Skip to main content
Top

2016 | OriginalPaper | Chapter

3. Discrete Element Modeling of the Role of In Situ Stress on the Interactions Between Hydraulic and Natural Fractures

Authors : Riccardo Rorato, Frédéric-Victor Donzé, Alexandra Tsopela, Hamid Pourpak, Atef Onaisi

Published in: New Frontiers in Oil and Gas Exploration

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interaction between HF (hydrofractures) and NF (natural fractures) is a complex-coupled process which involves several physical parameters. Despite numerous previous works, the respective role of in situ stress, natural fracture properties, and orientations is still difficult to assess. In this chapter, a fully hydromechanical coupled numerical model has been used to simulate different three-dimensional configurations. These configurations provide insight into how a natural fracture is mechanically or hydraulically activated depending on well-defined parameters. It has been shown that the natural fracture can be either activated hydraulically without any shear displacement or mechanically activated while not loaded hydraulically. These configurations are controlled at a first-order level by the combination of the in situ differential stress state and the natural fracture orientation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Britt, L. (2012). Fracture stimulation fundamentals. Journal of Natural Gas Science and Engineering, 8, 34–51.CrossRef Britt, L. (2012). Fracture stimulation fundamentals. Journal of Natural Gas Science and Engineering, 8, 34–51.CrossRef
2.
go back to reference Gale, J. F., Reed, R. M., & Holder, J. (2007). Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bulletin, 91(4), 603–622.CrossRef Gale, J. F., Reed, R. M., & Holder, J. (2007). Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bulletin, 91(4), 603–622.CrossRef
3.
go back to reference Rogers, S., Elmo, D., Dunphy, R., & Bearinger, D. (2010, January). Understanding hydraulic fracture geometry and interactions in the Horn River Basin through DFN and numerical modeling. In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers. Rogers, S., Elmo, D., Dunphy, R., & Bearinger, D. (2010, January). Understanding hydraulic fracture geometry and interactions in the Horn River Basin through DFN and numerical modeling. In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers.
4.
go back to reference Liang, F., Sayed, M., Ghaithan, A.-M., Chang, F. F., & Li, L. (2016). A comprehensive review on proppant technologies. Petroleum, ISSN 2405-6561. Liang, F., Sayed, M., Ghaithan, A.-M., Chang, F. F., & Li, L. (2016). A comprehensive review on proppant technologies. Petroleum, ISSN 2405-6561.
5.
go back to reference Jeffrey, R. G., Chen, Z. R., Zhang, X., Bunger, A. P., & Mills, K. W. (2015). Measurement and Analysis of Full-Scale Hydraulic Fracture Initiation and Reorientation. Rock Mechanics and Rock Engineering, 48(6), 2497–2512.CrossRef Jeffrey, R. G., Chen, Z. R., Zhang, X., Bunger, A. P., & Mills, K. W. (2015). Measurement and Analysis of Full-Scale Hydraulic Fracture Initiation and Reorientation. Rock Mechanics and Rock Engineering, 48(6), 2497–2512.CrossRef
6.
go back to reference Olson, J. E., & Taleghani, A. D. (2009, January). Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers. Olson, J. E., & Taleghani, A. D. (2009, January). Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.
7.
go back to reference Neuzil, C. E. (2003). Hydromechanical coupling in geologic processes. Hydrogeology Journal, 11(1), 41–83.CrossRef Neuzil, C. E. (2003). Hydromechanical coupling in geologic processes. Hydrogeology Journal, 11(1), 41–83.CrossRef
8.
go back to reference Nagel, N. B., & Zhang, F. (2013). Coupled Numerical Evaluation of the Geomechanical Interactions between a Hydraulic Fracture Stimulation and a Natural Fracture System in Shale Formation. Rock Mech Rock Eng, Springer. Nagel, N. B., & Zhang, F. (2013). Coupled Numerical Evaluation of the Geomechanical Interactions between a Hydraulic Fracture Stimulation and a Natural Fracture System in Shale Formation. Rock Mech Rock Eng, Springer.
9.
go back to reference Papachristos, E., Scholtès L., Donzé, F. V., Chareyre, B., & Pourpak, H. (2015). Hydraulic fracturation simulated by a 3D coupled HM-DEM model, 13th International Symposium on Rock Mechanics, ISRM Congress. Papachristos, E., Scholtès L., Donzé, F. V., Chareyre, B., & Pourpak, H. (2015). Hydraulic fracturation simulated by a 3D coupled HM-DEM model, 13th International Symposium on Rock Mechanics, ISRM Congress.
10.
go back to reference Riahi, A., & Damjanac, B. (2013, May). Numerical study of interaction between hydraulic fracture and discrete fracture network. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics. Riahi, A., & Damjanac, B. (2013, May). Numerical study of interaction between hydraulic fracture and discrete fracture network. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics.
11.
go back to reference Kovalyshen, Y., & Detournay, E. (2010). A reexamination of the classical PKN model of hydraulic fracture. Transport in Porous Media, 81(2), 317–339.CrossRef Kovalyshen, Y., & Detournay, E. (2010). A reexamination of the classical PKN model of hydraulic fracture. Transport in Porous Media, 81(2), 317–339.CrossRef
12.
go back to reference Perkins, T. K., & Kern, L. R. (1961). Width of hydraulic fractures. Texas: Journal of Petroleum Technology. Perkins, T. K., & Kern, L. R. (1961). Width of hydraulic fractures. Texas: Journal of Petroleum Technology.
13.
go back to reference Cundall, P. A., & Strack, O. D. L. (1979). Geotechnique 29, No. 1, 47–65. Cundall, P. A., & Strack, O. D. L. (1979). Geotechnique 29, No. 1, 47–65.
14.
go back to reference Donzé, F. V., Richefeu, V., & Magnier, S. A. (2009). Advances in discrete element method applied to soil, rock and concrete mechanics. State of the art of geotechnical engineering. Electronic Journal of Geotechnical Engineering, 44, 31. Donzé, F. V., Richefeu, V., & Magnier, S. A. (2009). Advances in discrete element method applied to soil, rock and concrete mechanics. State of the art of geotechnical engineering. Electronic Journal of Geotechnical Engineering, 44, 31.
15.
go back to reference Shi, G. H. (1992). Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures. Engineering Computations, 9(2), 157–168.CrossRef Shi, G. H. (1992). Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures. Engineering Computations, 9(2), 157–168.CrossRef
16.
go back to reference Itasca. (2013). 3DEC, Three Dimensional Distinct Element Code. Version 5.0, Minneapolis. Itasca. (2013). 3DEC, Three Dimensional Distinct Element Code. Version 5.0, Minneapolis.
17.
go back to reference Kozicki, J., & Donzé, F. V. (2009). Yade-open dem: An open-source software using a discrete element method to simulate granular material. Engineering Computations, 26(7), 786–805.CrossRefMATH Kozicki, J., & Donzé, F. V. (2009). Yade-open dem: An open-source software using a discrete element method to simulate granular material. Engineering Computations, 26(7), 786–805.CrossRefMATH
18.
go back to reference Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49), 4429–4443.CrossRefMATH Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49), 4429–4443.CrossRefMATH
19.
go back to reference Abbas, S., & Lecampion, B. (2013, May). Initiation and breakdown of an axisymmetric hydraulicfracture transverse to a horizontal wellbore. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics. Abbas, S., & Lecampion, B. (2013, May). Initiation and breakdown of an axisymmetric hydraulicfracture transverse to a horizontal wellbore. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics.
20.
go back to reference Yew, C. H. (1997). Mechanics of hydraulic fracturing. Amsterdam: Elsevier Science Ltd. Yew, C. H. (1997). Mechanics of hydraulic fracturing. Amsterdam: Elsevier Science Ltd.
21.
go back to reference Fisher, N. I. (1996). Statistical analysis of circular data. Cambridge: Cambridge University Press. Fisher, N. I. (1996). Statistical analysis of circular data. Cambridge: Cambridge University Press.
22.
go back to reference Cipolla, C. L., Lolon, E. P., Erdle, J. C., & Rubin, B. (2010). Reservoir modeling in shale-gas reservoirs. SPE Reservoir Evaluation & Engineering, 13(04), 638–653.CrossRef Cipolla, C. L., Lolon, E. P., Erdle, J. C., & Rubin, B. (2010). Reservoir modeling in shale-gas reservoirs. SPE Reservoir Evaluation & Engineering, 13(04), 638–653.CrossRef
23.
go back to reference Damjanac, B., & Cundall, P. (2016). Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Computers and Geotechnics, 71, 283–294.CrossRef Damjanac, B., & Cundall, P. (2016). Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Computers and Geotechnics, 71, 283–294.CrossRef
24.
go back to reference Yaghoubi A., & Zoback M., (2012). Hydraulic fracturing modeling using a discrete fracture network in the Barnett Shale. Stanford Stress and Geomechanics Group. American Geophysical Union, Fall Meeting 2012. Yaghoubi A., & Zoback M., (2012). Hydraulic fracturing modeling using a discrete fracture network in the Barnett Shale. Stanford Stress and Geomechanics Group. American Geophysical Union, Fall Meeting 2012.
25.
go back to reference Fu, P., Johnson, S. M., & Carrigan, C. R. (2013). An explicitly coupled hydro‐geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks. International Journal for Numerical and Analytical Methods in Geomechanics, 37(14), 2278–2300.CrossRef Fu, P., Johnson, S. M., & Carrigan, C. R. (2013). An explicitly coupled hydro‐geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks. International Journal for Numerical and Analytical Methods in Geomechanics, 37(14), 2278–2300.CrossRef
26.
go back to reference Grasselli, G., Lisjak, A., Mahabadi, O. K., & Tatone, B. S. (2015). Influence of pre-existing discontinuities and bedding planes on hydraulic fracturing initiation. European Journal of Environmental and Civil Engineering, 19(5), 580–597.CrossRef Grasselli, G., Lisjak, A., Mahabadi, O. K., & Tatone, B. S. (2015). Influence of pre-existing discontinuities and bedding planes on hydraulic fracturing initiation. European Journal of Environmental and Civil Engineering, 19(5), 580–597.CrossRef
27.
go back to reference Khoei, A. R., Vahab, M., & Hirmand, M. (2015). Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique. International Journal of Fracture, 197, 1–24.CrossRef Khoei, A. R., Vahab, M., & Hirmand, M. (2015). Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique. International Journal of Fracture, 197, 1–24.CrossRef
28.
go back to reference Rahman, M. M. (2009, January). A fully coupled numerical poroelastic model to investigate interaction between induced hydraulic fracture and pre existing natural fracture in a naturally fractured reservoir: potential application in tight gas and geothermal reservoirs. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. Rahman, M. M. (2009, January). A fully coupled numerical poroelastic model to investigate interaction between induced hydraulic fracture and pre existing natural fracture in a naturally fractured reservoir: potential application in tight gas and geothermal reservoirs. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
29.
go back to reference Shah, R.K., and D.P. Sekulic. 2003. Fundamentals of heat exchanger design. New York: John Wiley & Son Publisher.CrossRef Shah, R.K., and D.P. Sekulic. 2003. Fundamentals of heat exchanger design. New York: John Wiley & Son Publisher.CrossRef
30.
go back to reference Hesselgreaves, J.E. 2007. Compact heat exchangers: Selection, design and operation. 3rd edition. Pergamon. Hesselgreaves, J.E. 2007. Compact heat exchangers: Selection, design and operation. 3rd edition. Pergamon.
Metadata
Title
Discrete Element Modeling of the Role of In Situ Stress on the Interactions Between Hydraulic and Natural Fractures
Authors
Riccardo Rorato
Frédéric-Victor Donzé
Alexandra Tsopela
Hamid Pourpak
Atef Onaisi
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-40124-9_3