Skip to main content
Top
Published in: Journal of Computational Electronics 2/2019

12-03-2019

Understanding the electrostatics of top-electrode vertical quantized Si nanowire metal–insulator–semiconductor (MIS) structures for future nanoelectronic applications

Authors: Subhrajit Sikdar, Basudev Nag Chowdhury, Sanatan Chattopadhyay

Published in: Journal of Computational Electronics | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a comprehensive analysis of the electrostatics of top-electrode vertically aligned quantized Si nanowire metal–insulator–semiconductor (MIS) structure is performed by formulating a self-consistent analytical model with simultaneous solution of Schrodinger and Poisson equations. The impact of high-k dielectrics on the electrostatic control of such quantized nanowire MIS devices is studied in detail. The electrostatic control is observed to degrade significantly for such high-k insulators with identical equivalent oxide thickness (EOT) due to the nonlinear dependence between dielectric constant and EOT in quantized nanowire MIS devices. The distribution of 3D confined charges along the nanowire is primarily governed by the generated quantum states which are a nonlinear function of the applied voltage. The electrostatic integrity of such device is investigated in terms of simultaneously maintaining the electrostatic control and reduction in carrier tunneling probability. In this context, the impact of several controlling parameters such as applied voltage, barrier height of the insulator/semiconductor junction, carrier effective mass of the insulator and nanowire diameter on tunneling probability is examined. The results suggest insulator effective mass (high-m*) to be the more significant parameter for maintaining electrostatic integrity than its dielectric constant (high-k) in quantized nanowire top-electrode MIS devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Soo, M.T., Cheong, K.Y., Noor, A.F.M.: Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B Chem. 151, 39–55 (2010)CrossRef Soo, M.T., Cheong, K.Y., Noor, A.F.M.: Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B Chem. 151, 39–55 (2010)CrossRef
2.
go back to reference Zhou, G., Wu, B., Liu, X., Li, P., Zhang, S., Sun, B., Zhou, A.: Two-bit memory and quantized storage phenomenon in conventional MOS structures with double-stacked Pt-NCs in an HfAlO matrix. Phys. Chem. Chem. Phys. 18, 6509–6514 (2016)CrossRef Zhou, G., Wu, B., Liu, X., Li, P., Zhang, S., Sun, B., Zhou, A.: Two-bit memory and quantized storage phenomenon in conventional MOS structures with double-stacked Pt-NCs in an HfAlO matrix. Phys. Chem. Chem. Phys. 18, 6509–6514 (2016)CrossRef
3.
go back to reference Yasue, T., Kitamura, K., Watabe, T., Shimamoto, H., Kosugi, T., Watanabe, T., Aoyama, S., Monoi, M., Wei, Z., Kawahito, S.: A 1.7-in, 33-Mpixel, 120-frames/s CMOS image sensor with depletion-mode MOS capacitor-based 14-b two-stage cyclic A/D converters. IEEE Trans. Electron Devices 63, 153–161 (2016)CrossRef Yasue, T., Kitamura, K., Watabe, T., Shimamoto, H., Kosugi, T., Watanabe, T., Aoyama, S., Monoi, M., Wei, Z., Kawahito, S.: A 1.7-in, 33-Mpixel, 120-frames/s CMOS image sensor with depletion-mode MOS capacitor-based 14-b two-stage cyclic A/D converters. IEEE Trans. Electron Devices 63, 153–161 (2016)CrossRef
4.
go back to reference Liu, A., Jones, R., Liao, L., Rubio, D.S., Rubin, D., Cohen, O., Nicolaescu, R., Paniccia, M.: A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004)CrossRef Liu, A., Jones, R., Liao, L., Rubio, D.S., Rubin, D., Cohen, O., Nicolaescu, R., Paniccia, M.: A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004)CrossRef
5.
go back to reference Chatbouri, S., Troudi, M., Fargi, A., Kalboussi, A., Souifi, A.: The important contribution of photo-generated charges to the silicon nanocrystals photo-charging/discharging-response time at room temperature in MOS-photodetectors. Superlattices Microstruct. 94, 93–100 (2016)CrossRef Chatbouri, S., Troudi, M., Fargi, A., Kalboussi, A., Souifi, A.: The important contribution of photo-generated charges to the silicon nanocrystals photo-charging/discharging-response time at room temperature in MOS-photodetectors. Superlattices Microstruct. 94, 93–100 (2016)CrossRef
6.
go back to reference Tsai, P.C., Chen, W.R., Su, Y.K.: Enhanced ESD properties of GaN-based light-emitting diodes with various MOS capacitor designs. Superlattices Microstruct. 48, 23–30 (2010)CrossRef Tsai, P.C., Chen, W.R., Su, Y.K.: Enhanced ESD properties of GaN-based light-emitting diodes with various MOS capacitor designs. Superlattices Microstruct. 48, 23–30 (2010)CrossRef
7.
go back to reference Ho, W.-J., Liao, J.-J., Hou, Z.-F., Yeh, C.-W., Sue, R.-S.: High efficiency textured silicon solar cells based on an ITO/TiO2/Si MOS structure and biasing effects. Comput. Mater. Sci. 117, 596–601 (2016)CrossRef Ho, W.-J., Liao, J.-J., Hou, Z.-F., Yeh, C.-W., Sue, R.-S.: High efficiency textured silicon solar cells based on an ITO/TiO2/Si MOS structure and biasing effects. Comput. Mater. Sci. 117, 596–601 (2016)CrossRef
8.
go back to reference Bhatia, D., Roy, S., Nawaz, S., Meena, R.S., Palkar, V.R.: Observation of temperature effect on electrical properties of novel Au/Bi0.7Dy0.3FeO3/ZnO/p-Si thin film MIS capacitor for MEMS applications. Microelectron. Eng. 168, 55–61 (2017)CrossRef Bhatia, D., Roy, S., Nawaz, S., Meena, R.S., Palkar, V.R.: Observation of temperature effect on electrical properties of novel Au/Bi0.7Dy0.3FeO3/ZnO/p-Si thin film MIS capacitor for MEMS applications. Microelectron. Eng. 168, 55–61 (2017)CrossRef
9.
go back to reference Chand, R., Han, D., Neethirajan, S., Kim, Y.-S.: Detection of protein kinase using an aptamer on a microchip integrated electrolyte-insulator-semiconductor sensor. Sens. Actuators B Chem. 248, 973–979 (2017)CrossRef Chand, R., Han, D., Neethirajan, S., Kim, Y.-S.: Detection of protein kinase using an aptamer on a microchip integrated electrolyte-insulator-semiconductor sensor. Sens. Actuators B Chem. 248, 973–979 (2017)CrossRef
10.
go back to reference Kao, C.-H., Chang, C.-W., Chen, Y.T., Su, W.M., Lu, C.C., Lin, C.-Y., Chen, H.: Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator-semiconductor biosensors. Sci. Rep. 7, 1–9 (2017)CrossRef Kao, C.-H., Chang, C.-W., Chen, Y.T., Su, W.M., Lu, C.C., Lin, C.-Y., Chen, H.: Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator-semiconductor biosensors. Sci. Rep. 7, 1–9 (2017)CrossRef
11.
go back to reference Prakash, A., Maikap, S., Rahaman, S.Z., Majumdar, S., Manna, S., Ray, S.K.: Resistive switching memory characteristics of Ge/GeOx nanowires and evidence of oxygen ion migration. Nanoscale Res. Lett. 8, 220–230 (2013)CrossRef Prakash, A., Maikap, S., Rahaman, S.Z., Majumdar, S., Manna, S., Ray, S.K.: Resistive switching memory characteristics of Ge/GeOx nanowires and evidence of oxygen ion migration. Nanoscale Res. Lett. 8, 220–230 (2013)CrossRef
12.
go back to reference Cho, S.Y., Yoo, H.-W., Kim, J.Y., Jung, W.-B., Jin, M.L., Kim, J.-S., Jeon, H.-J., Jung, H.-T.: High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Lett. 16, 4508–4515 (2016)CrossRef Cho, S.Y., Yoo, H.-W., Kim, J.Y., Jung, W.-B., Jin, M.L., Kim, J.-S., Jeon, H.-J., Jung, H.-T.: High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Lett. 16, 4508–4515 (2016)CrossRef
13.
go back to reference Bae, J., Kim, H., Zhang, X.-M., Dang, C.H., Zhang, Y., Choi, Y.J., Nurmikko, A., Wang, Z.L.: Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology 21, 095502.1–095502.5 (2010)CrossRef Bae, J., Kim, H., Zhang, X.-M., Dang, C.H., Zhang, Y., Choi, Y.J., Nurmikko, A., Wang, Z.L.: Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology 21, 095502.1–095502.5 (2010)CrossRef
14.
go back to reference Sikdar, S., Chowdhury, B.N., Ghosh, A., Chattopadhyay, S.: Analytical modeling to design the vertically aligned Si-nanowire metal-oxide-semiconductor photosensors for direct color sensing with high spectral resolution. Physica E 87, 44–50 (2017)CrossRef Sikdar, S., Chowdhury, B.N., Ghosh, A., Chattopadhyay, S.: Analytical modeling to design the vertically aligned Si-nanowire metal-oxide-semiconductor photosensors for direct color sensing with high spectral resolution. Physica E 87, 44–50 (2017)CrossRef
15.
go back to reference Oener, S.Z., van Groep, J., Macco, B., Bronsveld, P.C.P., Kessels, W.M.M., Polman, A., Garnett, E.C.: Metal–insulator–semiconductor nanowire network solar cells. Nano Lett. 16, 3689–3695 (2016)CrossRef Oener, S.Z., van Groep, J., Macco, B., Bronsveld, P.C.P., Kessels, W.M.M., Polman, A., Garnett, E.C.: Metal–insulator–semiconductor nanowire network solar cells. Nano Lett. 16, 3689–3695 (2016)CrossRef
16.
go back to reference Hobbs, R.G., Petkov, N., Holmes, J.D.: Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mater. 24, 1975–1991 (2012)CrossRef Hobbs, R.G., Petkov, N., Holmes, J.D.: Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mater. 24, 1975–1991 (2012)CrossRef
17.
go back to reference Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012)CrossRef Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012)CrossRef
18.
go back to reference Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., Meyyappan, M.: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247–1252 (2004)CrossRef Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., Meyyappan, M.: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247–1252 (2004)CrossRef
19.
go back to reference Larrieu, G., Hanb, X.-L.: Vertical nanowire array-based field effect transistors for ultimate scaling. Nanoscale 5, 2437–2441 (2013)CrossRef Larrieu, G., Hanb, X.-L.: Vertical nanowire array-based field effect transistors for ultimate scaling. Nanoscale 5, 2437–2441 (2013)CrossRef
20.
go back to reference Hochbaum, A.I., Fan, R., He, R., Yang, P.: Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005)CrossRef Hochbaum, A.I., Fan, R., He, R., Yang, P.: Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005)CrossRef
21.
go back to reference Mohan, P., Motohisa, J., Fukui, T.: Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903–2907 (2005)CrossRef Mohan, P., Motohisa, J., Fukui, T.: Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903–2907 (2005)CrossRef
22.
go back to reference Duc, T.-T.N., Gacusan, J., Kobayashi, N.P., Sanghadasa, M., Meyyappan, M., Oye, M.M.: Controlled growth of vertical ZnO nanowires on copper substrate. Appl. Phys. Lett. 102, 083105.1–083105.4 (2013) Duc, T.-T.N., Gacusan, J., Kobayashi, N.P., Sanghadasa, M., Meyyappan, M., Oye, M.M.: Controlled growth of vertical ZnO nanowires on copper substrate. Appl. Phys. Lett. 102, 083105.1–083105.4 (2013)
23.
go back to reference Tomioka, K., Motohisa, J., Hara, S., Fukui, T.: Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475–3480 (2008)CrossRef Tomioka, K., Motohisa, J., Hara, S., Fukui, T.: Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475–3480 (2008)CrossRef
25.
go back to reference Tomioka, K., Yoshimura, M., Fukui, T.: A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189–192 (2012)CrossRef Tomioka, K., Yoshimura, M., Fukui, T.: A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189–192 (2012)CrossRef
26.
go back to reference Hourdakis, E., Casanova, A., Larrieu, G., Nassiopoulou, A.G.: Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics. Solid State Electron. 143, 77–82 (2018)CrossRef Hourdakis, E., Casanova, A., Larrieu, G., Nassiopoulou, A.G.: Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics. Solid State Electron. 143, 77–82 (2018)CrossRef
27.
go back to reference Fan, Wu, Qiao, Qiquan, Bahrami, Behzad, Chen, Ke, Pathak, Rajesh, Mabrouk, Sally, Tong, Yanhua, Li, Xiaoyi, Zhang, Tiansheng, Jian, Ronghua: Comparison of performance and optoelectronic processes in ZnO and TiO2 nanorod array-based hybrid solar cells. Appl. Surf. Sci. 456, 124–132 (2018)CrossRef Fan, Wu, Qiao, Qiquan, Bahrami, Behzad, Chen, Ke, Pathak, Rajesh, Mabrouk, Sally, Tong, Yanhua, Li, Xiaoyi, Zhang, Tiansheng, Jian, Ronghua: Comparison of performance and optoelectronic processes in ZnO and TiO2 nanorod array-based hybrid solar cells. Appl. Surf. Sci. 456, 124–132 (2018)CrossRef
28.
go back to reference Yeo, Y.-C., King, T.-J., Hu, C.: MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans. Electron Devices 50, 1027–1035 (2003)CrossRef Yeo, Y.-C., King, T.-J., Hu, C.: MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans. Electron Devices 50, 1027–1035 (2003)CrossRef
29.
go back to reference Locquet, J.-P., Marchiori, C., Sousa, M., Fompeyrine, J., Seo, J.W.: High-K dielectrics for the gate stack. J. Appl. Phys. 100, 051610.1–051610.14 (2006)CrossRef Locquet, J.-P., Marchiori, C., Sousa, M., Fompeyrine, J., Seo, J.W.: High-K dielectrics for the gate stack. J. Appl. Phys. 100, 051610.1–051610.14 (2006)CrossRef
30.
go back to reference Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50, 1853–1864 (2003)CrossRef Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50, 1853–1864 (2003)CrossRef
31.
go back to reference Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRef Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRef
32.
go back to reference Neophytou, N., Paul, A., Lundstrom, M.S., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron Devices 55, 1286–1297 (2008)CrossRef Neophytou, N., Paul, A., Lundstrom, M.S., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron Devices 55, 1286–1297 (2008)CrossRef
33.
go back to reference Lo, S.-H., Buchanan, D., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18, 209–211 (1997)CrossRef Lo, S.-H., Buchanan, D., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18, 209–211 (1997)CrossRef
34.
go back to reference Ochiai, M., Akita, M., Ohno, Y., Kishimoto, S., Maezawa, K., Mizutani, T.: AlGaN/GaN heterostructure metal-insulator-semiconductor high-electron-mobility transistors with Si3N4 gate insulator. Jpn. J. Appl. Phys. 42, 2278–2280 (2003)CrossRef Ochiai, M., Akita, M., Ohno, Y., Kishimoto, S., Maezawa, K., Mizutani, T.: AlGaN/GaN heterostructure metal-insulator-semiconductor high-electron-mobility transistors with Si3N4 gate insulator. Jpn. J. Appl. Phys. 42, 2278–2280 (2003)CrossRef
35.
go back to reference Ye, P.D., Wilk, G.D., Yang, B., Kwo, J., Chu, S.N.G., Nakahara, S., Gossmann, H.-J.L., Mannaerts, J.P., Hong, M., Ng, K.K., Bude, J.: GaAs metal–oxide–semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition. Appl. Phys. Lett. 83, 180–182 (2003)CrossRef Ye, P.D., Wilk, G.D., Yang, B., Kwo, J., Chu, S.N.G., Nakahara, S., Gossmann, H.-J.L., Mannaerts, J.P., Hong, M., Ng, K.K., Bude, J.: GaAs metal–oxide–semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition. Appl. Phys. Lett. 83, 180–182 (2003)CrossRef
36.
go back to reference Rastogi, A., Desu, S.: Current conduction and dielectric behavior of high k-Y2O3 films integrated with Si using chemical vapor deposition as a gate dielectric for metal-oxide-semiconductor devices. J. Electroceram. 13, 121–127 (2004)CrossRef Rastogi, A., Desu, S.: Current conduction and dielectric behavior of high k-Y2O3 films integrated with Si using chemical vapor deposition as a gate dielectric for metal-oxide-semiconductor devices. J. Electroceram. 13, 121–127 (2004)CrossRef
37.
go back to reference Kang, L., Lee, B.H., Qi, W.-J., Jeon, Y., Nieh, R., Gopalan, S., Onishi, K., Lee, J.C.: Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Lett. 21, 181–183 (2000)CrossRef Kang, L., Lee, B.H., Qi, W.-J., Jeon, Y., Nieh, R., Gopalan, S., Onishi, K., Lee, J.C.: Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Lett. 21, 181–183 (2000)CrossRef
38.
go back to reference Lee, B.H., Kang, L., Nieh, R., Qi, W.-J., Lee, J.C.: Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl. Phys. Lett. 76, 1926–1928 (2000)CrossRef Lee, B.H., Kang, L., Nieh, R., Qi, W.-J., Lee, J.C.: Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl. Phys. Lett. 76, 1926–1928 (2000)CrossRef
39.
go back to reference Wu, Y., Yang, M., Chin, A., Chen, W., Kwei, C.: Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å. IEEE Electron Device Lett. 21, 341–343 (2000)CrossRef Wu, Y., Yang, M., Chin, A., Chen, W., Kwei, C.: Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å. IEEE Electron Device Lett. 21, 341–343 (2000)CrossRef
40.
go back to reference Kakushima, K., Tachi, K., Ahmet, P., Tsutsui, K., Sugii, N., Hattori, T., Iwai, H.: Advantage of further scaling in gate dielectrics below 0.5 nm of equivalent oxide thickness with La2O3 gate dielectrics. Microelectron. Reliab. 50, 790–793 (2010)CrossRef Kakushima, K., Tachi, K., Ahmet, P., Tsutsui, K., Sugii, N., Hattori, T., Iwai, H.: Advantage of further scaling in gate dielectrics below 0.5 nm of equivalent oxide thickness with La2O3 gate dielectrics. Microelectron. Reliab. 50, 790–793 (2010)CrossRef
41.
go back to reference Roy, K., Mukhopadhyay, S., Meimand, H.M.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305–327 (2003)CrossRef Roy, K., Mukhopadhyay, S., Meimand, H.M.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305–327 (2003)CrossRef
42.
go back to reference Bastard, G.: Superlattice band structure in the envelope-function approximation. Phys. Rev. B 24, 5693–5697 (1981)CrossRef Bastard, G.: Superlattice band structure in the envelope-function approximation. Phys. Rev. B 24, 5693–5697 (1981)CrossRef
43.
go back to reference Yeo, Yee-Chia, King, Tsu-Jae, Chenming, Hu: Direct tunneling leakage current and scalability of alternative gate dielectrics. Appl. Phys. Lett. 81, 2091–2093 (2002)CrossRef Yeo, Yee-Chia, King, Tsu-Jae, Chenming, Hu: Direct tunneling leakage current and scalability of alternative gate dielectrics. Appl. Phys. Lett. 81, 2091–2093 (2002)CrossRef
44.
go back to reference Yeo, Y.C., Lu, Q., Lee, W.C., King, T.-J., Hu, C., Wang, X., Guo, X., Ma, T.P.: Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric. IEEE Electron Device Lett. 21, 540–542 (2000)CrossRef Yeo, Y.C., Lu, Q., Lee, W.C., King, T.-J., Hu, C., Wang, X., Guo, X., Ma, T.P.: Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric. IEEE Electron Device Lett. 21, 540–542 (2000)CrossRef
45.
go back to reference Hinkle, C.L., Fulton, C., Nemanich, R.J., Lucovsky, G.: A novel approach for determining the effective tunneling mass of electrons in HfO2 and other high-K alternative gate dielectrics for advanced CMOS devices. Microelectron. Eng. 72, 257–262 (2004)CrossRef Hinkle, C.L., Fulton, C., Nemanich, R.J., Lucovsky, G.: A novel approach for determining the effective tunneling mass of electrons in HfO2 and other high-K alternative gate dielectrics for advanced CMOS devices. Microelectron. Eng. 72, 257–262 (2004)CrossRef
46.
go back to reference Monaghan, S., Hurley, P., Cherkaoui, K., Negara, M.A., Schenk, A.: Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures. Solid-State Electron. 53, 438–444 (2009)CrossRef Monaghan, S., Hurley, P., Cherkaoui, K., Negara, M.A., Schenk, A.: Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures. Solid-State Electron. 53, 438–444 (2009)CrossRef
Metadata
Title
Understanding the electrostatics of top-electrode vertical quantized Si nanowire metal–insulator–semiconductor (MIS) structures for future nanoelectronic applications
Authors
Subhrajit Sikdar
Basudev Nag Chowdhury
Sanatan Chattopadhyay
Publication date
12-03-2019
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2019
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01321-7

Other articles of this Issue 2/2019

Journal of Computational Electronics 2/2019 Go to the issue