Skip to main content
Top

2016 | OriginalPaper | Chapter

2. Advancement in Numerical Simulations of Gas Hydrate Dissociation in Porous Media

Authors : Zhen Liu, Xiong Yu

Published in: New Frontiers in Oil and Gas Exploration

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The amount of research on gas hydrates has been rising dramatically due to the significant role gas hydrates play as a persistent trouble for gas industry, a promising energy source, and a potential threat to environment. In the energy exploration perspective, numerical simulations play a major role in improving our understanding of the fundamentals gas hydrate dissociation as well as hydrate reservoir behaviors. This chapter presents an integrative review on the computer simulation models of gas hydrate dissociation, which have boomed since their first appearance in 1980s. Necessary background knowledge for gas hydrates and the existing investigations on this topic are firstly summarized. A unified framework is then developed for the purpose of integrating and classifying the existing models. The major mechanisms involved in the phase change process are illustrated and explained on the level of governing equations. The similarities and discrepancies among the models are demonstrated and discussed using this framework. Discussions continue on the auxiliary relationships for describing the material properties based on their categories. The various auxiliary relationships employed in the existing computational models are summarized and compared. Finally, the results obtained by previous simulations as well as other laboratory or field data are discussed. Noteworthy trends in the numerical simulations of gas hydrates behaviors are also unveiled. Recommendations are provided for future research. By providing an overview of the topic area, this chapter intends to provide scientific basis to understand the existing gas hydrate simulation models as well as serve as a guide for future research on advanced gas hydrate simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Selim M. S. & Sloan, E. D. (1985). Modeling of the dissociation of in-situ hydrate. SPE 1985 California Regional Meeting, Bakersfield, CA, March 27–29. Selim M. S. & Sloan, E. D. (1985). Modeling of the dissociation of in-situ hydrate. SPE 1985 California Regional Meeting, Bakersfield, CA, March 27–29.
2.
go back to reference Bishnoi, P. R., & Natarajan, V. (1996). Formation and decomposition of gas hydrates. Fluid Phase Equilibria, 117, 168–177.CrossRef Bishnoi, P. R., & Natarajan, V. (1996). Formation and decomposition of gas hydrates. Fluid Phase Equilibria, 117, 168–177.CrossRef
3.
go back to reference Englezos, P. (1993). Clathrate hydrates. Industrial and Engineering Chemistry Research, 32, 1251–1274.CrossRef Englezos, P. (1993). Clathrate hydrates. Industrial and Engineering Chemistry Research, 32, 1251–1274.CrossRef
4.
go back to reference Kneafsey, T. J., Tomutsa, L., Moridis, G. J., Seol, Y., Freifeld, B. M., Taylor, C. E., et al. (2007). Methane hydrate formation and dissociation in a partially saturated core-scale sand sample. Journal of Petroleum Science and Engineering, 56, 108–126.CrossRef Kneafsey, T. J., Tomutsa, L., Moridis, G. J., Seol, Y., Freifeld, B. M., Taylor, C. E., et al. (2007). Methane hydrate formation and dissociation in a partially saturated core-scale sand sample. Journal of Petroleum Science and Engineering, 56, 108–126.CrossRef
5.
go back to reference Bayles, G. A., Sawyer, W. K., & Malone, R. D. (1986). A steam cycling model for gas production from a hydrate reservoir. Chemical Engineering Communication, 47, 225–245.CrossRef Bayles, G. A., Sawyer, W. K., & Malone, R. D. (1986). A steam cycling model for gas production from a hydrate reservoir. Chemical Engineering Communication, 47, 225–245.CrossRef
6.
go back to reference Holder, G. D., & Angert, P. F. (1982). Simulation of gas production from a reservoir containing both gas hydrates and free natural gas. SPE Annual Technical Conference and Exhibition, 26–29 September 1982, New Orleans, Louisiana. Holder, G. D., & Angert, P. F. (1982). Simulation of gas production from a reservoir containing both gas hydrates and free natural gas. SPE Annual Technical Conference and Exhibition, 26–29 September 1982, New Orleans, Louisiana.
7.
go back to reference Ahmadi, G., Ji, C., & Smith, D. H. (2007). Natural gas production from hydrate dissociation: an axisymmetric model. Journal of Petroleum Science and Engineering, 58, 245–258.CrossRef Ahmadi, G., Ji, C., & Smith, D. H. (2007). Natural gas production from hydrate dissociation: an axisymmetric model. Journal of Petroleum Science and Engineering, 58, 245–258.CrossRef
8.
go back to reference Hong, H., Pooladi-Darvish, M., & Bishnoi, P. R. (2003). Analytical modeling of gas production from hydrates in porous media. Journal of Canadian Petroleum Technology, 42(11), 45–56.CrossRef Hong, H., Pooladi-Darvish, M., & Bishnoi, P. R. (2003). Analytical modeling of gas production from hydrates in porous media. Journal of Canadian Petroleum Technology, 42(11), 45–56.CrossRef
9.
go back to reference Katz, D. L. (1971). Depths to which frozen gas fields (gas hydrates) may be expected. Journal of Petroleum Technology, 23(4), 419–423.CrossRef Katz, D. L. (1971). Depths to which frozen gas fields (gas hydrates) may be expected. Journal of Petroleum Technology, 23(4), 419–423.CrossRef
10.
go back to reference Makogon, Y. F. (1965). Hydrate formation in the gas-bearing beds under permafrost conditions. Gazovaia Promyshlennost, 5, 14–15. Makogon, Y. F. (1965). Hydrate formation in the gas-bearing beds under permafrost conditions. Gazovaia Promyshlennost, 5, 14–15.
11.
go back to reference Makogon, Y. F. (1997). Hydrates of natural gas. Tulsa, Oklahoma: Penn Well Books. Makogon, Y. F. (1997). Hydrates of natural gas. Tulsa, Oklahoma: Penn Well Books.
12.
go back to reference Sun, X., Nanchary, N., & Mohanty, K. K. (2005). 1-D modeling of hydrate depressurization in porous media. Transport in Porous Media, 58, 315–338.CrossRef Sun, X., Nanchary, N., & Mohanty, K. K. (2005). 1-D modeling of hydrate depressurization in porous media. Transport in Porous Media, 58, 315–338.CrossRef
13.
go back to reference Janicki, G., Schluter, S., Hennig, T., Lyko, H., & Deergerg, G. (2011). Simulation of methane recovery from gas hydrates combined with storing carbon dioxide as hydrates. Journal of Geological Research, 2011, 1–15.CrossRef Janicki, G., Schluter, S., Hennig, T., Lyko, H., & Deergerg, G. (2011). Simulation of methane recovery from gas hydrates combined with storing carbon dioxide as hydrates. Journal of Geological Research, 2011, 1–15.CrossRef
14.
go back to reference Phale, H. A., Zhu, T., White, M. D., & McGrail B. P. (2006). Simulation study on injection of CO2-microemulsion for methane recovery from gas hydrate reservoirs. SPE Gas Technology Symposium, Calgary, Alberta, Canada, 15–17 May 2006. Phale, H. A., Zhu, T., White, M. D., & McGrail B. P. (2006). Simulation study on injection of CO2-microemulsion for methane recovery from gas hydrate reservoirs. SPE Gas Technology Symposium, Calgary, Alberta, Canada, 15–17 May 2006.
15.
go back to reference Burshears, M., O’Brien, T. J., & Malone, R. D. (1986). A multi-phase, multi-dimensional, variable composition simulation of gas production from a conventional gas reservoir in contact with hydrates. Unconventional Gas Technology Symposium of the Society of Petroleum Engineers, Louisville, KY, May 18–21. Burshears, M., O’Brien, T. J., & Malone, R. D. (1986). A multi-phase, multi-dimensional, variable composition simulation of gas production from a conventional gas reservoir in contact with hydrates. Unconventional Gas Technology Symposium of the Society of Petroleum Engineers, Louisville, KY, May 18–21.
16.
go back to reference Rempel, A. W., & Buffett, B. A. (1997). Formation and accumulation of gas hydrate in porous media. Journal of Geophysical Research, 102(5), 151–164. Rempel, A. W., & Buffett, B. A. (1997). Formation and accumulation of gas hydrate in porous media. Journal of Geophysical Research, 102(5), 151–164.
17.
go back to reference Kvenvolden, K. A., Carlson, P. R., & Threlkeld, C. N. (1993). Possible connection between two Alaskan catastrophes occurring 25 years apart (1964 and 1989). Geology, 21, 813–816.CrossRef Kvenvolden, K. A., Carlson, P. R., & Threlkeld, C. N. (1993). Possible connection between two Alaskan catastrophes occurring 25 years apart (1964 and 1989). Geology, 21, 813–816.CrossRef
18.
go back to reference Booth, J. S., Rowe, M. M., & Fischer, K. M. (1996). Offshore gas hydrate sample database with an overview and preliminary analysis. U.S. Geological Survey, Open File Report 96-272, Denver, Colorado. Booth, J. S., Rowe, M. M., & Fischer, K. M. (1996). Offshore gas hydrate sample database with an overview and preliminary analysis. U.S. Geological Survey, Open File Report 96-272, Denver, Colorado.
19.
go back to reference MacDonald, G. J. (1990). The future of methane as an energy resource. Annual Review of Energy, 15, 53–83.CrossRef MacDonald, G. J. (1990). The future of methane as an energy resource. Annual Review of Energy, 15, 53–83.CrossRef
20.
go back to reference White, M. D., & McGrail, B. P. (2008). Numerical simulation of methane hydrate production from geologic formations via carbon dioxide injection. 2008 Offshore Technology Conference, Houston, Texas, 5–8 May. White, M. D., & McGrail, B. P. (2008). Numerical simulation of methane hydrate production from geologic formations via carbon dioxide injection. 2008 Offshore Technology Conference, Houston, Texas, 5–8 May.
21.
go back to reference Nazridoust, K., & Ahmadi, G. (2007). Computational modeling of methane hydrate dissociation in a sandstone core. Chemical Engineering Science, 62, 6155–6177.CrossRef Nazridoust, K., & Ahmadi, G. (2007). Computational modeling of methane hydrate dissociation in a sandstone core. Chemical Engineering Science, 62, 6155–6177.CrossRef
22.
go back to reference Sun, X., & Mohanty, K. K. (2006). Kinetic simulation of methane hydrate formation and dissociation in porous media. Chemical Engineering Science, 61, 3476–3495.CrossRef Sun, X., & Mohanty, K. K. (2006). Kinetic simulation of methane hydrate formation and dissociation in porous media. Chemical Engineering Science, 61, 3476–3495.CrossRef
23.
go back to reference Hammerschmidt, E. G. (1934). Formation of gas hydrates in natural gas transmission lines. Industrial, 26(8), 851–855. Hammerschmidt, E. G. (1934). Formation of gas hydrates in natural gas transmission lines. Industrial, 26(8), 851–855.
24.
go back to reference Makogon, Y. F., Holditch, S. A., & Makogon, T. Y. (2007). Natural gas-hydrates—a potential energy source for the 21st Century. Journal of Petroleum Science and Engineering, 56, 14–31.CrossRef Makogon, Y. F., Holditch, S. A., & Makogon, T. Y. (2007). Natural gas-hydrates—a potential energy source for the 21st Century. Journal of Petroleum Science and Engineering, 56, 14–31.CrossRef
25.
go back to reference Maksimov, A. M. (1992). Mathematical model of the volume dissociation of gas-phase hydrates in a porous medium with water-phase mobility. Moscow: Institute for Gas and Oil Problems, Academy of Sciences of the USSR and GKNO of the USSR. Maksimov, A. M. (1992). Mathematical model of the volume dissociation of gas-phase hydrates in a porous medium with water-phase mobility. Moscow: Institute for Gas and Oil Problems, Academy of Sciences of the USSR and GKNO of the USSR.
26.
go back to reference Dickens, G. R. (2003). Rethinking the global carbon cycle with a large dynamic and microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters, 213, 169–183.CrossRef Dickens, G. R. (2003). Rethinking the global carbon cycle with a large dynamic and microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters, 213, 169–183.CrossRef
27.
go back to reference Kennett, J. P., Cannariato, K. G., Hendy, I. L., & Behl, R. J. (2000). Carbon isotopic evidence for methane hydrate stability during Quaternary Interstadials. Science, 288, 128–133.CrossRef Kennett, J. P., Cannariato, K. G., Hendy, I. L., & Behl, R. J. (2000). Carbon isotopic evidence for methane hydrate stability during Quaternary Interstadials. Science, 288, 128–133.CrossRef
28.
go back to reference Kayen, R. E., & Lee, H. J. (1991). Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea margin. Marine Georesources & Geotechnology, 10, 125–141.CrossRef Kayen, R. E., & Lee, H. J. (1991). Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea margin. Marine Georesources & Geotechnology, 10, 125–141.CrossRef
29.
go back to reference Paull, C. K., Buelow, W. J., Ussler, W., & Borowski, W. S. (1996). Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology, 24, 143–146.CrossRef Paull, C. K., Buelow, W. J., Ussler, W., & Borowski, W. S. (1996). Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology, 24, 143–146.CrossRef
30.
go back to reference Moridis, G. J., & Sloan, E. D. (2006). Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments. LBNL-52568, Berkeley, CA: Lawrence Berkeley National Laboratory. Moridis, G. J., & Sloan, E. D. (2006). Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments. LBNL-52568, Berkeley, CA: Lawrence Berkeley National Laboratory.
31.
go back to reference Moridis, G. J., & Collett, T. S. (2003). Strategies for gas production from hydrate accumulations under various geologic conditions. LBNL-52568, Berkeley, CA: Lawrence Berkeley National Laboratory Moridis, G. J., & Collett, T. S. (2003). Strategies for gas production from hydrate accumulations under various geologic conditions. LBNL-52568, Berkeley, CA: Lawrence Berkeley National Laboratory
32.
go back to reference Moridis, G. J., Kneafsey, T. J., Kowalsky, M., & Reagan, M. (2006). Numerical, laboratory and field studies of gas production from natural hydrate accumulations in geologic media. Berkeley, CA: Earth Science Division, Lawrence Berkeley National Laboratory. Moridis, G. J., Kneafsey, T. J., Kowalsky, M., & Reagan, M. (2006). Numerical, laboratory and field studies of gas production from natural hydrate accumulations in geologic media. Berkeley, CA: Earth Science Division, Lawrence Berkeley National Laboratory.
33.
go back to reference Esmaeilzadeh, F., Zeighami, M. E., & Fathi, J. (2008). 1-D modeling of hydrate decomposition in porous media. Proceedings of World Academy of Science, Engineering and Technology, 41, 647–653. Esmaeilzadeh, F., Zeighami, M. E., & Fathi, J. (2008). 1-D modeling of hydrate decomposition in porous media. Proceedings of World Academy of Science, Engineering and Technology, 41, 647–653.
34.
go back to reference Hyndman, R. D., & Davis, E. E. (1992). A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res., 97, 7025–7041.CrossRef Hyndman, R. D., & Davis, E. E. (1992). A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res., 97, 7025–7041.CrossRef
35.
go back to reference Kowalsky, M. B., & Moridis, G. J. (2007). Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media. Berkeley, CA: Earth Science Division, Lawrence Berkeley National Laboratory. Kowalsky, M. B., & Moridis, G. J. (2007). Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media. Berkeley, CA: Earth Science Division, Lawrence Berkeley National Laboratory.
36.
go back to reference Uddin, M., Coombe, D., Law, D., & Gunter, B. (2008). Numerical studies of gas hydrate formation and decomposition in a geological reservoir. Journal of Energy Resources Technology, 130, 032501-1–032501-14. Uddin, M., Coombe, D., Law, D., & Gunter, B. (2008). Numerical studies of gas hydrate formation and decomposition in a geological reservoir. Journal of Energy Resources Technology, 130, 032501-1–032501-14.
37.
go back to reference White, M. D., Wurstner, S. K., & McGrail, B. P. (2009). Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection. Marine and Petroleum Geology, 28(2), 546–560.CrossRef White, M. D., Wurstner, S. K., & McGrail, B. P. (2009). Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection. Marine and Petroleum Geology, 28(2), 546–560.CrossRef
38.
go back to reference Goel, N. (2006). In situ methane hydrate dissociation with carbon dioxide sequestration: current knowledge and issues. Journal of Petroleum Science and Engineering, 51, 169–184.CrossRef Goel, N. (2006). In situ methane hydrate dissociation with carbon dioxide sequestration: current knowledge and issues. Journal of Petroleum Science and Engineering, 51, 169–184.CrossRef
39.
go back to reference Kamath, V. A., & Godbole, S. P. (1987). Evaluation of hot-brine simulation technique for gas production from natural gas hydrates. Journal of Petroleum Technology, 39, 1379–1388. Kamath, V. A., & Godbole, S. P. (1987). Evaluation of hot-brine simulation technique for gas production from natural gas hydrates. Journal of Petroleum Technology, 39, 1379–1388.
40.
go back to reference Sloan, E. D., & Koh, C. A. (2007). Clathrate hydrates of natural gases (3rd ed.). Boca Raton: CRC Press.CrossRef Sloan, E. D., & Koh, C. A. (2007). Clathrate hydrates of natural gases (3rd ed.). Boca Raton: CRC Press.CrossRef
41.
go back to reference Graue, A., Kvamme, B., Baldwin, B., Stevens, J., Howard, J., & Aspenes, E. (2006). Environmentally friendly CO2 storage in hydrate reservoirs benefits from associated spontaneous methane production. In Proceedings of the Offshore Technology Conference (OTC-18087), Huston, Texas, United States. Graue, A., Kvamme, B., Baldwin, B., Stevens, J., Howard, J., & Aspenes, E. (2006). Environmentally friendly CO2 storage in hydrate reservoirs benefits from associated spontaneous methane production. In Proceedings of the Offshore Technology Conference (OTC-18087), Huston, Texas, United States.
42.
go back to reference Stevens, J., Howard, J., Baldwin, B., Ersland, B., Huseb, J., & Graue, A. (2008). Experimental hydrate formation and production scenarios based on CO2 sequestration. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6–10, 2008. Stevens, J., Howard, J., Baldwin, B., Ersland, B., Huseb, J., & Graue, A. (2008). Experimental hydrate formation and production scenarios based on CO2 sequestration. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6–10, 2008.
43.
go back to reference McGruire, P. L. (1982). Methane hydrate gas production by thermal stimulation. Proceedings of the Fourth Canadian Permafrost Conference, H.M. French (ed.), Calgary. McGruire, P. L. (1982). Methane hydrate gas production by thermal stimulation. Proceedings of the Fourth Canadian Permafrost Conference, H.M. French (ed.), Calgary.
44.
go back to reference Selim, M. S., & Sloan, E. D. (1990). Hydrate dissociation in sediments. SPE Reservoir Engineering, 5(2), 245–251.CrossRef Selim, M. S., & Sloan, E. D. (1990). Hydrate dissociation in sediments. SPE Reservoir Engineering, 5(2), 245–251.CrossRef
45.
go back to reference Yousif, M. H., Abass, H. H., Selim, M. S., & Sloan, E. D. (1991). Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reservoir Engineering, 6(1), 69–76.CrossRef Yousif, M. H., Abass, H. H., Selim, M. S., & Sloan, E. D. (1991). Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reservoir Engineering, 6(1), 69–76.CrossRef
46.
go back to reference Guo, T., Wu, B., Zhu, Y., Fan, S., & Chen, G. (2004). A review on the gas hydrate research in China. Journal of Petroleum Science and Engineering, 41, 11–20.CrossRef Guo, T., Wu, B., Zhu, Y., Fan, S., & Chen, G. (2004). A review on the gas hydrate research in China. Journal of Petroleum Science and Engineering, 41, 11–20.CrossRef
47.
go back to reference Sloan, E. D. (2003). Clathrate hydrate measurements: microscopic mesoscopic, and macroscopic. The Journal of Chemical Thermodynamics, 35, 41–53.CrossRef Sloan, E. D. (2003). Clathrate hydrate measurements: microscopic mesoscopic, and macroscopic. The Journal of Chemical Thermodynamics, 35, 41–53.CrossRef
48.
go back to reference Pooladi-Darvish, M. (2004). Gas production from hydrate reservoirs and its modeling. Society of Petroleum Engineers, 56(6), 65–71. Pooladi-Darvish, M. (2004). Gas production from hydrate reservoirs and its modeling. Society of Petroleum Engineers, 56(6), 65–71.
49.
go back to reference Davy, H. (1881). The bakerian lecture on some of the combinations of oxymuriatic gas and oxygen, and on the chemical relations of these principles to inflammable bodies. Philosophical Transactions of the Royal Society, London 1811,101, (Part I), pp. 1-35. Davy, H. (1881). The bakerian lecture on some of the combinations of oxymuriatic gas and oxygen, and on the chemical relations of these principles to inflammable bodies. Philosophical Transactions of the Royal Society, London 1811,101, (Part I), pp. 1-35.
50.
go back to reference Faraday, M. (1823). On fluid chlorine. Philosophical Transactions of the Royal Society B: Biological Sciences, London, 113, 160–165.CrossRef Faraday, M. (1823). On fluid chlorine. Philosophical Transactions of the Royal Society B: Biological Sciences, London, 113, 160–165.CrossRef
51.
go back to reference Davidson, D. W. (1973). Gas hydrates. In F. Frank (Ed.), Water: A comprehensive treatise (Vol. 2, pp. 115–234). New York: Plenum Press. Chapter 3. Davidson, D. W. (1973). Gas hydrates. In F. Frank (Ed.), Water: A comprehensive treatise (Vol. 2, pp. 115–234). New York: Plenum Press. Chapter 3.
52.
go back to reference Deaton, W. M., & Frost, E. M. Jr. (1946). US Bureau of Mines Monograph 8, No. 8. Deaton, W. M., & Frost, E. M. Jr. (1946). US Bureau of Mines Monograph 8, No. 8.
53.
go back to reference Chersky, N. J., & Makogon, Y. F. (1970). Solid gas world reserves are enormous. Oil Gas International, 10(8), 82–84. Chersky, N. J., & Makogon, Y. F. (1970). Solid gas world reserves are enormous. Oil Gas International, 10(8), 82–84.
54.
go back to reference Makogon, Y. F., Trebin, F. A., Trofimuk, A. A., Tsarev, V. P., & Chersky, N. V. (1972). Detection of a pool of natural gas in a solid (hydrate gas) state. Doklady Akademii Nauk SSSR, 196, 203–206. originally published in Russian, 1971. Makogon, Y. F., Trebin, F. A., Trofimuk, A. A., Tsarev, V. P., & Chersky, N. V. (1972). Detection of a pool of natural gas in a solid (hydrate gas) state. Doklady Akademii Nauk SSSR, 196, 203–206. originally published in Russian, 1971.
55.
go back to reference Shipley, T. H., Houston, K. J., Buffler, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., et al. (1979). Seismic evidence for widespread possible gad hydrate horizons on continental slopes and rises. American Association of Petroleum Geologists Bulletin, 63, 2204–2213. Shipley, T. H., Houston, K. J., Buffler, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., et al. (1979). Seismic evidence for widespread possible gad hydrate horizons on continental slopes and rises. American Association of Petroleum Geologists Bulletin, 63, 2204–2213.
56.
go back to reference Stoll, R. D., & Bryan, G. M. (1979). Physical properties of sediments containing gas hydrates. Journal of Geophysical Research, 84, 1629–1634.CrossRef Stoll, R. D., & Bryan, G. M. (1979). Physical properties of sediments containing gas hydrates. Journal of Geophysical Research, 84, 1629–1634.CrossRef
57.
go back to reference Finlay, P., & Krason, J. (1990). Evaluation of geological relationships to gas hydrate formation and stability: Summary report., Gas Energy Rev. Vol., 18, 12–18. Finlay, P., & Krason, J. (1990). Evaluation of geological relationships to gas hydrate formation and stability: Summary report., Gas Energy Rev. Vol., 18, 12–18.
58.
go back to reference Beauchamp, B. (2004). Natural gas hydrates: myths facts and issues. Comptes Rendus Geoscience, 226, 751–765.CrossRef Beauchamp, B. (2004). Natural gas hydrates: myths facts and issues. Comptes Rendus Geoscience, 226, 751–765.CrossRef
59.
go back to reference Kim, J., Yang, D., & Rutqvist, J. (2011). Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits. SPE Reservoir Simulation Symposium, Woodlands, Texas, 21–23 February. Kim, J., Yang, D., & Rutqvist, J. (2011). Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits. SPE Reservoir Simulation Symposium, Woodlands, Texas, 21–23 February.
60.
go back to reference Klar, A., & Soga, K. (2005). Coupled deformation-flow analysis for methane hydrate production by depressurized wells. Proceeding of 3rd International Biot Conference on Poromechanics, pp. 653–659. Klar, A., & Soga, K. (2005). Coupled deformation-flow analysis for methane hydrate production by depressurized wells. Proceeding of 3rd International Biot Conference on Poromechanics, pp. 653–659.
61.
go back to reference Koh, C. A., & Sloan, E. D. (2007). Natural gas hydrates: recent advances and challenges in energy and environmental applications. American Institute of Chemical Engineers, 53(7), 1636–1643.CrossRef Koh, C. A., & Sloan, E. D. (2007). Natural gas hydrates: recent advances and challenges in energy and environmental applications. American Institute of Chemical Engineers, 53(7), 1636–1643.CrossRef
62.
go back to reference Kwon, T., Song, K., & Cho, G. (2010). Destabilization of marine gas hydrate-bearing sediments induced by a hot wellbore: a numerical approach. Energy Fuels, 24, 5493–5507.CrossRef Kwon, T., Song, K., & Cho, G. (2010). Destabilization of marine gas hydrate-bearing sediments induced by a hot wellbore: a numerical approach. Energy Fuels, 24, 5493–5507.CrossRef
63.
go back to reference Li, L., Cheng, Y., Zhang, Y., Cui, Q., & Zhao, F. (2011). A fluid-solid coupling model of wellbore stability for hydrate bearing sediments. Procedia Engineering, 18, 363–368.CrossRef Li, L., Cheng, Y., Zhang, Y., Cui, Q., & Zhao, F. (2011). A fluid-solid coupling model of wellbore stability for hydrate bearing sediments. Procedia Engineering, 18, 363–368.CrossRef
64.
go back to reference Rutqvist, J., Moridis, G. J., Grover, T., & Collett, T. (2009). Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. Journal of Petroleum Science and Engineering, 67, 1–12.CrossRef Rutqvist, J., Moridis, G. J., Grover, T., & Collett, T. (2009). Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. Journal of Petroleum Science and Engineering, 67, 1–12.CrossRef
65.
go back to reference Yamamoto, K. (2008). Methane hydrate bearing sediments: a new subject of geomechanics. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 1–6 October 2008, Goa, India. Yamamoto, K. (2008). Methane hydrate bearing sediments: a new subject of geomechanics. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 1–6 October 2008, Goa, India.
66.
go back to reference Gudmundsson, J., & Borrehaug, A. (1996) Frozen hydrate for transport of natural gas. Proc. 2nd Int. Conf.on Natural Gas Hydrates, pp. 415–422. Gudmundsson, J., & Borrehaug, A. (1996) Frozen hydrate for transport of natural gas. Proc. 2nd Int. Conf.on Natural Gas Hydrates, pp. 415–422.
67.
go back to reference Gudmundsson, J., Andersson, V., Levik, O. I., Mork, M., & Borrehaug, A. (2000). Hydrate technology for capturing stranded gas. Ann. NY Acad. Science, 912, 403–410.CrossRef Gudmundsson, J., Andersson, V., Levik, O. I., Mork, M., & Borrehaug, A. (2000). Hydrate technology for capturing stranded gas. Ann. NY Acad. Science, 912, 403–410.CrossRef
68.
go back to reference Stern, L. A., Circone, S., Kirby, S. H., & Durham, W. B. (2001). Anomalous preservation of pure methane hydrate at 1 atm. The Journal of Physical Chemistry, 105(9), 1756–1762.CrossRef Stern, L. A., Circone, S., Kirby, S. H., & Durham, W. B. (2001). Anomalous preservation of pure methane hydrate at 1 atm. The Journal of Physical Chemistry, 105(9), 1756–1762.CrossRef
69.
go back to reference Takaoki, T., Hirai, K., Kamei, M., & Kanda, H. (2005). Study of natural gas hydrate (NGH) carriers. Proceedings of the Fifth International Conference on Natural Gas Hydrates, June 13-16, Trondheim, Norway. Paper 4021. Takaoki, T., Hirai, K., Kamei, M., & Kanda, H. (2005). Study of natural gas hydrate (NGH) carriers. Proceedings of the Fifth International Conference on Natural Gas Hydrates, June 13-16, Trondheim, Norway. Paper 4021.
70.
go back to reference Florusse, L. J., Peters, C. J., Schoonman, J., Hester, K. C., Koh, C. A., Dec, S. F., et al. (2004). Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science., 306(5695), 469–471.CrossRef Florusse, L. J., Peters, C. J., Schoonman, J., Hester, K. C., Koh, C. A., Dec, S. F., et al. (2004). Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science., 306(5695), 469–471.CrossRef
71.
go back to reference Mao, W. L., Mao, H., Goncharov, A. F., Struzhkin, V. V., Guo, Q., Hu, J., et al. (2002). Hydrogen clusters in clathrate hydrate. Science, 297, 2247–2249.CrossRef Mao, W. L., Mao, H., Goncharov, A. F., Struzhkin, V. V., Guo, Q., Hu, J., et al. (2002). Hydrogen clusters in clathrate hydrate. Science, 297, 2247–2249.CrossRef
72.
go back to reference Hunt, S. C. (1992). Gas hydrate thermal energy storage system. United States Patent No. 5140824. Hunt, S. C. (1992). Gas hydrate thermal energy storage system. United States Patent No. 5140824.
73.
go back to reference Guo, K. H., Shu, B. F. & Yang, W. J. (1996). Advances and applications of gas hydrate thermal energy storage technology. Proceedings of 1st Trabzon Int. Energy and Environment Guo, K. H., Shu, B. F. & Yang, W. J. (1996). Advances and applications of gas hydrate thermal energy storage technology. Proceedings of 1st Trabzon Int. Energy and Environment
74.
go back to reference Chen, G. J., Sun, C. Y., Ma, C. F., & Guo, T. M. (2002). A new technique for separating (Hydrogen + Methane) gas mixtures using hydrate technology. Proceedings of the 4th International Conference on Gas Hydrates, May 19-23, 2002, Yokohama, Japan, pp. 1016–1020. Chen, G. J., Sun, C. Y., Ma, C. F., & Guo, T. M. (2002). A new technique for separating (Hydrogen + Methane) gas mixtures using hydrate technology. Proceedings of the 4th International Conference on Gas Hydrates, May 19-23, 2002, Yokohama, Japan, pp. 1016–1020.
75.
go back to reference Pawar, R. J., & Zyvoloski, G. A. (2005). Numerical simulation of gas production from methane hydrate reservoirs. Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, pp. 259–267. Pawar, R. J., & Zyvoloski, G. A. (2005). Numerical simulation of gas production from methane hydrate reservoirs. Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, pp. 259–267.
76.
go back to reference McGuire, P. L. (1981). Methane hydrate gas production by thermal stimulation. Proceedings of the Fourth Canadian Permafrost Conference, March 2-6, 1981, Calgary, Alberta. McGuire, P. L. (1981). Methane hydrate gas production by thermal stimulation. Proceedings of the Fourth Canadian Permafrost Conference, March 2-6, 1981, Calgary, Alberta.
77.
go back to reference Goel, N., Wiggins, M., & Shah, S. (2001). Analytical modeling of gas recovery from in situ hydrates dissociation. Journal of Canadian Petroleum Technology, 29, 115–127. Goel, N., Wiggins, M., & Shah, S. (2001). Analytical modeling of gas recovery from in situ hydrates dissociation. Journal of Canadian Petroleum Technology, 29, 115–127.
78.
go back to reference Ji, C., Ahmadi, G., & Smith, D. H. (2001). Natural gas production from hydrate decomposition by depressurization. Chemical Engineering Science, 56, 5801–5814.CrossRef Ji, C., Ahmadi, G., & Smith, D. H. (2001). Natural gas production from hydrate decomposition by depressurization. Chemical Engineering Science, 56, 5801–5814.CrossRef
79.
go back to reference Vasil’ev, V. N., Popov, V. V., & Tsypkin, G. G. (2006). Numerical investigation of the decomposition of gas hydrates coexisting with gas in natural reservoirs. Fluid Dynamics, 41(4), 599–605.MATHCrossRef Vasil’ev, V. N., Popov, V. V., & Tsypkin, G. G. (2006). Numerical investigation of the decomposition of gas hydrates coexisting with gas in natural reservoirs. Fluid Dynamics, 41(4), 599–605.MATHCrossRef
80.
go back to reference Bai, Y., Li, Q., Li, X., & Du, Y. (2008). The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Science in China Series E: Technological Sciences, 51(8), 1272–1282.MATHCrossRef Bai, Y., Li, Q., Li, X., & Du, Y. (2008). The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Science in China Series E: Technological Sciences, 51(8), 1272–1282.MATHCrossRef
81.
go back to reference Bai, Y., Li, Q., Li, X., & Du, Y. (2008). The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Science in China Series E: Technological Sciences, 51(8), 1272–1282.MATHCrossRef Bai, Y., Li, Q., Li, X., & Du, Y. (2008). The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Science in China Series E: Technological Sciences, 51(8), 1272–1282.MATHCrossRef
82.
go back to reference Tsypkin, G. G. (2007). Analytical solution of the nonlinear problem of gas hydrate dissociation in a formation. Fluid Dynamics, 42(5), 798–806.MathSciNetMATHCrossRef Tsypkin, G. G. (2007). Analytical solution of the nonlinear problem of gas hydrate dissociation in a formation. Fluid Dynamics, 42(5), 798–806.MathSciNetMATHCrossRef
83.
go back to reference Gerami, S., & Pooladi-Darvish, M. (2007). Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid. Journal of Petroleum Science and Engineering, 56, 146–164.CrossRef Gerami, S., & Pooladi-Darvish, M. (2007). Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid. Journal of Petroleum Science and Engineering, 56, 146–164.CrossRef
84.
go back to reference Hong, H., & Pooladi-Darvish, M. (2005). Simulation of depressurization for gas production from gas hydrate reservoirs. Journal of Canadian Petroleum Technology, 44(11), 39–46.CrossRef Hong, H., & Pooladi-Darvish, M. (2005). Simulation of depressurization for gas production from gas hydrate reservoirs. Journal of Canadian Petroleum Technology, 44(11), 39–46.CrossRef
85.
86.
go back to reference van der Waals, J. H., & Platteeuw, J. C. (1959). Clathrate Solutions. Advances in Chemical Physics, 2, 1–57. van der Waals, J. H., & Platteeuw, J. C. (1959). Clathrate Solutions. Advances in Chemical Physics, 2, 1–57.
87.
go back to reference Byk, S. S., & Fomina, V. J. (1968). Gas Hydrates. Russian Chemical Reviews, 37(6), 469–491.CrossRef Byk, S. S., & Fomina, V. J. (1968). Gas Hydrates. Russian Chemical Reviews, 37(6), 469–491.CrossRef
88.
go back to reference Hand, J. H., Katz, D. L., & Verma, V. K. (1974). Review of gas hydrates with implication for ocean sediments. In I. R. Kaplan (Ed.), Natural Gases in Marine Sediments (pp. 179–194). New York: Plenum.CrossRef Hand, J. H., Katz, D. L., & Verma, V. K. (1974). Review of gas hydrates with implication for ocean sediments. In I. R. Kaplan (Ed.), Natural Gases in Marine Sediments (pp. 179–194). New York: Plenum.CrossRef
89.
go back to reference Jeffrey, G. A., & McMullan, R. K. (1967). The clathrate hydrates. Progress in inorganic chemistry, 8, 43–108.CrossRef Jeffrey, G. A., & McMullan, R. K. (1967). The clathrate hydrates. Progress in inorganic chemistry, 8, 43–108.CrossRef
90.
go back to reference Jeffrey, G. A. (1984). Hydrate inclusion compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1(3), 211–222.CrossRef Jeffrey, G. A. (1984). Hydrate inclusion compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1(3), 211–222.CrossRef
91.
go back to reference Holder, G. D., Zetts, S. P., & Pradham, N. (1988). Phase behavior in systems containing clathrate hydrates. Reviews in Chemical Engineering, 5(l), 1–69.CrossRef Holder, G. D., Zetts, S. P., & Pradham, N. (1988). Phase behavior in systems containing clathrate hydrates. Reviews in Chemical Engineering, 5(l), 1–69.CrossRef
92.
go back to reference Makogon, Y. F. (1981). Hydrates of natural gas. Tulsa, OK: Penn Well Publishing. (translated by W. J. Cieslewicz). Makogon, Y. F. (1981). Hydrates of natural gas. Tulsa, OK: Penn Well Publishing. (translated by W. J. Cieslewicz).
93.
go back to reference Berecz, E., & Balla-Achs, M. (1983). Studies in Inorganic Chemistry 4: Gas Hydrates (pp. 184–188). Amsterdam: Elsevier. Berecz, E., & Balla-Achs, M. (1983). Studies in Inorganic Chemistry 4: Gas Hydrates (pp. 184–188). Amsterdam: Elsevier.
94.
go back to reference Cox, J. L. (1983). Natural gas hydrates: Properties, occurrence and recovery. Woburn, MA: Butterworth Publiehere. Cox, J. L. (1983). Natural gas hydrates: Properties, occurrence and recovery. Woburn, MA: Butterworth Publiehere.
95.
go back to reference Sloan, E. D. (1990). Clathrate hydrates of natural gases. New York: Dekker. Sloan, E. D. (1990). Clathrate hydrates of natural gases. New York: Dekker.
96.
go back to reference Sloan, E. D., Jr. (1998). Clathrate hydrates of natural gases (2nd ed.). New York, NY: Marcel Deckker Inc. Sloan, E. D., Jr. (1998). Clathrate hydrates of natural gases (2nd ed.). New York, NY: Marcel Deckker Inc.
97.
go back to reference Buffett, B. A. (2000). Clathrate hydrates. Annual Review of Earth and Planetary Sciences, 28, 477–507.CrossRef Buffett, B. A. (2000). Clathrate hydrates. Annual Review of Earth and Planetary Sciences, 28, 477–507.CrossRef
98.
go back to reference Koh, C. A. (2002). Towards a fundamental understanding of natural gas hydrates. Chemical Society Reviews, 31, 157–167.CrossRef Koh, C. A. (2002). Towards a fundamental understanding of natural gas hydrates. Chemical Society Reviews, 31, 157–167.CrossRef
99.
go back to reference Waite, W. F., Santamarina, J. C., Cortes, D. D., Dugan, B., Espinoza, D. N., Germaine, J., et al. (2009). Physical properties of hydrate-bearing soils. Reviews of Geophysics, 47, RG4003.CrossRef Waite, W. F., Santamarina, J. C., Cortes, D. D., Dugan, B., Espinoza, D. N., Germaine, J., et al. (2009). Physical properties of hydrate-bearing soils. Reviews of Geophysics, 47, RG4003.CrossRef
100.
go back to reference Sung, W., Lee, H., Lee, H., & Lee, C. (2002). Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection. Energy Sources, 24, 499–512.CrossRef Sung, W., Lee, H., Lee, H., & Lee, C. (2002). Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection. Energy Sources, 24, 499–512.CrossRef
101.
go back to reference Tonnet, N., & Herri, J. M. (2009). Methane hydrates bearing synthetic sediments-experimental and numerical approaches of the dissociation. Chemical Engineering Science, 64(19), 4089–4100.CrossRef Tonnet, N., & Herri, J. M. (2009). Methane hydrates bearing synthetic sediments-experimental and numerical approaches of the dissociation. Chemical Engineering Science, 64(19), 4089–4100.CrossRef
102.
go back to reference Yu, F., Song, Y., Liu, W., Li, Y., & Lam, W. (2011). Analyses of stress strain behavior and constitutive model of artificial methane hydrate. Journal of Petroleum Science and Engineering, 77, 183–188.CrossRef Yu, F., Song, Y., Liu, W., Li, Y., & Lam, W. (2011). Analyses of stress strain behavior and constitutive model of artificial methane hydrate. Journal of Petroleum Science and Engineering, 77, 183–188.CrossRef
103.
go back to reference Bagheri, M., & Settari, A. (2008). Modeling of geomechanics in naturally fractured reservoirs. SPE Reservoir Evaluation & Engineering, 11(1), 108–118.CrossRef Bagheri, M., & Settari, A. (2008). Modeling of geomechanics in naturally fractured reservoirs. SPE Reservoir Evaluation & Engineering, 11(1), 108–118.CrossRef
104.
go back to reference Freeman, T. L, Chalatumyk, R. J., & Bogdanov, I. I. (2009). Geomechanics of heterogeneous bitumen carbonates. SPE Reservoir Simulation Symposium, 2-4 February 2009, The Woodlands, Texas. Freeman, T. L, Chalatumyk, R. J., & Bogdanov, I. I. (2009). Geomechanics of heterogeneous bitumen carbonates. SPE Reservoir Simulation Symposium, 2-4 February 2009, The Woodlands, Texas.
105.
go back to reference Kosloff, D., Scott, R., & Scranton, J. (1980). Finite element simulation of Wilmington oil field subsidence: I linear modelling. Tectonophysics, 65, 339–368.CrossRef Kosloff, D., Scott, R., & Scranton, J. (1980). Finite element simulation of Wilmington oil field subsidence: I linear modelling. Tectonophysics, 65, 339–368.CrossRef
106.
go back to reference Lewis, R. W., & Schreflei, B. A. (1998). The finite element method in the deformation and consolidation of porous media. Wiley, Chichester, Great Britain, 2nd edition. Lewis, R. W., & Schreflei, B. A. (1998). The finite element method in the deformation and consolidation of porous media. Wiley, Chichester, Great Britain, 2nd edition.
107.
go back to reference Merle, H. A., Kentie, C. J. P., van Opstal, G. H. C., & Schneider, G. M. G. (1976). The Bachaquero study—a composite analysis of the behavior of a compaction drive/solution gas drive reservoir. Journal of Petroleum Technology, 28(9), 1107–1115.CrossRef Merle, H. A., Kentie, C. J. P., van Opstal, G. H. C., & Schneider, G. M. G. (1976). The Bachaquero study—a composite analysis of the behavior of a compaction drive/solution gas drive reservoir. Journal of Petroleum Technology, 28(9), 1107–1115.CrossRef
108.
go back to reference Morris, J. P. (2009). Simulations of injection-induced mechanical deformation: A study of the In Salah CO2 storage project. Society of Exploration Geophysicists 2009 Summer Research Workshop, Banff, Canada, August, 2009. Morris, J. P. (2009). Simulations of injection-induced mechanical deformation: A study of the In Salah CO2 storage project. Society of Exploration Geophysicists 2009 Summer Research Workshop, Banff, Canada, August, 2009.
109.
go back to reference Rutqvist, J., & Moridis, G. J. (2009). Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments. SPE Journal, 14(2), 267–282.CrossRef Rutqvist, J., & Moridis, G. J. (2009). Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments. SPE Journal, 14(2), 267–282.CrossRef
110.
go back to reference Allen, M. B. (1954). In: M.B. Allen, G.A. Behie, and J.A. Trangenstein (Eds.), Multiphase flow in porous media: Mechanics, mathematics, and numerics. New York, Berlin: Springer-Verlag, 1988. Allen, M. B. (1954). In: M.B. Allen, G.A. Behie, and J.A. Trangenstein (Eds.), Multiphase flow in porous media: Mechanics, mathematics, and numerics. New York, Berlin: Springer-Verlag, 1988.
111.
go back to reference Kimoto, S., Oka, F., Fushita, T., & Fujiwaki, M. (2007). A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation. Computers and Geotechnics, 34, 216–228.CrossRef Kimoto, S., Oka, F., Fushita, T., & Fujiwaki, M. (2007). A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation. Computers and Geotechnics, 34, 216–228.CrossRef
112.
go back to reference Garg, S. K., Pritchett, J. W., Katoh, A., Baba, K., & Fujii, T. (2008). A mathematical model for the formation and dissociation of methane hydrates in the marine environment. Journal of Geophysical Research, 113, B01201.CrossRef Garg, S. K., Pritchett, J. W., Katoh, A., Baba, K., & Fujii, T. (2008). A mathematical model for the formation and dissociation of methane hydrates in the marine environment. Journal of Geophysical Research, 113, B01201.CrossRef
113.
go back to reference Phirani, J., & Mohanty, K. L. (2010). Kinetic simulation of CO 2 flooding of methane hydrates. SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September. Phirani, J., & Mohanty, K. L. (2010). Kinetic simulation of CO 2 flooding of methane hydrates. SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September.
114.
go back to reference Liu, Y., & Gamwo, I. K. (2012). Comparison between equilibrium and kinetic models for methane hydrate dissociation. Chemical Engineering Science, 69, 193–200.CrossRef Liu, Y., & Gamwo, I. K. (2012). Comparison between equilibrium and kinetic models for methane hydrate dissociation. Chemical Engineering Science, 69, 193–200.CrossRef
115.
go back to reference Tsypkin, G. G. (1998). Decomposition of gas hydrates in low-temperature reservoirs. Fluid Dynamics, 33(1), 82–90.MATHCrossRef Tsypkin, G. G. (1998). Decomposition of gas hydrates in low-temperature reservoirs. Fluid Dynamics, 33(1), 82–90.MATHCrossRef
116.
go back to reference Ruan, X., Song, Y., Zhao, J., Liang, H., Yang, M., & Li, Y. (2012). Numerical simulation of methane production from hydrates induced by different depressurizing approaches. Energies, 5, 438–458.CrossRef Ruan, X., Song, Y., Zhao, J., Liang, H., Yang, M., & Li, Y. (2012). Numerical simulation of methane production from hydrates induced by different depressurizing approaches. Energies, 5, 438–458.CrossRef
117.
go back to reference Liu, X., & Flemings, P. B. (2007). Dynamics multiphase flow model of hydrate formation in marine sediments. Journal of Geophysical Research, 112, B03101. Liu, X., & Flemings, P. B. (2007). Dynamics multiphase flow model of hydrate formation in marine sediments. Journal of Geophysical Research, 112, B03101.
118.
go back to reference Liu, Y., Strumendo, M., & Arastoopour, H. (2008). Numerical simulation methane production from a methane hydrate formation. Industrial & Engineering Chemistry Research, 47, 2817–2828.CrossRef Liu, Y., Strumendo, M., & Arastoopour, H. (2008). Numerical simulation methane production from a methane hydrate formation. Industrial & Engineering Chemistry Research, 47, 2817–2828.CrossRef
119.
go back to reference Masuda, Y., Kurihara, M., Ohuchi, H., & Sato, T. (2002). A field-scale simulation study on gas productivity of formations containing gas hydrates. Proceedings of 4th International Conference on Gas Hydrates, Yokohama, Japan, May 19–23. Masuda, Y., Kurihara, M., Ohuchi, H., & Sato, T. (2002). A field-scale simulation study on gas productivity of formations containing gas hydrates. Proceedings of 4th International Conference on Gas Hydrates, Yokohama, Japan, May 19–23.
120.
go back to reference Schnurle, P., & Liu, C. (2011). Numerical modeling of gas hydrate emplacements in oceanic sediments. Marine and Petroleum Geology, 28, 1856–1869.CrossRef Schnurle, P., & Liu, C. (2011). Numerical modeling of gas hydrate emplacements in oceanic sediments. Marine and Petroleum Geology, 28, 1856–1869.CrossRef
121.
go back to reference Scott, D. M., Das, D. K., & Subbaihaannadurai, V. (2006). A finite element computational method for gas hydrate. Part I: theory. Petroleum Science and Technology, 24, 895–909.CrossRef Scott, D. M., Das, D. K., & Subbaihaannadurai, V. (2006). A finite element computational method for gas hydrate. Part I: theory. Petroleum Science and Technology, 24, 895–909.CrossRef
122.
go back to reference Campbell, G. S. (1985). Soil physics with BASIC: transport models for soil-plant systems (1st ed.). BV Amsterdam, Netherlands: Elsevier Sci. Campbell, G. S. (1985). Soil physics with BASIC: transport models for soil-plant systems (1st ed.). BV Amsterdam, Netherlands: Elsevier Sci.
123.
go back to reference De Vries, D. A. (1963). Thermal properties of soils. In W. R. van Wijk (Ed.), Physics of plant environment (pp. 210–235). Amsterdam: North-Holland Publ. Co. De Vries, D. A. (1963). Thermal properties of soils. In W. R. van Wijk (Ed.), Physics of plant environment (pp. 210–235). Amsterdam: North-Holland Publ. Co.
124.
go back to reference Bai, Y., Li, Q., Li, F., & Du, Y. (2009). Numerical simulation on gas production from a hydrate reservoir underlain by a free gas zone. Chinese Science Bulletin, 54, 865–872. Bai, Y., Li, Q., Li, F., & Du, Y. (2009). Numerical simulation on gas production from a hydrate reservoir underlain by a free gas zone. Chinese Science Bulletin, 54, 865–872.
125.
go back to reference Du, Q., Li, Y., Li, S., Sun, J., & Jiang, Q. (2007). Mathematical model for natural gas hydrate production by heat injection. Petroleum Exploration and Development, 34(4), 470–487. Du, Q., Li, Y., Li, S., Sun, J., & Jiang, Q. (2007). Mathematical model for natural gas hydrate production by heat injection. Petroleum Exploration and Development, 34(4), 470–487.
126.
go back to reference Ng, M. Y. A., Klar, A., & Soga, K. (2008). Coupled soil deformation-flow-thermal analysis of methane production in layered methane hydrate soils. 2008 Offshore Technology Conference, Houston, Texas, 5–8 May. Ng, M. Y. A., Klar, A., & Soga, K. (2008). Coupled soil deformation-flow-thermal analysis of methane production in layered methane hydrate soils. 2008 Offshore Technology Conference, Houston, Texas, 5–8 May.
127.
go back to reference Tsypkin, G. G. (1993). Mathematical model of the dissociation of gas hydrates coexisting with ice in natural reservoirs. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 84-92, March–April. Tsypkin, G. G. (1993). Mathematical model of the dissociation of gas hydrates coexisting with ice in natural reservoirs. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 84-92, March–April.
128.
go back to reference Chen, Z., Bai, W., & Xu, W. (2005). Prediction of stability zones and occurrence zones of multiple composition natural gas hydrate in marine sediment. Chinese Journal of Geophysics, 48(4), 939–945.CrossRef Chen, Z., Bai, W., & Xu, W. (2005). Prediction of stability zones and occurrence zones of multiple composition natural gas hydrate in marine sediment. Chinese Journal of Geophysics, 48(4), 939–945.CrossRef
129.
go back to reference Williams, P. J. (1964). Specific heat and apparent specific heat of frozen soils. pp. 225–229. In 1st International Conference of Permafrost, 1964, National Academy of Sciences, Washington, DC. Williams, P. J. (1964). Specific heat and apparent specific heat of frozen soils. pp. 225–229. In 1st International Conference of Permafrost, 1964, National Academy of Sciences, Washington, DC.
130.
go back to reference Anderson, D. M., & Morgenstern, N.R. (1973). Physics, chemistry and mechanics of frozen ground: A review. In Proceeding of 2nd International Conference of Permafrost, Yakutsk, Siberia, 13-28 July 1973, National Academy of Sciences, Washington, DC, pp. 257–288. Anderson, D. M., & Morgenstern, N.R. (1973). Physics, chemistry and mechanics of frozen ground: A review. In Proceeding of 2nd International Conference of Permafrost, Yakutsk, Siberia, 13-28 July 1973, National Academy of Sciences, Washington, DC, pp. 257–288.
131.
go back to reference Quintard, M., & Whitaker, S. (1995). Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. International Journal of Heat and Mass Transfer, 38(15), 2779–2796.MATHCrossRef Quintard, M., & Whitaker, S. (1995). Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. International Journal of Heat and Mass Transfer, 38(15), 2779–2796.MATHCrossRef
132.
go back to reference Henninges, J., Schrötter, J., Erbas, K., & Huenges, E. (2002). Temperature field of the Mallik gas hydrate occurrence. Implications on phase changes and thermal properties, GEO Technologien 2002. Henninges, J., Schrötter, J., Erbas, K., & Huenges, E. (2002). Temperature field of the Mallik gas hydrate occurrence. Implications on phase changes and thermal properties, GEO Technologien 2002.
133.
go back to reference Perry, R. H., & Chilton, C. H. (1973). Chemical engineers handbook. New York, NY: McGraw Hill. Perry, R. H., & Chilton, C. H. (1973). Chemical engineers handbook. New York, NY: McGraw Hill.
134.
go back to reference Waite, W. F., Stern, L. A., Kirby, S. H., Winters, W. J., & Mason, D. H. (2007). Simultaneous determination of thermal conductivity thermal diffusivity and specific heat in sl methane hydrate. Geophysical Journal International, 169, 767–774.CrossRef Waite, W. F., Stern, L. A., Kirby, S. H., Winters, W. J., & Mason, D. H. (2007). Simultaneous determination of thermal conductivity thermal diffusivity and specific heat in sl methane hydrate. Geophysical Journal International, 169, 767–774.CrossRef
135.
go back to reference Liu, Z., Sun, Y., & Yu, X. (2012). Theoretical basis for Modeling Porous Geomaterials under Frost Actions: A Review. Soil Science Society of America Journal, 76(2), 313–330.MathSciNetCrossRef Liu, Z., Sun, Y., & Yu, X. (2012). Theoretical basis for Modeling Porous Geomaterials under Frost Actions: A Review. Soil Science Society of America Journal, 76(2), 313–330.MathSciNetCrossRef
136.
go back to reference Johansen, O. (1975). Thermal conductivity of soils. Ph.D. dissertation. Norwegian University of Science and Technology, Trondheim (CRREL draft transl. 637, 1977). Johansen, O. (1975). Thermal conductivity of soils. Ph.D. dissertation. Norwegian University of Science and Technology, Trondheim (CRREL draft transl. 637, 1977).
137.
go back to reference Cote, J., & Konrad, J. M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42, 443–458.CrossRef Cote, J., & Konrad, J. M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42, 443–458.CrossRef
138.
go back to reference Lu, S., Ren, T., Gong, Y., & Horton, R. (2007). An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71, 8–14.CrossRef Lu, S., Ren, T., Gong, Y., & Horton, R. (2007). An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71, 8–14.CrossRef
139.
go back to reference Gaddipati, M. (2008). Code comparison of methane hydrate reservoir simulators using CMG STARS, Master Thesis. West Virginia University, Morgantown, West Virginia. Gaddipati, M. (2008). Code comparison of methane hydrate reservoir simulators using CMG STARS, Master Thesis. West Virginia University, Morgantown, West Virginia.
140.
go back to reference Sean, W., Sato, T., Yamasaki, A., & Kiyono, F. (2007). CFD and experimental study on methane hydrate dissociation part No. dissociation under water flow. American Institute of Chemical Engineers, 53(1), 262–274.CrossRef Sean, W., Sato, T., Yamasaki, A., & Kiyono, F. (2007). CFD and experimental study on methane hydrate dissociation part No. dissociation under water flow. American Institute of Chemical Engineers, 53(1), 262–274.CrossRef
141.
go back to reference Kimoto, S., Oka, F., & Fushita, T. (2011). A chemo-thermo-mechanically coupled analysis of ground deformation induced by methane hydrate dissociation. Bifurcations, Instabilities and Degradations in Geomaterials, Springer Series in Geomechanics and Geoengineering, 0, 145–165. Kimoto, S., Oka, F., & Fushita, T. (2011). A chemo-thermo-mechanically coupled analysis of ground deformation induced by methane hydrate dissociation. Bifurcations, Instabilities and Degradations in Geomaterials, Springer Series in Geomechanics and Geoengineering, 0, 145–165.
142.
go back to reference Konno, Y., Oyama, H., Nagao, J., Masuda, Y., & Kurihara, M. (2010). Numerical analysis of the dissociation experimental of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough, Japan. Energy Fuels, 24(12), 6353–6358.CrossRef Konno, Y., Oyama, H., Nagao, J., Masuda, Y., & Kurihara, M. (2010). Numerical analysis of the dissociation experimental of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough, Japan. Energy Fuels, 24(12), 6353–6358.CrossRef
143.
go back to reference Civan, F. C. (2001). Scale effect on porosity and permeability: Kinetics, model and correlation. AIChE Journal, 47(2), 271–287.CrossRef Civan, F. C. (2001). Scale effect on porosity and permeability: Kinetics, model and correlation. AIChE Journal, 47(2), 271–287.CrossRef
144.
go back to reference Jeannin, L., Bayi, A., Renard, G., Bonnefoy, O., & Herri, J. M. (2002). Formation and dissociation of methane hydrates in sediments part II: numerical modeling. Proceeding of 4th International Conference on Gas Hydrates, Yokahama, Japan, May 19–23. Jeannin, L., Bayi, A., Renard, G., Bonnefoy, O., & Herri, J. M. (2002). Formation and dissociation of methane hydrates in sediments part II: numerical modeling. Proceeding of 4th International Conference on Gas Hydrates, Yokahama, Japan, May 19–23.
145.
go back to reference Sung, W., Huh, D., Ryu, B., & Lee, H. (2000). Development and application of gas hydrate reservoir simulator based on depressurizing mechanism. Korean Journal of Chemical Engineering, 17(3), 344–350.CrossRef Sung, W., Huh, D., Ryu, B., & Lee, H. (2000). Development and application of gas hydrate reservoir simulator based on depressurizing mechanism. Korean Journal of Chemical Engineering, 17(3), 344–350.CrossRef
146.
go back to reference Van Genuchten, M. T. (1980). A close-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44, 892–898.CrossRef Van Genuchten, M. T. (1980). A close-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44, 892–898.CrossRef
147.
go back to reference Parker, J. C., Lenhard, R. J., & Kuppusamy, T. (1987). A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23, 618–624.CrossRef Parker, J. C., Lenhard, R. J., & Kuppusamy, T. (1987). A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23, 618–624.CrossRef
148.
go back to reference Bear, J. (1972). Dynamics of Fluids in Porous Media. Mineola, NY: Dover.MATH Bear, J. (1972). Dynamics of Fluids in Porous Media. Mineola, NY: Dover.MATH
149.
go back to reference Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers, No. 3, Colorado State University, Fort Collins. Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers, No. 3, Colorado State University, Fort Collins.
150.
go back to reference Lake, L. W. (1989). Enhanced Oil Recovery. Upper Saddle River, NJ: Prentice-Hall. Lake, L. W. (1989). Enhanced Oil Recovery. Upper Saddle River, NJ: Prentice-Hall.
151.
go back to reference Gamwo, I. K., & Liu, Y. (2010). Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Industrial & Engineering Chemistry Research, 49, 5231–5245.CrossRef Gamwo, I. K., & Liu, Y. (2010). Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Industrial & Engineering Chemistry Research, 49, 5231–5245.CrossRef
152.
go back to reference Verigin, N. N., No, L. K., & Khalikov, G. A. (1980). Linear problem of the dissociation of the hydrates of a gas in a porous medium. Fluid Dynamics, 15(1), 144–147.CrossRef Verigin, N. N., No, L. K., & Khalikov, G. A. (1980). Linear problem of the dissociation of the hydrates of a gas in a porous medium. Fluid Dynamics, 15(1), 144–147.CrossRef
153.
go back to reference Willhite, P. G. (1986). Water flooding. Society of Petroleum Engineers Textbook Series (Vol. 3). Texas: Society of Petroleum Engineers. Willhite, P. G. (1986). Water flooding. Society of Petroleum Engineers Textbook Series (Vol. 3). Texas: Society of Petroleum Engineers.
154.
go back to reference Williams, P. J., & Smith, M. W. (1989). The frozen earth: Fundamentals of geocryology. Cambridge: Cambridge University Press.CrossRef Williams, P. J., & Smith, M. W. (1989). The frozen earth: Fundamentals of geocryology. Cambridge: Cambridge University Press.CrossRef
155.
go back to reference Fayer, M. J. (2000). UNSAT-H version 3.0: Unsaturated soil water and heat flow model, theory, user manual, and examples. Rep. 13249.Pac. Northwest Natl. Lab., Richland, WA. Fayer, M. J. (2000). UNSAT-H version 3.0: Unsaturated soil water and heat flow model, theory, user manual, and examples. Rep. 13249.Pac. Northwest Natl. Lab., Richland, WA.
156.
go back to reference Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31, 521–532.CrossRef Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31, 521–532.CrossRef
157.
go back to reference Vogel, T., van Genuchten, M. T., & Cislerova, M. (2001). Effect of the shape of the soil hydraulic functions near saturation on variably saturated flow predictions. Advances in Water Resources, 24, 133–144.CrossRef Vogel, T., van Genuchten, M. T., & Cislerova, M. (2001). Effect of the shape of the soil hydraulic functions near saturation on variably saturated flow predictions. Advances in Water Resources, 24, 133–144.CrossRef
158.
go back to reference Grant, S. A., & Salehzadeh, A. (1996). Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions. Water Resources Research, 32(2), 261–270.CrossRef Grant, S. A., & Salehzadeh, A. (1996). Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions. Water Resources Research, 32(2), 261–270.CrossRef
159.
go back to reference Hassanizadeh, S. M., & Gary, W. G. (1993). Thermodynamic basics of capillary pressure in porous media. Water Resources Research, 29, 3389–3405.CrossRef Hassanizadeh, S. M., & Gary, W. G. (1993). Thermodynamic basics of capillary pressure in porous media. Water Resources Research, 29, 3389–3405.CrossRef
160.
go back to reference Morrow, N. R. (1969). Physics and thermodynamics of capillary. In Symposium on Flow Through Porous Media. Washington, DC: The Carnegie Inst. Morrow, N. R. (1969). Physics and thermodynamics of capillary. In Symposium on Flow Through Porous Media. Washington, DC: The Carnegie Inst.
161.
go back to reference Burdine, N. T. (1953). Relative permeability calculations from pore-size distribution data. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 198, 71–78. Burdine, N. T. (1953). Relative permeability calculations from pore-size distribution data. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 198, 71–78.
162.
go back to reference Childs, E. C., & Collis-George, G. (1950). The permeability of porous materials. Proceedings of the Royal Society of London. Series A, 201, 392–405.CrossRef Childs, E. C., & Collis-George, G. (1950). The permeability of porous materials. Proceedings of the Royal Society of London. Series A, 201, 392–405.CrossRef
163.
go back to reference Webb, S. W. (1998). Gas-phase diffusion in porous media-evaluation of an advective-dispersive formulation and the dusty-gas model for binary mixtures. Journal of Porous Media, 1(2), 187–199.MATH Webb, S. W. (1998). Gas-phase diffusion in porous media-evaluation of an advective-dispersive formulation and the dusty-gas model for binary mixtures. Journal of Porous Media, 1(2), 187–199.MATH
164.
go back to reference Pruess, K., & Moridis, G. (1999). TOUGH2 User’s Guide, Version 2.0. LBNL-43134. Lawrence Berkley National Laboratory, University of California, Berkley, CA. Pruess, K., & Moridis, G. (1999). TOUGH2 User’s Guide, Version 2.0. LBNL-43134. Lawrence Berkley National Laboratory, University of California, Berkley, CA.
165.
go back to reference Yaws, C. L. (1995). Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases. Houston, TX: Gulf Publishing Company. Yaws, C. L. (1995). Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases. Houston, TX: Gulf Publishing Company.
166.
go back to reference Haeckel, M., & Wallmann K., et al. (2010). Main equations for gas hydrate modeling. SUGAR Internal Communication. Haeckel, M., & Wallmann K., et al. (2010). Main equations for gas hydrate modeling. SUGAR Internal Communication.
167.
go back to reference Ahmadi, G., Ji, C., & Smith, D. H. (2004). Numerical solution for natural gas production from methane hydrate dissociation. Journal of Petroleum Science and Engineering, 41, 269–285.CrossRef Ahmadi, G., Ji, C., & Smith, D. H. (2004). Numerical solution for natural gas production from methane hydrate dissociation. Journal of Petroleum Science and Engineering, 41, 269–285.CrossRef
168.
go back to reference Peaceman, D.W. (1977). Fundamentals of numerical reservoir simulation. Amsterdam: Elsevier Scientific Pub. Co. Peaceman, D.W. (1977). Fundamentals of numerical reservoir simulation. Amsterdam: Elsevier Scientific Pub. Co.
169.
go back to reference Weast, R. C. (1987). CRC handbook of chemistry and physics. Boca Raton: CRC Press, Inc. Weast, R. C. (1987). CRC handbook of chemistry and physics. Boca Raton: CRC Press, Inc.
170.
go back to reference Shpakov, V. P., Tse, J. S., Tulk, C. A., Kvamme, B., & Belosludov, V. R. (1998). Elastic moduli calculation and instability in structure I methane clathrate hydrate. Chemical Physics Letters, 282(2), 107–114.CrossRef Shpakov, V. P., Tse, J. S., Tulk, C. A., Kvamme, B., & Belosludov, V. R. (1998). Elastic moduli calculation and instability in structure I methane clathrate hydrate. Chemical Physics Letters, 282(2), 107–114.CrossRef
171.
go back to reference Tsimpanogiannis, I. N., & Lichtner, P. C. (2007). Parametric study of methane hydrate dissociation in oceanic sediments driven by thermal stimulation. Journal of Petroleum Science and Engineering, 56, 165–175.CrossRef Tsimpanogiannis, I. N., & Lichtner, P. C. (2007). Parametric study of methane hydrate dissociation in oceanic sediments driven by thermal stimulation. Journal of Petroleum Science and Engineering, 56, 165–175.CrossRef
172.
go back to reference Sloan, E. D. (1998). Clathrate hydrates of natural gases (2nd ed.). New York, NY: Marcel Dekker. Sloan, E. D. (1998). Clathrate hydrates of natural gases (2nd ed.). New York, NY: Marcel Dekker.
173.
go back to reference Moridis, G. J. (2002). Numerical studies of gas production from methane hydrates. SPE Journal, 8(4), 1–11. Moridis, G. J. (2002). Numerical studies of gas production from methane hydrates. SPE Journal, 8(4), 1–11.
174.
go back to reference Bakker, R. (1998). Improvements in clathrate modeling II: The H2O-CO2-CH4-N2-C2H6 fluid system. In J. P. Henriet & J. Mienert (Eds.), Gas hydrates: Relevance to world margin stability and climate change (Vol. 137, pp. 75–105). London: Geological Society Special Publication. Bakker, R. (1998). Improvements in clathrate modeling II: The H2O-CO2-CH4-N2-C2H6 fluid system. In J. P. Henriet & J. Mienert (Eds.), Gas hydrates: Relevance to world margin stability and climate change (Vol. 137, pp. 75–105). London: Geological Society Special Publication.
175.
go back to reference Adisasmito, S., Frank, R. J., & Sloan, E. D. (1991). Hydrates of carbon dioxide and methane mixtures. Journal of Chemical & Engineering Data, 36, 68–71.CrossRef Adisasmito, S., Frank, R. J., & Sloan, E. D. (1991). Hydrates of carbon dioxide and methane mixtures. Journal of Chemical & Engineering Data, 36, 68–71.CrossRef
176.
go back to reference Moridis, G. J. (2003). Nummerical Studies of Gas Production from Methane Hydrates. SPE Journal, 8(4), 359–370.CrossRef Moridis, G. J. (2003). Nummerical Studies of Gas Production from Methane Hydrates. SPE Journal, 8(4), 359–370.CrossRef
177.
go back to reference Tishchenko, P., Hensen, C., Wallmann, K., & Wong, C. S. (2005). Calculation of the stability and solubility of methane hydrate in seawater. Chemical Geology, 219, 37–52.CrossRef Tishchenko, P., Hensen, C., Wallmann, K., & Wong, C. S. (2005). Calculation of the stability and solubility of methane hydrate in seawater. Chemical Geology, 219, 37–52.CrossRef
178.
go back to reference Holder, G. D., & John, V. T. (1985). Thermodynamics of multicomponent hydrate forming mixtures. Fluid Phase Equilibria, 14, 353–361.CrossRef Holder, G. D., & John, V. T. (1985). Thermodynamics of multicomponent hydrate forming mixtures. Fluid Phase Equilibria, 14, 353–361.CrossRef
179.
go back to reference Kim, H. C., Bishnoi, P. R., Heidemann, R. A., & Rizvi, S. S. H. (1987). Kinetics of methane hydrate decomposition. Chemical Engineering Science, 42(7), 1645–1653.CrossRef Kim, H. C., Bishnoi, P. R., Heidemann, R. A., & Rizvi, S. S. H. (1987). Kinetics of methane hydrate decomposition. Chemical Engineering Science, 42(7), 1645–1653.CrossRef
180.
go back to reference Peng, D., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64.CrossRef Peng, D., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64.CrossRef
181.
go back to reference Amyx, J. W., Bass, D. M., & Whiting, R. L. (1960). Petroleum reservoir engineering-physical properties. New York City: McGraw-Hill Book Co. Amyx, J. W., Bass, D. M., & Whiting, R. L. (1960). Petroleum reservoir engineering-physical properties. New York City: McGraw-Hill Book Co.
182.
go back to reference Englezos, P., Kalogerakis, N., Dholabhai, P. D., & Bishnoi, P. R. (1987). Kinetics of formation of methane and ethane gas hydrates. Chemical Engineering Science, 42, 2647–2658.CrossRef Englezos, P., Kalogerakis, N., Dholabhai, P. D., & Bishnoi, P. R. (1987). Kinetics of formation of methane and ethane gas hydrates. Chemical Engineering Science, 42, 2647–2658.CrossRef
183.
go back to reference Boswell, R., Kleinberg, R., Collett, T., & Frye M. (2007). Exploration priorities for methane gas hydrate resources. Fire in the Ice, 1194 Spring/Summer 2007. pp. 11-13. (USDOE National Energy Technology Laboratory, Hydrate Newsletter). Boswell, R., Kleinberg, R., Collett, T., & Frye M. (2007). Exploration priorities for methane gas hydrate resources. Fire in the Ice, 1194 Spring/Summer 2007. pp. 11-13. (USDOE National Energy Technology Laboratory, Hydrate Newsletter).
184.
go back to reference Yamamoto, K., Yasuda, M., & Osawa, O. (2005). Geomechanical condition of deep water unconsolidated and hydrate related sediments off the Pacific coast of central Japan. Proceeding of 5th International Conference on Gas Hydrate, Trondheim, Norway, Vol.3, 922 (Paper ref.3031), 13–16 June, 2005. Yamamoto, K., Yasuda, M., & Osawa, O. (2005). Geomechanical condition of deep water unconsolidated and hydrate related sediments off the Pacific coast of central Japan. Proceeding of 5th International Conference on Gas Hydrate, Trondheim, Norway, Vol.3, 922 (Paper ref.3031), 13–16 June, 2005.
185.
go back to reference Brugada, J., Cheng, Y. P., Soga, K., & Santamarina, J. C. (2010). Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution. Granular Matter, 12(5), 517–525.CrossRef Brugada, J., Cheng, Y. P., Soga, K., & Santamarina, J. C. (2010). Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution. Granular Matter, 12(5), 517–525.CrossRef
186.
go back to reference Soga, K., Lee, S. L., Ng, M. Y. A., & Klar, A. (2006). Characterization and engineering properties of methane hydrate soils. Proceedings of the Second International Workshop on Characterization and Engineering Properties of Natural Soils, Singapore, 29 November-1 December, Taylor & Francis, London. Soga, K., Lee, S. L., Ng, M. Y. A., & Klar, A. (2006). Characterization and engineering properties of methane hydrate soils. Proceedings of the Second International Workshop on Characterization and Engineering Properties of Natural Soils, Singapore, 29 November-1 December, Taylor & Francis, London.
187.
go back to reference Durham, W., Kirby, S., & Stern, L. (2003). The strength and rheology of methane hydrate. Journal of Geophysical Research, A, Space Physics, 108, 2182–2193. Durham, W., Kirby, S., & Stern, L. (2003). The strength and rheology of methane hydrate. Journal of Geophysical Research, A, Space Physics, 108, 2182–2193.
188.
go back to reference Nixon, M. F., & Grozic, J. L. H. (2007). Submarine slope failure due to hydrate dissociation: A preliminary quantification. Canadian Geotechnical Journal, 44, 314–325.CrossRef Nixon, M. F., & Grozic, J. L. H. (2007). Submarine slope failure due to hydrate dissociation: A preliminary quantification. Canadian Geotechnical Journal, 44, 314–325.CrossRef
189.
go back to reference Xu, W., & Germanovich, L. N. (2006). Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. Journal of Geophysical Research, 111, B01104. Xu, W., & Germanovich, L. N. (2006). Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. Journal of Geophysical Research, 111, B01104.
190.
go back to reference Santamarina, J. C., & Ruppel, C. (2008). The impact of hydrate saturation on the mechanical ,electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Santamarina, J. C., & Ruppel, C. (2008). The impact of hydrate saturation on the mechanical ,electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).
191.
go back to reference Ran, H., Silin, D. B., & Patzek, T. W. (2008). Micromechanics of hydrate dissociation in marine sediments by grain-scale simulations. 2008 SPE Western Regional and Pacific Section AAPG Joint Meeting, Bakersfield, CA, 31 March-2 April. Ran, H., Silin, D. B., & Patzek, T. W. (2008). Micromechanics of hydrate dissociation in marine sediments by grain-scale simulations. 2008 SPE Western Regional and Pacific Section AAPG Joint Meeting, Bakersfield, CA, 31 March-2 April.
192.
go back to reference Masui, A., Miyazaki, K., Haneda, H., Ogata, Y., & Aoki, K. (2008). Mechanical characteristics of natural and artificial gas hydrate bearing sediments. Proceedings of the 6th International Conference on Gas Hydrates, ICGH. Masui, A., Miyazaki, K., Haneda, H., Ogata, Y., & Aoki, K. (2008). Mechanical characteristics of natural and artificial gas hydrate bearing sediments. Proceedings of the 6th International Conference on Gas Hydrates, ICGH.
193.
go back to reference Winters, W. J., Pecher, I. A., Waite, W. F., & Mason, D. H. (2004). Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. American Mineralogist, 89, 1221–1227.CrossRef Winters, W. J., Pecher, I. A., Waite, W. F., & Mason, D. H. (2004). Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. American Mineralogist, 89, 1221–1227.CrossRef
194.
go back to reference Hyodo, M., Nakata, Y., Yoshimoto, N., & Ebinuma, T. (2005). Basic research on the mechanical behavior of methane hydrate-sediments mixture. Soils & Foundations, 45(1), 75–85. Hyodo, M., Nakata, Y., Yoshimoto, N., & Ebinuma, T. (2005). Basic research on the mechanical behavior of methane hydrate-sediments mixture. Soils & Foundations, 45(1), 75–85.
195.
go back to reference Masui, A., Haneda, H., Ogata, Y., & Aoki, K. (2005). The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments. Proceedings of the 5th International Conference on Gas Hydrates (ICGH 2005), pp. 2657–2663. Masui, A., Haneda, H., Ogata, Y., & Aoki, K. (2005). The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments. Proceedings of the 5th International Conference on Gas Hydrates (ICGH 2005), pp. 2657–2663.
196.
go back to reference Winters, W. J., Waite, W. F., Mason, D. H., Gilbert, L. Y., & Pecher, I. A. (2007). Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering, 56, 127–135.CrossRef Winters, W. J., Waite, W. F., Mason, D. H., Gilbert, L. Y., & Pecher, I. A. (2007). Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering, 56, 127–135.CrossRef
197.
go back to reference Hyodo, M., Nakata, Y., Yoshimoto, N., & Orense, R. (2007). Shear behavior of methane hydrate-bearing sand. Proceedings of the 17th International Offshore and Polar Engineering Conference, ISOPE, pp. 1326–1333. Hyodo, M., Nakata, Y., Yoshimoto, N., & Orense, R. (2007). Shear behavior of methane hydrate-bearing sand. Proceedings of the 17th International Offshore and Polar Engineering Conference, ISOPE, pp. 1326–1333.
198.
go back to reference Aziz, K., & Settari, A. (1979). Petroleum reservoir simulation. Imprint London: Applied Science Publishers. Aziz, K., & Settari, A. (1979). Petroleum reservoir simulation. Imprint London: Applied Science Publishers.
199.
go back to reference Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.MATHCrossRef Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.MATHCrossRef
200.
go back to reference Wang, H. F. (2000). Theory of linear poroelasticity: With applications to geomechanics and hydrogeology. Princeton, NJ: Princeton University Press. Wang, H. F. (2000). Theory of linear poroelasticity: With applications to geomechanics and hydrogeology. Princeton, NJ: Princeton University Press.
201.
go back to reference Bishop, A. W. (1959). The principle of effective stress.□Teknisk. Ukeblad, 106(39), 859–863. Bishop, A. W. (1959). The principle of effective stress.□Teknisk. Ukeblad, 106(39), 859–863.
202.
go back to reference Fredlund, D. G., & Morgenstern, N. R. (1977). Stress state variables for unsaturated soils. Journal of Geotechnical Engineering, ASCE, 103(5), 447–466. Fredlund, D. G., & Morgenstern, N. R. (1977). Stress state variables for unsaturated soils. Journal of Geotechnical Engineering, ASCE, 103(5), 447–466.
203.
go back to reference Lu, N., & Likos, W. J. (2006). Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 131–142.CrossRef Lu, N., & Likos, W. J. (2006). Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 131–142.CrossRef
204.
go back to reference Coussy, O. (Ed.). (2004). Poromechanics. Chichester, England: John Wiley & Sons, ltd.MATH Coussy, O. (Ed.). (2004). Poromechanics. Chichester, England: John Wiley & Sons, ltd.MATH
205.
go back to reference Schrefler, B. A., & Gawin, D. (1996). The effective stress principle: incremental or finite form. International Journal for Numerical and Analytical Methods in Geomechanics, 20(11), 785–814.CrossRef Schrefler, B. A., & Gawin, D. (1996). The effective stress principle: incremental or finite form. International Journal for Numerical and Analytical Methods in Geomechanics, 20(11), 785–814.CrossRef
206.
go back to reference Chin, L. Y., Silpngarmlert, S., & Schoderbek, D. A. (2011). Subsidence prediction by coupled modeling of geomechanics and reservoir simulation for methane hydrate reservoirs. 45th U.S. Rock Mechanics/Geomechanics Symposium, June 26-29, 2011, San Francisco, CA. Chin, L. Y., Silpngarmlert, S., & Schoderbek, D. A. (2011). Subsidence prediction by coupled modeling of geomechanics and reservoir simulation for methane hydrate reservoirs. 45th U.S. Rock Mechanics/Geomechanics Symposium, June 26-29, 2011, San Francisco, CA.
207.
go back to reference Morland, L. W., Foulser, R., & Garg, S. K. (2004). Mixture theory for a fluid-saturated isotropic elastic matrix. International Journal of Geomechanics, 4(3), 207–215.CrossRef Morland, L. W., Foulser, R., & Garg, S. K. (2004). Mixture theory for a fluid-saturated isotropic elastic matrix. International Journal of Geomechanics, 4(3), 207–215.CrossRef
208.
go back to reference Dominic, K., & Hilton, D. (1987). Gas production from depressurization of bench-scale methane hydrate reservoirs. US Department of Energy, DOE/METC-87/4073, pp. 1–9. Dominic, K., & Hilton, D. (1987). Gas production from depressurization of bench-scale methane hydrate reservoirs. US Department of Energy, DOE/METC-87/4073, pp. 1–9.
209.
go back to reference Kamath, V. A., Mutalik, P. N., Sira, J. H., & Patil, S. L. (1991). Experimental study of brine injection and depressurization methods for dissociation of gas hydrates. SPE Formation. Evaluation, 6(4), 477–484. Kamath, V. A., Mutalik, P. N., Sira, J. H., & Patil, S. L. (1991). Experimental study of brine injection and depressurization methods for dissociation of gas hydrates. SPE Formation. Evaluation, 6(4), 477–484.
210.
go back to reference Li, S., Chen, Y., & Du, Q. (2005). Sensitivity analysis in numerical simulation of natural gas hydrate production. Geoscience, 19(1), 108–112. Li, S., Chen, Y., & Du, Q. (2005). Sensitivity analysis in numerical simulation of natural gas hydrate production. Geoscience, 19(1), 108–112.
211.
go back to reference Yang, X., Sun, C., Su, K., Yuan, Q., Li, Q., & Chen, G. (2012). A three-dimensional study on the formation and dissociation of methane in porous sediment by depressurization. Energy Conversion and Management, 56, 1–7.CrossRef Yang, X., Sun, C., Su, K., Yuan, Q., Li, Q., & Chen, G. (2012). A three-dimensional study on the formation and dissociation of methane in porous sediment by depressurization. Energy Conversion and Management, 56, 1–7.CrossRef
212.
go back to reference Bai, Y., & Li, Q. (2010). Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization. Science China, 53, 2469–2475.MATHCrossRef Bai, Y., & Li, Q. (2010). Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization. Science China, 53, 2469–2475.MATHCrossRef
213.
go back to reference Hovland, M., Judd, A. (Eds.). (1988). Seabed pockmarks and seepages. Impact on Geology, Biology and the Marine Environment, Graham and Trotman, London, 1988, pp. 293. Hovland, M., Judd, A. (Eds.). (1988). Seabed pockmarks and seepages. Impact on Geology, Biology and the Marine Environment, Graham and Trotman, London, 1988, pp. 293.
Metadata
Title
Advancement in Numerical Simulations of Gas Hydrate Dissociation in Porous Media
Authors
Zhen Liu
Xiong Yu
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-40124-9_2