 1243–1247.CrossRef
109.
go back to reference Merino‐Garcia, D., & Correra, S. (2007). A shortcut application of a Flory‐like model to Asphaltene precipitation. Journal of Dispersion Science and Technology, 28, 339–347.CrossRef Merino‐Garcia, D., & Correra, S. (2007). A shortcut application of a Flory‐like model to Asphaltene precipitation. Journal of Dispersion Science and Technology, 28, 339–347.CrossRef
110.
go back to reference Burke, N. E., Hobbs, R. E., & Kashou, S. F. (1990). Measurement and Modeling of Asphaltene Precipitation (includes associated paper 23831). Journal of Petroleum Technology, 42, 1,440–1,446.CrossRef Burke, N. E., Hobbs, R. E., & Kashou, S. F. (1990). Measurement and Modeling of Asphaltene Precipitation (includes associated paper 23831). Journal of Petroleum Technology, 42, 1,440–1,446.CrossRef
111.
go back to reference Novosad, Z., & Costain, T. (1990). Experimental and modeling studies of asphaltene equilibria for a reservoir under CO2 injection. In Proceedings of the 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, LA, Sept 23−26 1990; Society of Petroleum Engineers: Richardson, Texas; SPE 20530. Novosad, Z., & Costain, T. (1990). Experimental and modeling studies of asphaltene equilibria for a reservoir under CO2 injection. In Proceedings of the 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, LA, Sept 23−26 1990; Society of Petroleum Engineers: Richardson, Texas; SPE 20530.
112.
go back to reference Hirschberg, A., & Hermans, L. (1984) Asphaltene phase behavior: A molecular thermodynamic model, Presented at International Symposium on Characterization of Heavy Crude Oils and Petroleum Residues, Lyon, France, June15–17; Editions Technip, 492–497. Hirschberg, A., & Hermans, L. (1984) Asphaltene phase behavior: A molecular thermodynamic model, Presented at International Symposium on Characterization of Heavy Crude Oils and Petroleum Residues, Lyon, France, June15–17; Editions Technip, 492–497.
113.
go back to reference Kawanaka, S., Park, S., & Mansoori, G. (1991). Organic deposition from reservoir fluids: a thermodynamic predictive technique. SPE Reservoir Engineering, 6, 185–192.CrossRef Kawanaka, S., Park, S., & Mansoori, G. (1991). Organic deposition from reservoir fluids: a thermodynamic predictive technique. SPE Reservoir Engineering, 6, 185–192.CrossRef
114.
go back to reference Scott, R. L., & Magat, M. (1945). The Thermodynamics of High‐Polymer Solutions: I. The Free Energy of Mixing of Solvents and Polymers of Heterogeneous Distribution. Journal of Chemical Physics, 13, 172–177.CrossRef Scott, R. L., & Magat, M. (1945). The Thermodynamics of High‐Polymer Solutions: I. The Free Energy of Mixing of Solvents and Polymers of Heterogeneous Distribution. Journal of Chemical Physics, 13, 172–177.CrossRef
115.
go back to reference Manshad, A. K., & Edalat, M. (2008). Application of continuous polydisperse molecular thermodynamics for modeling asphaltene precipitation in crude oil systems. Energy and Fuels, 22, 2678–2686.CrossRef Manshad, A. K., & Edalat, M. (2008). Application of continuous polydisperse molecular thermodynamics for modeling asphaltene precipitation in crude oil systems. Energy and Fuels, 22, 2678–2686.CrossRef
116.
go back to reference Browarzik, D., Laux, H., & Rahimian, I. (1999). Asphaltene flocculation in crude oil systems. Fluid Phase Equilibria, 154, 285–300.CrossRef Browarzik, D., Laux, H., & Rahimian, I. (1999). Asphaltene flocculation in crude oil systems. Fluid Phase Equilibria, 154, 285–300.CrossRef
117.
go back to reference Browarzik, C., & Browarzik, D. (2005). Modeling the onset of asphaltene flocculation at high pressure by an association model. Petroleum Science and Technology, 23, 795–810.CrossRef Browarzik, C., & Browarzik, D. (2005). Modeling the onset of asphaltene flocculation at high pressure by an association model. Petroleum Science and Technology, 23, 795–810.CrossRef
118.
go back to reference Browarzik, D., Kabatek, R., Kahl, H., & Laux, H. (2002). Flocculation of asphaltenes at high pressure. II. Calculation of the onset of flocculation. Petroleum Science and Technology, 20, 233–249.CrossRef Browarzik, D., Kabatek, R., Kahl, H., & Laux, H. (2002). Flocculation of asphaltenes at high pressure. II. Calculation of the onset of flocculation. Petroleum Science and Technology, 20, 233–249.CrossRef
119.
go back to reference Yarranton, H. W., & Masliyah, J. H. (1996). Molar mass distribution and solubility modeling of asphaltenes. AICHE Journal, 42, 3533–3543.CrossRef Yarranton, H. W., & Masliyah, J. H. (1996). Molar mass distribution and solubility modeling of asphaltenes. AICHE Journal, 42, 3533–3543.CrossRef
120.
go back to reference Nor-Azian, N., & Adewumi, M. (1993). Development of asphaltene phase equilibria predictive model. In Proceedings of the Eastern Regional Conference and Exhibition of the SPE, Pittsburgh, Pennsylvania, Nov 2−4, 1993; Society of Petroleum Engineers:Richardson, Texas; SPE 26905. Nor-Azian, N., & Adewumi, M. (1993). Development of asphaltene phase equilibria predictive model. In Proceedings of the Eastern Regional Conference and Exhibition of the SPE, Pittsburgh, Pennsylvania, Nov 2−4, 1993; Society of Petroleum Engineers:Richardson, Texas; SPE 26905.
121.
go back to reference Alboudwarej, H., Akbarzadeh, K., Beck, J., Svrcek, W. Y., & Yarranton, H. W. (2003). Regular solution model for asphaltene precipitation from bitumens and solvents. AICHE Journal, 49, 2948–2956.CrossRef Alboudwarej, H., Akbarzadeh, K., Beck, J., Svrcek, W. Y., & Yarranton, H. W. (2003). Regular solution model for asphaltene precipitation from bitumens and solvents. AICHE Journal, 49, 2948–2956.CrossRef
122.
go back to reference Akbarzadeh, K., Dhillon, A., Svrcek, W. Y., & Yarranton, H. W. (2004). Methodology for the characterization and modeling of asphaltene precipitation from heavy oils diluted with n-alkanes. Energy and Fuels, 18, 1434–1441.CrossRef Akbarzadeh, K., Dhillon, A., Svrcek, W. Y., & Yarranton, H. W. (2004). Methodology for the characterization and modeling of asphaltene precipitation from heavy oils diluted with n-alkanes. Energy and Fuels, 18, 1434–1441.CrossRef
123.
go back to reference Wiehe, I. A., Yarranton, H. W., Akbarzadeh, K., Rahimi, P. M., & Teclemariam, A. (2005). The paradox of asphaltene precipitation with normal paraffins. Energy and Fuels, 19, 1261–1267.CrossRef Wiehe, I. A., Yarranton, H. W., Akbarzadeh, K., Rahimi, P. M., & Teclemariam, A. (2005). The paradox of asphaltene precipitation with normal paraffins. Energy and Fuels, 19, 1261–1267.CrossRef
124.
go back to reference Tharanivasan, A. K., Yarranton, H. W., & Taylor, S. D. (2010). Application of a Regular Solution-Based Model to Asphaltene Precipitation from Live Oils. Energy and Fuels, 25, 528–538.CrossRef Tharanivasan, A. K., Yarranton, H. W., & Taylor, S. D. (2010). Application of a Regular Solution-Based Model to Asphaltene Precipitation from Live Oils. Energy and Fuels, 25, 528–538.CrossRef
125.
go back to reference Cimino, R., Correra, S., Sacomani, P., & Carniani, C. (1995). Thermodynamic modelling for prediction of asphaltene deposition in live oils. In The SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, Feb 14-17, 1995; Society of Petroleum Engineers: Richardson, Texas; SPE 28993. Cimino, R., Correra, S., Sacomani, P., & Carniani, C. (1995). Thermodynamic modelling for prediction of asphaltene deposition in live oils. In The SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, Feb 14-17, 1995; Society of Petroleum Engineers: Richardson, Texas; SPE 28993.
126.
go back to reference Wang, J., & Buckley, J. (2001). A two-component solubility model of the onset of asphaltene flocculation in crude oils. Energy and Fuels, 15, 1004–1012.CrossRef Wang, J., & Buckley, J. (2001). A two-component solubility model of the onset of asphaltene flocculation in crude oils. Energy and Fuels, 15, 1004–1012.CrossRef
127.
go back to reference Buckley, J., Hirasaki, G., Liu, Y., Von Drasek, S., Wang, J., & Gill, B. (1998). Asphaltene precipitation and solvent properties of crude oils. Petroleum Science and Technology, 16, 251–285.CrossRef Buckley, J., Hirasaki, G., Liu, Y., Von Drasek, S., Wang, J., & Gill, B. (1998). Asphaltene precipitation and solvent properties of crude oils. Petroleum Science and Technology, 16, 251–285.CrossRef
128.
go back to reference Mohammadi, A. H., & Richon, D. (2007). A monodisperse thermodynamic model for estimating asphaltene precipitation. AICHE Journal, 53, 2940–2947.CrossRef Mohammadi, A. H., & Richon, D. (2007). A monodisperse thermodynamic model for estimating asphaltene precipitation. AICHE Journal, 53, 2940–2947.CrossRef
129.
go back to reference Mohammadi, A. H., Eslamimanesh, A., & Richon, D. (2012). Monodisperse thermodynamic model based on chemical Flory–Hüggins polymer solution theories for predicting asphaltene precipitation. Industrial and Engineering Chemistry Research, 51, 4041–4055.CrossRef Mohammadi, A. H., Eslamimanesh, A., & Richon, D. (2012). Monodisperse thermodynamic model based on chemical Flory–Hüggins polymer solution theories for predicting asphaltene precipitation. Industrial and Engineering Chemistry Research, 51, 4041–4055.CrossRef
130.
go back to reference Pazuki, G., & Nikookar, M. (2006). A modified Flory-Huggins model for prediction of asphaltenes precipitation in crude oil. Fuel, 85, 1083–1086.CrossRef Pazuki, G., & Nikookar, M. (2006). A modified Flory-Huggins model for prediction of asphaltenes precipitation in crude oil. Fuel, 85, 1083–1086.CrossRef
131.
go back to reference Mofidi, A. M., & Edalat, M. (2006). A simplified thermodynamic modeling procedure for predicting asphaltene precipitation. Fuel, 85, 2616–2621.CrossRef Mofidi, A. M., & Edalat, M. (2006). A simplified thermodynamic modeling procedure for predicting asphaltene precipitation. Fuel, 85, 2616–2621.CrossRef
132.
go back to reference Nourbakhsh, H., Yazdizadeh, M., & Esmaeilzadeh, F. (2011). Prediction of asphaltene precipitation by the extended Flory–Huggins model using the modified Esmaeilzadeh–Roshanfekr equation of state. Journal of Petroleum Science and Engineering, 80, 61–68.CrossRef Nourbakhsh, H., Yazdizadeh, M., & Esmaeilzadeh, F. (2011). Prediction of asphaltene precipitation by the extended Flory–Huggins model using the modified Esmaeilzadeh–Roshanfekr equation of state. Journal of Petroleum Science and Engineering, 80, 61–68.CrossRef
133.
go back to reference Orangi, H. S., Modarress, H., Fazlali, A., & Namazi, M. (2006). Phase behavior of binary mixture of asphaltene solvent and ternary mixture of asphaltene solvent precipitant. Fluid Phase Equilibria, 245, 117–124.CrossRef Orangi, H. S., Modarress, H., Fazlali, A., & Namazi, M. (2006). Phase behavior of binary mixture of asphaltene solvent and ternary mixture of asphaltene solvent precipitant. Fluid Phase Equilibria, 245, 117–124.CrossRef
134.
go back to reference Mousavi-Dehghani, S., Mirzayi, B., Mousavi, S., & Fasih, M. (2010). An Applied and Efficient Model for Asphaltene Precipitation In Production and Miscible Gas Injection Processes. Petroleum Science and Technology, 28, 113–124.CrossRef Mousavi-Dehghani, S., Mirzayi, B., Mousavi, S., & Fasih, M. (2010). An Applied and Efficient Model for Asphaltene Precipitation In Production and Miscible Gas Injection Processes. Petroleum Science and Technology, 28, 113–124.CrossRef
135.
go back to reference Miller, A. R. (1943). The Vapor-Pressure Equations Of Solutions And The Osmotic Pressure Of Rubber. Proceedings of the Cambridge Philosophical Society, 39, 131–131.CrossRef Miller, A. R. (1943). The Vapor-Pressure Equations Of Solutions And The Osmotic Pressure Of Rubber. Proceedings of the Cambridge Philosophical Society, 39, 131–131.CrossRef
136.
go back to reference Yang, Z., Ma, C., Lin, X., Yang, J., & Guo, T. (1999). Experimental and modeling studies on the asphaltene precipitation in degassed and gas-injected reservoir oils. Fluid Phase Equilibria, 157, 143–158.CrossRef Yang, Z., Ma, C., Lin, X., Yang, J., & Guo, T. (1999). Experimental and modeling studies on the asphaltene precipitation in degassed and gas-injected reservoir oils. Fluid Phase Equilibria, 157, 143–158.CrossRef
137.
go back to reference Akbarzadeh, K., Ayatollahi, S., Moshfeghian, M., Alboudwarej, H., & Yarranton, H. (2004). Estimation of SARA fraction properties with the SRK EOS. Journal of Canadian Petroleum Technology, 43, 31–39. Akbarzadeh, K., Ayatollahi, S., Moshfeghian, M., Alboudwarej, H., & Yarranton, H. (2004). Estimation of SARA fraction properties with the SRK EOS. Journal of Canadian Petroleum Technology, 43, 31–39.
138.
go back to reference Du, J. L., & Zhang, D. (2004). A thermodynamic model for the prediction of asphaltene precipitation. Petroleum Science and Technology, 22, 1023–1033.CrossRef Du, J. L., & Zhang, D. (2004). A thermodynamic model for the prediction of asphaltene precipitation. Petroleum Science and Technology, 22, 1023–1033.CrossRef
139.
go back to reference Anderko, A. (1989). Extension of the AEOS model to systems containing any number of associating and inert components. Fluid Phase Equilibria, 50, 21–52.CrossRef Anderko, A. (1989). Extension of the AEOS model to systems containing any number of associating and inert components. Fluid Phase Equilibria, 50, 21–52.CrossRef
140.
go back to reference Ikonomou, G., & Donohue, M. (1986). Thermodynamics of hydrogen‐bonded molecules: The associated perturbed anisotropic chain theory. AICHE Journal, 32, 1716–1725.CrossRef Ikonomou, G., & Donohue, M. (1986). Thermodynamics of hydrogen‐bonded molecules: The associated perturbed anisotropic chain theory. AICHE Journal, 32, 1716–1725.CrossRef
141.
go back to reference Ikonomou, G. D., & Donohue, M. D. (1988). Extension of the associated perturbed anisotropic chain theory to mixtures with more than one associating component. Fluid Phase Equilibria, 39, 129–159.CrossRef Ikonomou, G. D., & Donohue, M. D. (1988). Extension of the associated perturbed anisotropic chain theory to mixtures with more than one associating component. Fluid Phase Equilibria, 39, 129–159.CrossRef
142.
go back to reference Vafaie-Sefti, M., Mousavi-Dehghani, S. A., & Mohammad-Zadeh, M. (2003). A simple model for asphaltene deposition in petroleum mixtures. Fluid Phase Equilibria, 206, 1–11.CrossRef Vafaie-Sefti, M., Mousavi-Dehghani, S. A., & Mohammad-Zadeh, M. (2003). A simple model for asphaltene deposition in petroleum mixtures. Fluid Phase Equilibria, 206, 1–11.CrossRef
143.
go back to reference Sabbagh, O., Akbarzadeh, K., Badamchi-Zadeh, A., Svrcek, W., & Yarranton, H. (2006). Applying the PR-EoS to asphaltene precipitation from n-alkane diluted heavy oils and bitumens. Energy and Fuels, 20, 625–634.CrossRef Sabbagh, O., Akbarzadeh, K., Badamchi-Zadeh, A., Svrcek, W., & Yarranton, H. (2006). Applying the PR-EoS to asphaltene precipitation from n-alkane diluted heavy oils and bitumens. Energy and Fuels, 20, 625–634.CrossRef
144.
go back to reference Agrawal, P., Schoeggl, F., Satyro, M., Taylor, S., & Yarranton, H. (2012). Measurement and modeling of the phase behavior of solvent diluted bitumens. Fluid Phase Equilibria, 334, 51–64.CrossRef Agrawal, P., Schoeggl, F., Satyro, M., Taylor, S., & Yarranton, H. (2012). Measurement and modeling of the phase behavior of solvent diluted bitumens. Fluid Phase Equilibria, 334, 51–64.CrossRef
145.
go back to reference Li, Z., & Firoozabadi, A. (2010). Modeling asphaltene precipitation by n-alkanes from heavy oils and bitumens using cubic-plus-association equation of state. Energy and Fuels, 24, 1106–1113.CrossRef Li, Z., & Firoozabadi, A. (2010). Modeling asphaltene precipitation by n-alkanes from heavy oils and bitumens using cubic-plus-association equation of state. Energy and Fuels, 24, 1106–1113.CrossRef
146.
go back to reference Kontogeorgis, G. M., Voutsas, E. C., Yakoumis, I. V., & Tassios, D. P. (1996). An equation of state for associating fluids. Industrial and Engineering Chemistry Research, 35, 4310–4318.CrossRef Kontogeorgis, G. M., Voutsas, E. C., Yakoumis, I. V., & Tassios, D. P. (1996). An equation of state for associating fluids. Industrial and Engineering Chemistry Research, 35, 4310–4318.CrossRef
147.
go back to reference Wertheim, M. (1984). Fluids with highly directional attractive forces. I. Statistical thermodynamics. Journal of Statistical Physics, 35, 19–34.MathSciNetMATHCrossRef Wertheim, M. (1984). Fluids with highly directional attractive forces. I. Statistical thermodynamics. Journal of Statistical Physics, 35, 19–34.MathSciNetMATHCrossRef
148.
go back to reference Wertheim, M. (1984). Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. Journal of Statistical Physics, 35, 35–47.MathSciNetMATHCrossRef Wertheim, M. (1984). Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. Journal of Statistical Physics, 35, 35–47.MathSciNetMATHCrossRef
149.
go back to reference Wertheim, M. (1986). Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres. Journal of Chemical Physics, 85, 2929–2936.CrossRef Wertheim, M. (1986). Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres. Journal of Chemical Physics, 85, 2929–2936.CrossRef
150.
go back to reference Wertheim, M. (1986). Fluids with highly directional attractive forces. III. Multiple attraction sites. Journal of Statistical Physics, 42, 459–476.MathSciNetCrossRef Wertheim, M. (1986). Fluids with highly directional attractive forces. III. Multiple attraction sites. Journal of Statistical Physics, 42, 459–476.MathSciNetCrossRef
151.
go back to reference Wertheim, M. (1986). Fluids with highly directional attractive forces. IV. Equilibrium polymerization. Journal of Statistical Physics, 42, 477–492.MathSciNetCrossRef Wertheim, M. (1986). Fluids with highly directional attractive forces. IV. Equilibrium polymerization. Journal of Statistical Physics, 42, 477–492.MathSciNetCrossRef
152.
go back to reference Wertheim, M. (1987). Thermodynamic perturbation theory of polymerization. Journal of Chemical Physics, 87, 7323–7331.CrossRef Wertheim, M. (1987). Thermodynamic perturbation theory of polymerization. Journal of Chemical Physics, 87, 7323–7331.CrossRef
153.
go back to reference Li, Z., & Firoozabadi, A. (2010). Cubic-plus-association equation of state for asphaltene precipitation in live oils. Energy and Fuels, 24, 2956–2963.CrossRef Li, Z., & Firoozabadi, A. (2010). Cubic-plus-association equation of state for asphaltene precipitation in live oils. Energy and Fuels, 24, 2956–2963.CrossRef
154.
go back to reference Saeedi Dehaghani, A., Sefti, M. V., & Amerighasrodashti, A. (2012). The application of a new association equation of state (AEOS) for prediction of asphaltenes and resins deposition during CO2 gas injection. Petroleum Science and Technology, 30, 1548–1561.CrossRef Saeedi Dehaghani, A., Sefti, M. V., & Amerighasrodashti, A. (2012). The application of a new association equation of state (AEOS) for prediction of asphaltenes and resins deposition during CO2 gas injection. Petroleum Science and Technology, 30, 1548–1561.CrossRef
155.
go back to reference Chapman, W. G., Jackson, G., & Gubbins, K. E. (1988). Phase equilibria of associating fluids: chain molecules with multiple bonding sites. Molecular Physics, 65, 1057–1079.CrossRef Chapman, W. G., Jackson, G., & Gubbins, K. E. (1988). Phase equilibria of associating fluids: chain molecules with multiple bonding sites. Molecular Physics, 65, 1057–1079.CrossRef
156.
go back to reference Chapman, W. G., Gubbins, K. E., Jackson, G., & Radosz, M. (1990). New reference equation of state for associating liquids. Industrial and Engineering Chemistry Research, 29, 1709–1721.CrossRef Chapman, W. G., Gubbins, K. E., Jackson, G., & Radosz, M. (1990). New reference equation of state for associating liquids. Industrial and Engineering Chemistry Research, 29, 1709–1721.CrossRef
157.
go back to reference David Ting, P., Hirasaki, G. J., & Chapman, W. G. (2003). Modeling of asphaltene phase behavior with the SAFT equation of state. Petroleum Science and Technology, 21, 647–661.CrossRef David Ting, P., Hirasaki, G. J., & Chapman, W. G. (2003). Modeling of asphaltene phase behavior with the SAFT equation of state. Petroleum Science and Technology, 21, 647–661.CrossRef
158.
go back to reference Gross, J., & Sadowski, G. (2001). Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Industrial and Engineering Chemistry Research, 40, 1244–1260.CrossRef Gross, J., & Sadowski, G. (2001). Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Industrial and Engineering Chemistry Research, 40, 1244–1260.CrossRef
159.
go back to reference Barker, J. A., & Henderson, D. (1967). Perturbation theory and equation of state for fluids: The square‐well potential. Journal of Chemical Physics, 47, 2856–2861.CrossRef Barker, J. A., & Henderson, D. (1967). Perturbation theory and equation of state for fluids: The square‐well potential. Journal of Chemical Physics, 47, 2856–2861.CrossRef
160.
go back to reference Barker, J. (1967). A.; Henderson, D. Perturbation theory and equation of state for fluids. II. A successful theory of liquids. Journal of Chemical Physics, 47, 4714–4721.CrossRef Barker, J. (1967). A.; Henderson, D. Perturbation theory and equation of state for fluids. II. A successful theory of liquids. Journal of Chemical Physics, 47, 4714–4721.CrossRef
161.
go back to reference Vargas, F. M., Gonzalez, D. L., Hirasaki, G. J., & Chapman, W. G. (2009). Modeling asphaltene phase behavior in crude oil systems using the perturbed chain form of the statistical associating fluid theory (PC-SAFT) equation of state. Energy and Fuels, 23, 1140–1146.CrossRef Vargas, F. M., Gonzalez, D. L., Hirasaki, G. J., & Chapman, W. G. (2009). Modeling asphaltene phase behavior in crude oil systems using the perturbed chain form of the statistical associating fluid theory (PC-SAFT) equation of state. Energy and Fuels, 23, 1140–1146.CrossRef
162.
go back to reference Panuganti, S. R., Tavakkoli, M., Vargas, F. M., Gonzalez, D. L., & Chapman, W. G. (2013). SAFT model for upstream asphaltene applications. Fluid Phase Equilibria, 359, 2–16.CrossRef Panuganti, S. R., Tavakkoli, M., Vargas, F. M., Gonzalez, D. L., & Chapman, W. G. (2013). SAFT model for upstream asphaltene applications. Fluid Phase Equilibria, 359, 2–16.CrossRef
163.
go back to reference Panuganti, S. R., Vargas, F. M., Gonzalez, D. L., Kurup, A. S., & Chapman, W. G. (2012). PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior. Fuel, 93, 658–669.CrossRef Panuganti, S. R., Vargas, F. M., Gonzalez, D. L., Kurup, A. S., & Chapman, W. G. (2012). PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior. Fuel, 93, 658–669.CrossRef
164.
go back to reference Gonzalez, D. L., Hirasaki, G. J., Creek, J., & Chapman, W. G. (2007). Modeling of asphaltene precipitation due to changes in composition using the perturbed chain statistical associating fluid theory equation of state. Energy and Fuels, 21, 1231–1242.CrossRef Gonzalez, D. L., Hirasaki, G. J., Creek, J., & Chapman, W. G. (2007). Modeling of asphaltene precipitation due to changes in composition using the perturbed chain statistical associating fluid theory equation of state. Energy and Fuels, 21, 1231–1242.CrossRef
165.
go back to reference Tavakkoli, M., Panuganti, S. R., Taghikhani, V., Pishvaie, M. R., & Chapman, W. G. (2014). Understanding the polydisperse behavior of asphaltenes during precipitation. Fuel, 117, 206–217.CrossRef Tavakkoli, M., Panuganti, S. R., Taghikhani, V., Pishvaie, M. R., & Chapman, W. G. (2014). Understanding the polydisperse behavior of asphaltenes during precipitation. Fuel, 117, 206–217.CrossRef
166.
go back to reference Zúñiga-Hinojosa, M. A., Justo-García, D. N., Aquino-Olivos, M. A., Román-Ramírez, L. A., & García-Sánchez, F. (2014). Modeling of asphaltene precipitation from -alkane diluted heavy oils and bitumens using the PC-SAFT equation of state. Fluid Phase Equilibria, 376, 210–224.CrossRef Zúñiga-Hinojosa, M. A., Justo-García, D. N., Aquino-Olivos, M. A., Román-Ramírez, L. A., & García-Sánchez, F. (2014). Modeling of asphaltene precipitation from -alkane diluted heavy oils and bitumens using the PC-SAFT equation of state. Fluid Phase Equilibria, 376, 210–224.CrossRef
167.
go back to reference Gil-Villegas, A., Galindo, A., Whitehead, P. J., Mills, S. J., Jackson, G., & Burgess, A. N. (1997). Statistical associating fluid theory for chain molecules with attractive potentials of variable range. Journal of Chemical Physics, 106, 4168–4186.CrossRef Gil-Villegas, A., Galindo, A., Whitehead, P. J., Mills, S. J., Jackson, G., & Burgess, A. N. (1997). Statistical associating fluid theory for chain molecules with attractive potentials of variable range. Journal of Chemical Physics, 106, 4168–4186.CrossRef
168.
go back to reference Artola, P., Pereira, F. E., Adjiman, C. S., Galindo, A., Müller, E. A., Jackson, G., et al. (2011). Understanding the fluid phase behaviour of crude oil: Asphaltene precipitation. Fluid Phase Equilibria, 306, 129–136.CrossRef Artola, P., Pereira, F. E., Adjiman, C. S., Galindo, A., Müller, E. A., Jackson, G., et al. (2011). Understanding the fluid phase behaviour of crude oil: Asphaltene precipitation. Fluid Phase Equilibria, 306, 129–136.CrossRef
169.
go back to reference Wu, J., Prausnitz, J. M., & Firoozabadi, A. (2000). Molecular thermodynamics of asphaltene precipitation in reservoir fluids. AICHE Journal, 46, 197–209.CrossRef Wu, J., Prausnitz, J. M., & Firoozabadi, A. (2000). Molecular thermodynamics of asphaltene precipitation in reservoir fluids. AICHE Journal, 46, 197–209.CrossRef
170.
go back to reference Buenrostro‐Gonzalez, E., Lira‐Galeana, C., Gil‐Villegas, A., & Wu, J. (2004). Asphaltene precipitation in crude oils: Theory and experiments. AICHE Journal, 50, 2552–2570.CrossRef Buenrostro‐Gonzalez, E., Lira‐Galeana, C., Gil‐Villegas, A., & Wu, J. (2004). Asphaltene precipitation in crude oils: Theory and experiments. AICHE Journal, 50, 2552–2570.CrossRef
171.
go back to reference Aquino-Olivos, M. A., Grolier, J. E., Randzio, S. L., Aguirre-Gutiérrez, A. J., & García-Sánchez, F. (2013). Determination of the asphaltene precipitation envelope and bubble point pressure for a Mexican crude oil by scanning transitiometry. Energy and Fuels, 27, 1212–1222.CrossRef Aquino-Olivos, M. A., Grolier, J. E., Randzio, S. L., Aguirre-Gutiérrez, A. J., & García-Sánchez, F. (2013). Determination of the asphaltene precipitation envelope and bubble point pressure for a Mexican crude oil by scanning transitiometry. Energy and Fuels, 27, 1212–1222.CrossRef
172.
go back to reference Rassamdana, H., Dabir, B., Nematy, M., Farhani, M., & Sahimi, M. (1996). Asphalt flocculation and deposition: I. The onset of precipitation. AICHE Journal, 42, 10–22.CrossRef Rassamdana, H., Dabir, B., Nematy, M., Farhani, M., & Sahimi, M. (1996). Asphalt flocculation and deposition: I. The onset of precipitation. AICHE Journal, 42, 10–22.CrossRef
173.
go back to reference Rassamdana, H., & Sahimi, M. (1996). Asphalt flocculation and deposition: II. Formation and growth of fractal aggregates. AICHE Journal, 42, 3318–3332.CrossRef Rassamdana, H., & Sahimi, M. (1996). Asphalt flocculation and deposition: II. Formation and growth of fractal aggregates. AICHE Journal, 42, 3318–3332.CrossRef
174.
go back to reference Hu, Y., Chen, G., Yang, J., & Guo, T. (2000). A study on the application of scaling equation for asphaltene precipitation. Fluid Phase Equilibria, 171, 181–195.CrossRef Hu, Y., Chen, G., Yang, J., & Guo, T. (2000). A study on the application of scaling equation for asphaltene precipitation. Fluid Phase Equilibria, 171, 181–195.CrossRef
175.
go back to reference Duda, Y., & Lira-Galeana, C. (2006). Thermodynamics of asphaltene structure and aggregation. Fluid Phase Equilibria, 241, 257–267.CrossRef Duda, Y., & Lira-Galeana, C. (2006). Thermodynamics of asphaltene structure and aggregation. Fluid Phase Equilibria, 241, 257–267.CrossRef
176.
go back to reference Zahedi, G., Fazlali, A., Hosseini, S., Pazuki, G., & Sheikhattar, L. (2009). Prediction of asphaltene precipitation in crude oil. Journal of Petroleum Science and Engineering, 68, 218–222.CrossRef Zahedi, G., Fazlali, A., Hosseini, S., Pazuki, G., & Sheikhattar, L. (2009). Prediction of asphaltene precipitation in crude oil. Journal of Petroleum Science and Engineering, 68, 218–222.CrossRef
177.
go back to reference Na’imi, S. R., Gholami, A., & Asoodeh, M. (2014). Prediction of crude oil asphaltene precipitation using support vector regression. Journal of Dispersion Science and Technology, 35, 518–523.CrossRef Na’imi, S. R., Gholami, A., & Asoodeh, M. (2014). Prediction of crude oil asphaltene precipitation using support vector regression. Journal of Dispersion Science and Technology, 35, 518–523.CrossRef
178.
go back to reference Alvarez-Ramirez, F., Ramirez-Jaramillo, E., & Ruiz-Morales, Y. (2006). Calculation of the interaction potential curve between asphaltene-asphaltene, asphaltene-resin, and resin-resin systems using density functional theory. Energy and Fuels, 20, 195–204.CrossRef Alvarez-Ramirez, F., Ramirez-Jaramillo, E., & Ruiz-Morales, Y. (2006). Calculation of the interaction potential curve between asphaltene-asphaltene, asphaltene-resin, and resin-resin systems using density functional theory. Energy and Fuels, 20, 195–204.CrossRef
179.
go back to reference Harris, J. (1985). Simplified method for calculating the energy of weakly interacting fragments. Physical Review B, 31, 1770.CrossRef Harris, J. (1985). Simplified method for calculating the energy of weakly interacting fragments. Physical Review B, 31, 1770.CrossRef
180.
go back to reference Vosko, S., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58, 1200–1211.CrossRef Vosko, S., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58, 1200–1211.CrossRef
181.
go back to reference Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45, 13244–13249.CrossRef Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45, 13244–13249.CrossRef
182.
go back to reference Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 92, 508–517.CrossRef Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 92, 508–517.CrossRef
183.
go back to reference Moreira da Costa, L., Stoyanov, S. R., Gusarov, S., Seidl, P. R., Carneiro, W. de M., & José, K., A. (2014). Computational study of the effect of dispersion interactions on the thermochemistry of aggregation of fused polycyclic aromatic hydrocarbons as model asphaltene compounds in solution. Journal of Physical Chemistry A, 118, 896–908.CrossRef Moreira da Costa, L., Stoyanov, S. R., Gusarov, S., Seidl, P. R., Carneiro, W. de M., & José, K., A. (2014). Computational study of the effect of dispersion interactions on the thermochemistry of aggregation of fused polycyclic aromatic hydrocarbons as model asphaltene compounds in solution. Journal of Physical Chemistry A, 118, 896–908.CrossRef
184.
go back to reference Grimme, S. (2003). Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel-and antiparallel-spin pair correlation energies. Journal of Chemical Physics, 118, 9095–9102.CrossRef Grimme, S. (2003). Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel-and antiparallel-spin pair correlation energies. Journal of Chemical Physics, 118, 9095–9102.CrossRef
185.
go back to reference Takatani, T., Hohenstein, E. G., & Sherrill, C. D. (2008). Improvement of the coupled-cluster singles and doubles method via scaling same-and opposite-spin components of the double excitation correlation energy. Journal of Chemical Physics, 128, 124111.CrossRef Takatani, T., Hohenstein, E. G., & Sherrill, C. D. (2008). Improvement of the coupled-cluster singles and doubles method via scaling same-and opposite-spin components of the double excitation correlation energy. Journal of Chemical Physics, 128, 124111.CrossRef
186.
go back to reference Frisch, M. J., Head-Gordon, M., & Pople, J. A. (1990). A direct MP2 gradient method. Chemical Physics Letters, 166, 275–280.CrossRef Frisch, M. J., Head-Gordon, M., & Pople, J. A. (1990). A direct MP2 gradient method. Chemical Physics Letters, 166, 275–280.CrossRef
187.
go back to reference Head-Gordon, M., & Head-Gordon, T. (1994). Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chemical Physics Letters, 220, 122–128.CrossRef Head-Gordon, M., & Head-Gordon, T. (1994). Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chemical Physics Letters, 220, 122–128.CrossRef
188.
go back to reference Frisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. Journal of Chemical Physics, 80, 3265–3269.CrossRef Frisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. Journal of Chemical Physics, 80, 3265–3269.CrossRef
189.
go back to reference Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., & Curtiss, L. A. (2001). 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry, 22, 976–984.CrossRef Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., & Curtiss, L. A. (2001). 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry, 22, 976–984.CrossRef
190.
go back to reference Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A, 102, 1995–2001.CrossRef Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A, 102, 1995–2001.CrossRef
191.
go back to reference Cossi, M., Rega, N., Scalmani, G., & Barone, V. (2003). Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. Journal of Computational Chemistry, 24, 669–681.CrossRef Cossi, M., Rega, N., Scalmani, G., & Barone, V. (2003). Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. Journal of Computational Chemistry, 24, 669–681.CrossRef
192.
go back to reference da Costa, L. M., Stoyanov, S. R., Gusarov, S., Tan, X., Gray, M. R., & Stryker, J. M., et al. (2012). Density functional theory investigation of the contributions of p–p stacking and hydrogen-bonding interactions to the aggregation of model asphaltene compounds. Energy Fuels 26, 2727–2735. da Costa, L. M., Stoyanov, S. R., Gusarov, S., Tan, X., Gray, M. R., & Stryker, J. M., et al. (2012). Density functional theory investigation of the contributions of p–p stacking and hydrogen-bonding interactions to the aggregation of model asphaltene compounds. Energy Fuels 26, 2727–2735.
193.
go back to reference Chai, J., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10, 6615–6620.CrossRef Chai, J., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10, 6615–6620.CrossRef
194.
go back to reference Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3094.CrossRef Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3094.CrossRef
195.
go back to reference da Costa, L. M., Hayaki, S., Stoyanov, S. R., Gusarov, S., Tan, X., Gray, M. R., et al. (2012). 3D-RISM-KH molecular theory of solvation and density functional theory investigation of the role of water in the aggregation of model asphaltenes. Physical Chemistry Chemical Physics, 14, 3922–3934.CrossRef da Costa, L. M., Hayaki, S., Stoyanov, S. R., Gusarov, S., Tan, X., Gray, M. R., et al. (2012). 3D-RISM-KH molecular theory of solvation and density functional theory investigation of the role of water in the aggregation of model asphaltenes. Physical Chemistry Chemical Physics, 14, 3922–3934.CrossRef
196.
go back to reference Carauta, A. N., Correia, J. C., Seidl, P. R., & Silva, D. M. (2005). Conformational search and dimerization study of average structures of asphaltenes. Journal of Molecular Structure (Theochem), 755, 1–8.CrossRef Carauta, A. N., Correia, J. C., Seidl, P. R., & Silva, D. M. (2005). Conformational search and dimerization study of average structures of asphaltenes. Journal of Molecular Structure (Theochem), 755, 1–8.CrossRef
197.
go back to reference Castellano, O., Gimon, R., & Soscun, H. (2011). Theoretical study of the σ–π and π–π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: Implications on the resin–asphaltene stability in crude oil. Energy and Fuels, 25, 2526–2541.CrossRef Castellano, O., Gimon, R., & Soscun, H. (2011). Theoretical study of the σ–π and π–π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: Implications on the resin–asphaltene stability in crude oil. Energy and Fuels, 25, 2526–2541.CrossRef
198.
go back to reference Brandt, H., Hendriks, E., Michels, M., & Visser, F. (1995). Thermodynamic modeling of asphaltene stacking. The Journal of Physical Chemistry, 99, 10430–10432.CrossRef Brandt, H., Hendriks, E., Michels, M., & Visser, F. (1995). Thermodynamic modeling of asphaltene stacking. The Journal of Physical Chemistry, 99, 10430–10432.CrossRef
199.
go back to reference Ortega-Rodriguez, A., Lira-Galeana, C., Ruiz-Morales, Y., & Cruz, S. (2001). Interaction energy in Maya-oil asphaltenes: A molecular mechanics study. Petroleum Science and Technology, 19, 245–256.CrossRef Ortega-Rodriguez, A., Lira-Galeana, C., Ruiz-Morales, Y., & Cruz, S. (2001). Interaction energy in Maya-oil asphaltenes: A molecular mechanics study. Petroleum Science and Technology, 19, 245–256.CrossRef
200.
go back to reference Pacheco-Sánchez, J., Alvarez-Ramírez, F., & Martínez-Magadán, J. (2003). Aggregate asphaltene structural models. American Chemical Society, Division of Petroleum Chemistry, 48, 71–73. Pacheco-Sánchez, J., Alvarez-Ramírez, F., & Martínez-Magadán, J. (2003). Aggregate asphaltene structural models. American Chemical Society, Division of Petroleum Chemistry, 48, 71–73.
201.
go back to reference Pacheco-Sánchez, J., Alvarez-Ramirez, F., & Martínez-Magadán, J. (1676–1686). Morphology of aggregated asphaltene structural models. Energy and Fuels, 2004, 18. Pacheco-Sánchez, J., Alvarez-Ramirez, F., & Martínez-Magadán, J. (1676–1686). Morphology of aggregated asphaltene structural models. Energy and Fuels, 2004, 18.
202.
go back to reference Murgich, J., Merino-Garcia, D., Andersen, S. I., Manuel del Río, J., & Galeana, C. L. (2002). Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions. Langmuir, 18, 9080–9086.CrossRef Murgich, J., Merino-Garcia, D., Andersen, S. I., Manuel del Río, J., & Galeana, C. L. (2002). Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions. Langmuir, 18, 9080–9086.CrossRef
203.
go back to reference Murgich, J., Rodríguez, J., & Aray, Y. (1996). Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins. Energy and Fuels, 10, 68–76. Murgich, J., Rodríguez, J., & Aray, Y. (1996). Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins. Energy and Fuels, 10, 68–76.
204.
go back to reference Murgich, J., & Strausz, O. P. (2001). Molecular mechanics of aggregates of asphaltenes and resins of the Athabasca oil. Petroleum Science and Technology, 19, 231–243.CrossRef Murgich, J., & Strausz, O. P. (2001). Molecular mechanics of aggregates of asphaltenes and resins of the Athabasca oil. Petroleum Science and Technology, 19, 231–243.CrossRef
205.
go back to reference Murgich, J. (2003). Molecular simulation and the aggregation of the heavy fractions in crude oils. Molecular Simulation, 29, 451–461.CrossRef Murgich, J. (2003). Molecular simulation and the aggregation of the heavy fractions in crude oils. Molecular Simulation, 29, 451–461.CrossRef
206.
go back to reference Rogel, E. (2000). Simulation of interactions in asphaltene aggregates. Energy and Fuels, 14, 566–574.CrossRef Rogel, E. (2000). Simulation of interactions in asphaltene aggregates. Energy and Fuels, 14, 566–574.CrossRef
207.
go back to reference Pacheco-Sánchez, J., Zaragoza, I., & Martinez-Magadan, J. (2003). Asphaltene aggregation under vacuum at different temperatures by molecular dynamics. Energy and Fuels, 17, 1346–1355.CrossRef Pacheco-Sánchez, J., Zaragoza, I., & Martinez-Magadan, J. (2003). Asphaltene aggregation under vacuum at different temperatures by molecular dynamics. Energy and Fuels, 17, 1346–1355.CrossRef
208.
go back to reference Takanohashi, T., Sato, S., Saito, I., & Tanaka, R. (2003). Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates. Energy and Fuels, 17, 135–139.CrossRef Takanohashi, T., Sato, S., Saito, I., & Tanaka, R. (2003). Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates. Energy and Fuels, 17, 135–139.CrossRef
209.
go back to reference Boek, E. S., Yakovlev, D. S., & Headen, T. F. (2009). Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation. Energy and Fuels, 23, 1209–1219.CrossRef Boek, E. S., Yakovlev, D. S., & Headen, T. F. (2009). Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation. Energy and Fuels, 23, 1209–1219.CrossRef
210.
go back to reference Rogel, E. (1995). Studies on asphaltene aggregation via computational chemistry. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 104, 85–93.CrossRef Rogel, E. (1995). Studies on asphaltene aggregation via computational chemistry. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 104, 85–93.CrossRef
211.
go back to reference Headen, T. F., Boek, E. S., & Skipper, N. T. (2009). Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations. Energy and Fuels, 23, 1220–1229.CrossRef Headen, T. F., Boek, E. S., & Skipper, N. T. (2009). Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations. Energy and Fuels, 23, 1220–1229.CrossRef
212.
go back to reference Ungerer, P., Rigby, D., Leblanc, B., & Yiannourakou, M. (2014). Sensitivity of the aggregation behaviour of asphaltenes to molecular weight and structure using molecular dynamics. Molecular Simulation, 40, 115–122.CrossRef Ungerer, P., Rigby, D., Leblanc, B., & Yiannourakou, M. (2014). Sensitivity of the aggregation behaviour of asphaltenes to molecular weight and structure using molecular dynamics. Molecular Simulation, 40, 115–122.CrossRef
213.
go back to reference Kuznicki, T., Masliyah, J. H., & Bhattacharjee, S. (2008). Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems. Energy and Fuels, 22, 2379–2389.CrossRef Kuznicki, T., Masliyah, J. H., & Bhattacharjee, S. (2008). Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems. Energy and Fuels, 22, 2379–2389.CrossRef
214.
go back to reference Jian, C., Tang, T., & Bhattacharjee, S. (2014). Molecular dynamics investigation on the aggregation of Violanthrone78-based model asphaltenes in toluene. Energy and Fuels, 28, 3604–3613.CrossRef Jian, C., Tang, T., & Bhattacharjee, S. (2014). Molecular dynamics investigation on the aggregation of Violanthrone78-based model asphaltenes in toluene. Energy and Fuels, 28, 3604–3613.CrossRef
215.
go back to reference Jian, C., & Tang, T. (2014). One-dimensional self-assembly of poly-aromatic compounds revealed by molecular dynamics simulations. Journal of Physical Chemistry B, 118, 12772–12780.CrossRef Jian, C., & Tang, T. (2014). One-dimensional self-assembly of poly-aromatic compounds revealed by molecular dynamics simulations. Journal of Physical Chemistry B, 118, 12772–12780.CrossRef
216.
go back to reference Sedghi, M., Goual, L., Welch, W., & Kubelka, J. (2013). Effect of asphaltene structure on association and aggregation using molecular dynamics. Journal of Physical Chemistry B, 117, 5765–5776.CrossRef Sedghi, M., Goual, L., Welch, W., & Kubelka, J. (2013). Effect of asphaltene structure on association and aggregation using molecular dynamics. Journal of Physical Chemistry B, 117, 5765–5776.CrossRef
217.
go back to reference Teklebrhan, R. B., Ge, L., Bhattacharjee, S., Xu, Z., & Sjöblom, J. (2012). Probing structure–nanoaggregation relations of polyaromatic surfactants: a molecular dynamics simulation and dynamic light scattering study. Journal of Physical Chemistry B, 116, 5907–5918.CrossRef Teklebrhan, R. B., Ge, L., Bhattacharjee, S., Xu, Z., & Sjöblom, J. (2012). Probing structure–nanoaggregation relations of polyaromatic surfactants: a molecular dynamics simulation and dynamic light scattering study. Journal of Physical Chemistry B, 116, 5907–5918.CrossRef
218.
go back to reference Carauta, A. N., Seidl, P. R., Chrisman, E. C., Correia, J. C., Menechini, P. D. O., Silva, D. M., et al. (2005). Modeling solvent effects on asphaltene dimers. Energy and Fuels, 19, 1245–1251.CrossRef Carauta, A. N., Seidl, P. R., Chrisman, E. C., Correia, J. C., Menechini, P. D. O., Silva, D. M., et al. (2005). Modeling solvent effects on asphaltene dimers. Energy and Fuels, 19, 1245–1251.CrossRef
219.
go back to reference Frigerio, F., & Molinari, D. (2011). A multiscale approach to the simulation of asphaltenes. Computational and Theoretical Chemistry, 975, 76–82.CrossRef Frigerio, F., & Molinari, D. (2011). A multiscale approach to the simulation of asphaltenes. Computational and Theoretical Chemistry, 975, 76–82.CrossRef
220.
go back to reference Takanohashi, T., Sato, S., & Tanaka, R. (2003). Molecular dynamics simulation of structural relaxation of asphaltene aggregates. Petroleum Science and Technology, 21, 491–505.CrossRef Takanohashi, T., Sato, S., & Tanaka, R. (2003). Molecular dynamics simulation of structural relaxation of asphaltene aggregates. Petroleum Science and Technology, 21, 491–505.CrossRef
221.
go back to reference Pacheco-Sánchez, J., Zaragoza, I., & Martínez-Magadán, J. (2004). Preliminary study of the effect of pressure on asphaltene disassociation by molecular dynamics. Petroleum Science and Technology, 22, 927–942.CrossRef Pacheco-Sánchez, J., Zaragoza, I., & Martínez-Magadán, J. (2004). Preliminary study of the effect of pressure on asphaltene disassociation by molecular dynamics. Petroleum Science and Technology, 22, 927–942.CrossRef
222.
go back to reference Headen, T. F., & Boek, E. S. (2010). Molecular dynamics simulations of asphaltene aggregation in supercritical carbon dioxide with and without limonene. Energy and Fuels, 25, 503–508.CrossRef Headen, T. F., & Boek, E. S. (2010). Molecular dynamics simulations of asphaltene aggregation in supercritical carbon dioxide with and without limonene. Energy and Fuels, 25, 503–508.CrossRef
223.
go back to reference Hu, M., Shao, C., Dong, L., & Zhu, J. (2011). Molecular dynamics simulation of asphaltene deposition during CO2 miscible flooding. Petroleum Science and Technology, 29, 1274–1284.CrossRef Hu, M., Shao, C., Dong, L., & Zhu, J. (2011). Molecular dynamics simulation of asphaltene deposition during CO2 miscible flooding. Petroleum Science and Technology, 29, 1274–1284.CrossRef
224.
go back to reference Jian, C., Tang, T., & Bhattacharjee, S. (2013). Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations. Energy and Fuels, 2057–2067, 27. Jian, C., Tang, T., & Bhattacharjee, S. (2013). Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations. Energy and Fuels, 2057–2067, 27.
225.
go back to reference Zhang, L., & Greenfield, M. L. (2007). Molecular orientation in model asphalts using molecular simulation. Energy and Fuels, 21, 1102–1111.CrossRef Zhang, L., & Greenfield, M. L. (2007). Molecular orientation in model asphalts using molecular simulation. Energy and Fuels, 21, 1102–1111.CrossRef
226.
go back to reference Diallo, M. S., Strachan, A., Faulon, J., & Goddard, W. A., III. (2004). Thermodynamic properties of asphaltenes through computer assisted structure elucidation and atomistic simulations 1. Bulk Arabian Light asphaltenes. Petroleum Science and Technology, 22, 877–899.CrossRef Diallo, M. S., Strachan, A., Faulon, J., & Goddard, W. A., III. (2004). Thermodynamic properties of asphaltenes through computer assisted structure elucidation and atomistic simulations 1. Bulk Arabian Light asphaltenes. Petroleum Science and Technology, 22, 877–899.CrossRef
227.
go back to reference Aray, Y., Hernández-Bravo, R., Parra, J. G., Rodríguez, J., & Coll, D. S. (2011). Exploring the Structure–solubility relationship of asphaltene models in toluene, heptane, and amphiphiles using a molecular dynamic atomistic methodology. Journal of Physical Chemistry A, 115, 11495–11507.CrossRef Aray, Y., Hernández-Bravo, R., Parra, J. G., Rodríguez, J., & Coll, D. S. (2011). Exploring the Structure–solubility relationship of asphaltene models in toluene, heptane, and amphiphiles using a molecular dynamic atomistic methodology. Journal of Physical Chemistry A, 115, 11495–11507.CrossRef
228.
go back to reference Hansen, C. M. (2007). Hansen solubility parameters: a user’s handbook (2nd ed.). Hoboken: CRC Press.CrossRef Hansen, C. M. (2007). Hansen solubility parameters: a user’s handbook (2nd ed.). Hoboken: CRC Press.CrossRef
229.
go back to reference Aguilera-Mercado, B., Herdes, C., Murgich, J., & Müller, E. (2006). Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils. Energy and Fuels, 20, 327–338.CrossRef Aguilera-Mercado, B., Herdes, C., Murgich, J., & Müller, E. (2006). Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils. Energy and Fuels, 20, 327–338.CrossRef
230.
go back to reference Ortega-Rodríguez, A., Cruz, S., Gil-Villegas, A., Guevara-Rodriguez, F., & Lira-Galeana, C. (2003). Molecular view of the asphaltene aggregation behavior in asphaltene-resin mixtures. Energy and Fuels, 17, 1100–1108.CrossRef Ortega-Rodríguez, A., Cruz, S., Gil-Villegas, A., Guevara-Rodriguez, F., & Lira-Galeana, C. (2003). Molecular view of the asphaltene aggregation behavior in asphaltene-resin mixtures. Energy and Fuels, 17, 1100–1108.CrossRef
231.
go back to reference Zhang, S., Sun, L. L., Xu, J., Wu, H., & Wen, H. (2010). Aggregate structure in heavy crude oil: using a dissipative particle dynamics based mesoscale platform. Energy and Fuels, 24, 4312–4326.CrossRef Zhang, S., Sun, L. L., Xu, J., Wu, H., & Wen, H. (2010). Aggregate structure in heavy crude oil: using a dissipative particle dynamics based mesoscale platform. Energy and Fuels, 24, 4312–4326.CrossRef
232.
go back to reference Zhang, S., Xu, J., Wen, H., & Bhattacharjee, S. (2011). Integration of rotational algorithms into dissipative particle dynamics: modeling polyaromatic hydrocarbons on the meso-scale. Molecular Physics, 109, 1873–1888.CrossRef Zhang, S., Xu, J., Wen, H., & Bhattacharjee, S. (2011). Integration of rotational algorithms into dissipative particle dynamics: modeling polyaromatic hydrocarbons on the meso-scale. Molecular Physics, 109, 1873–1888.CrossRef
233.
go back to reference Wang, S., Xu, J., & Wen, H. (2014). The aggregation and diffusion of asphaltenes studied by GPU-accelerated dissipative particle dynamics. Computer Physics Communications, 185, 3069–3078.CrossRef Wang, S., Xu, J., & Wen, H. (2014). The aggregation and diffusion of asphaltenes studied by GPU-accelerated dissipative particle dynamics. Computer Physics Communications, 185, 3069–3078.CrossRef
Metadata
Title
Understanding Asphaltene Aggregation and Precipitation Through Theoretical and Computational Studies
Authors
Cuiying Jian
Tian Tang
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-40124-9_1