Skip to main content
Top
Published in: Wireless Networks 2/2021

11-11-2020

Uniform thresholding based transmission policy for energy harvesting wireless sensor nodes in fading channel

Authors: Arpita Jaitawat, Arun Kumar Singh

Published in: Wireless Networks | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The work presents a novel computationally efficient transmission policy for throughput maximization over point-to-point sensor links employing harvest-use-store protocol with finite storage capacity battery. In these settings, under finite averaging duration constraint, the stochastic dynamic programming (SDP) technique provides the optimal solution for throughput maximization, but the implementation complexity for SDP is prohibitively large. Thus, there is a need to explore new solutions that can provide near-optimal throughput with lower implementation complexity. The work in this paper presents a adaptive transmission policy based on uniform thresholding that achieves a near-optimal throughput obtainable by SDP. Quantitative comparison with optimal online policies shows that the proposed policy attains performance close to SDP with lower implementation complexity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Abad, M. S. H., Ercetin, O., & Gündüz, D. (2017). Channel sensing and communication over a time-correlated channel with an energy harvesting transmitter. IEEE Transactions on Green Communications and Networking, 2(1), 114–126. Abad, M. S. H., Ercetin, O., & Gündüz, D. (2017). Channel sensing and communication over a time-correlated channel with an energy harvesting transmitter. IEEE Transactions on Green Communications and Networking, 2(1), 114–126.
3.
go back to reference Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., & Heinzelman, W. (2018). Energy-harvesting wireless sensor networks (EH-WSNs): A review. ACM Transactions on Sensor Networks (TOSN), 14(2), 10. Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., & Heinzelman, W. (2018). Energy-harvesting wireless sensor networks (EH-WSNs): A review. ACM Transactions on Sensor Networks (TOSN), 14(2), 10.
4.
go back to reference Akın, S. (2017). Energy harvesting communications under energy underflow constraints. IEEE Communications Letters, 21(12), 2646–2649. Akın, S. (2017). Energy harvesting communications under energy underflow constraints. IEEE Communications Letters, 21(12), 2646–2649.
5.
go back to reference Arafa, A., & Ulukus, S. (2017). Mobile energy harvesting nodes: Offline and online optimal policies. IEEE Transactions on Green Communications and Networking, 2(1), 143–153. Arafa, A., & Ulukus, S. (2017). Mobile energy harvesting nodes: Offline and online optimal policies. IEEE Transactions on Green Communications and Networking, 2(1), 143–153.
6.
go back to reference Baknina, A., & Ulukus, S. (2016). Online scheduling for energy harvesting broadcast channels with finite battery. In IEEE international symposium on information theory (ISIT) (pp. 1984–1988). IEEE. Baknina, A., & Ulukus, S. (2016). Online scheduling for energy harvesting broadcast channels with finite battery. In IEEE international symposium on information theory (ISIT) (pp. 1984–1988). IEEE.
7.
go back to reference Bengheni, A., Didi, F., & Bambrik, I. (2019). EEM-EHWSN: Enhanced energy management scheme in energy harvesting wireless sensor networks. Wireless Networks, 25(6), 3029–3046. Bengheni, A., Didi, F., & Bambrik, I. (2019). EEM-EHWSN: Enhanced energy management scheme in energy harvesting wireless sensor networks. Wireless Networks, 25(6), 3029–3046.
8.
go back to reference Bian, T., & Jiang, Z. P. (2016). Stochastic adaptive dynamic programming for robust optimal control design. In K. G. Vamvoudakis & S. Jagannathan (Eds.), Control of complex systems (pp. 211–245). Amsterdam: Elsevier. Bian, T., & Jiang, Z. P. (2016). Stochastic adaptive dynamic programming for robust optimal control design. In K. G. Vamvoudakis & S. Jagannathan (Eds.), Control of complex systems (pp. 211–245). Amsterdam: Elsevier.
9.
go back to reference Biason, A., & Zorzi, M. (2016). On the effects of battery imperfections in an energy harvesting device. In International conference on computing, networking and communications (ICNC) (pp. 1–7). IEEE. Biason, A., & Zorzi, M. (2016). On the effects of battery imperfections in an energy harvesting device. In International conference on computing, networking and communications (ICNC) (pp. 1–7). IEEE.
10.
go back to reference Chan, K. S., & Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7(3), 179–190.MathSciNetMATH Chan, K. S., & Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7(3), 179–190.MathSciNetMATH
11.
go back to reference Cheffena, M. (2016). Propagation channel characteristics of industrial wireless sensor networks [wireless corner]. IEEE Antennas and Propagation Magazine, 58(1), 66–73. Cheffena, M. (2016). Propagation channel characteristics of industrial wireless sensor networks [wireless corner]. IEEE Antennas and Propagation Magazine, 58(1), 66–73.
12.
go back to reference Devillers, B., & Gündüz, D. (2012). A general framework for the optimization of energy harvesting communication systems with battery imperfections. Journal of Communications and Networks, 14(2), 130–139. Devillers, B., & Gündüz, D. (2012). A general framework for the optimization of energy harvesting communication systems with battery imperfections. Journal of Communications and Networks, 14(2), 130–139.
13.
go back to reference Gong, J., Zhou, Z., & Zhou, S. (2018). On the time scales of energy arrival and channel fading in energy harvesting communications. IEEE Transactions on Green Communications and Networking, 2(2), 482–492. Gong, J., Zhou, Z., & Zhou, S. (2018). On the time scales of energy arrival and channel fading in energy harvesting communications. IEEE Transactions on Green Communications and Networking, 2(2), 482–492.
14.
go back to reference Gupta, S., Zhang, R., & Hanzo, L. (2017). Energy harvesting aided device-to-device communication underlaying the cellular downlink. IEEE Access, 5, 7405–7413. Gupta, S., Zhang, R., & Hanzo, L. (2017). Energy harvesting aided device-to-device communication underlaying the cellular downlink. IEEE Access, 5, 7405–7413.
15.
go back to reference Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.MathSciNetMATH Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.MathSciNetMATH
16.
go back to reference Hsu, J., Zahedi, S., Kansal, A., Srivastava, M., & Raghunathan, V. (2006). Adaptive duty cycling for energy harvesting systems. In Proceedings of the 2006 international symposium on low power electronics and design (ISLPED) (pp. 180–185). Hsu, J., Zahedi, S., Kansal, A., Srivastava, M., & Raghunathan, V. (2006). Adaptive duty cycling for energy harvesting systems. In Proceedings of the 2006 international symposium on low power electronics and design (ISLPED) (pp. 180–185).
17.
go back to reference Hu, J., & Yang, Q. (2019). Dynamic energy-efficient resource allocation in wireless powered communication network. Wireless Networks, 25(6), 3005–3018. Hu, J., & Yang, Q. (2019). Dynamic energy-efficient resource allocation in wireless powered communication network. Wireless Networks, 25(6), 3005–3018.
18.
go back to reference Huang, C., Zhang, R., & Cui, S. (2014). Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints. IEEE Transactions on Wireless Communications, 13(2), 1074–1087. Huang, C., Zhang, R., & Cui, S. (2014). Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints. IEEE Transactions on Wireless Communications, 13(2), 1074–1087.
19.
go back to reference Iannacci, J. (2018). Internet of things (IoT); internet of everything (IoE); tactile internet; 5G-A (not so evanescent) unifying vision empowered by EH-MEMS (energy harvesting MEMS) and RF-MEMS (radio frequency MEMS). Sensors and Actuators A: Physical, 272, 187–198. Iannacci, J. (2018). Internet of things (IoT); internet of everything (IoE); tactile internet; 5G-A (not so evanescent) unifying vision empowered by EH-MEMS (energy harvesting MEMS) and RF-MEMS (radio frequency MEMS). Sensors and Actuators A: Physical, 272, 187–198.
20.
go back to reference Jaitawat, A., & Singh, A. K. (2020). Battery and supercapacitor imperfections modeling and comparison for RF energy harvesting wireless sensor network. Wireless Networks, 26(2), 843–853. Jaitawat, A., & Singh, A. K. (2020). Battery and supercapacitor imperfections modeling and comparison for RF energy harvesting wireless sensor network. Wireless Networks, 26(2), 843–853.
21.
go back to reference Janhunen, J., Mikhaylov, K., Petäjäjärvi, J., & Sonkki, M. (2019). Wireless energy transfer powered wireless sensor node for green IoT: Design, implementation and evaluation. Sensors, 19(1), 90. Janhunen, J., Mikhaylov, K., Petäjäjärvi, J., & Sonkki, M. (2019). Wireless energy transfer powered wireless sensor node for green IoT: Design, implementation and evaluation. Sensors, 19(1), 90.
22.
go back to reference Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 32. Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 32.
23.
go back to reference Karaca, H. M. (2020). Throughput optimization of multichannel allocation mechanism under interference constraint for hybrid overlay/underlay cognitive radio networks with energy harvesting. Electronics, 9(2), 330.MathSciNet Karaca, H. M. (2020). Throughput optimization of multichannel allocation mechanism under interference constraint for hybrid overlay/underlay cognitive radio networks with energy harvesting. Electronics, 9(2), 330.MathSciNet
24.
go back to reference Kimball, J. W., Krein, P. T., & Benavides, N. D. (2011). Modular system for unattended energy generation and storage. US Patent 7,994,657. Kimball, J. W., Krein, P. T., & Benavides, N. D. (2011). Modular system for unattended energy generation and storage. US Patent 7,994,657.
25.
go back to reference Ku, M. L., Li, W., Chen, Y., & Liu, K. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys & Tutorials, 18(2), 1384–1412. Ku, M. L., Li, W., Chen, Y., & Liu, K. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys & Tutorials, 18(2), 1384–1412.
26.
go back to reference Kwan, J. C., & Fapojuwo, A. O. (2018). Sum-throughput maximization in wireless sensor networks with radio frequency energy harvesting and backscatter communication. IEEE Sensors Journal, 18(17), 7325–7339. Kwan, J. C., & Fapojuwo, A. O. (2018). Sum-throughput maximization in wireless sensor networks with radio frequency energy harvesting and backscatter communication. IEEE Sensors Journal, 18(17), 7325–7339.
27.
go back to reference Lei, J., Yates, R., & Greenstein, L. (2009). A generic model for optimizing single-hop transmission policy of replenishable sensors. IEEE Transactions on Wireless Communications, 8(2), 547–551. Lei, J., Yates, R., & Greenstein, L. (2009). A generic model for optimizing single-hop transmission policy of replenishable sensors. IEEE Transactions on Wireless Communications, 8(2), 547–551.
28.
go back to reference Lew, A., & Mauch, H. (2006). Dynamic programming: A computational tool (Vol. 38). Berlin: Springer.MATH Lew, A., & Mauch, H. (2006). Dynamic programming: A computational tool (Vol. 38). Berlin: Springer.MATH
29.
go back to reference Long, M., & Chen, Y. (2018). Performance analysis of energy harvesting communications using multiple time slots. IET Communications, 13(3), 289–296. Long, M., & Chen, Y. (2018). Performance analysis of energy harvesting communications using multiple time slots. IET Communications, 13(3), 289–296.
30.
go back to reference Lv, K., Hu, J., Yu, Q., & Yang, K. (2018). Throughput maximization and fairness assurance in data and energy integrated communication networks. IEEE Internet of Things Journal, 5(2), 636–644. Lv, K., Hu, J., Yu, Q., & Yang, K. (2018). Throughput maximization and fairness assurance in data and energy integrated communication networks. IEEE Internet of Things Journal, 5(2), 636–644.
31.
go back to reference Mao, S., Cheung, M. H., & Wong, V. W. (2012). An optimal energy allocation algorithm for energy harvesting wireless sensor networks. In IEEE international conference on communications (ICC) (pp. 265–270). IEEE. Mao, S., Cheung, M. H., & Wong, V. W. (2012). An optimal energy allocation algorithm for energy harvesting wireless sensor networks. In IEEE international conference on communications (ICC) (pp. 265–270). IEEE.
32.
go back to reference Maronna, R. A., Martin, R. D., Yohai, V. J., & Salibián-Barrera, M. (2019). Robust statistics: Theory and methods (with R). New York: Wiley.MATH Maronna, R. A., Martin, R. D., Yohai, V. J., & Salibián-Barrera, M. (2019). Robust statistics: Theory and methods (with R). New York: Wiley.MATH
33.
go back to reference Martinez-Sala, A., Molina-Garcia-Pardo, J. M., Egea-Ldpez, E., Vales-Alonso, J., Juan-Llacer, L., & Garcia-Haro, J. (2005). An accurate radio channel model for wireless sensor networks simulation. Journal of Communications and Networks, 7(4), 401–407. Martinez-Sala, A., Molina-Garcia-Pardo, J. M., Egea-Ldpez, E., Vales-Alonso, J., Juan-Llacer, L., & Garcia-Haro, J. (2005). An accurate radio channel model for wireless sensor networks simulation. Journal of Communications and Networks, 7(4), 401–407.
34.
go back to reference Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S., & Yener, A. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Communications, 29(8), 1732–1743. Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S., & Yener, A. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Communications, 29(8), 1732–1743.
35.
go back to reference Perl, Y., Itai, A., & Avni, H. (1978). Interpolation search—A log log n search. Communications of the ACM, 21(7), 550–553.MathSciNetMATH Perl, Y., Itai, A., & Avni, H. (1978). Interpolation search—A log log n search. Communications of the ACM, 21(7), 550–553.MathSciNetMATH
36.
go back to reference Perl, Y., & Reingold, E. M. (1977). Understanding the complexity of interpolation search. Information Processing Letters, 6(6), 219–222.MathSciNetMATH Perl, Y., & Reingold, E. M. (1977). Understanding the complexity of interpolation search. Information Processing Letters, 6(6), 219–222.MathSciNetMATH
37.
go back to reference Prabuchandran, K., Meena, S. K., & Bhatnagar, S. (2012). Q-learning based energy management policies for a single sensor node with finite buffer. IEEE Wireless Communications Letters, 2(1), 82–85. Prabuchandran, K., Meena, S. K., & Bhatnagar, S. (2012). Q-learning based energy management policies for a single sensor node with finite buffer. IEEE Wireless Communications Letters, 2(1), 82–85.
38.
go back to reference Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors, 18(8), 2446. Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors, 18(8), 2446.
39.
go back to reference Pukelsheim, F. (1994). The three sigma rule. The American Statistician, 48(2), 88–91.MathSciNet Pukelsheim, F. (1994). The three sigma rule. The American Statistician, 48(2), 88–91.MathSciNet
40.
go back to reference Rahim, R., Nurarif, S., Ramadhan, M., Aisyah, S., & Purba, W. (2017). Comparison searching process of linear, binary and interpolation algorithm. Journal of Physics: Conference Series, 930, 012007. Rahim, R., Nurarif, S., Ramadhan, M., Aisyah, S., & Purba, W. (2017). Comparison searching process of linear, binary and interpolation algorithm. Journal of Physics: Conference Series, 930, 012007.
41.
go back to reference Rezaee, M., Mirmohseni, M., Aggarwal, V., & Aref, M. R. (2018). Optimal transmission policies for multi-hop energy harvesting systems. IEEE Transactions on Green Communications and Networking, 2(3), 751–763. Rezaee, M., Mirmohseni, M., Aggarwal, V., & Aref, M. R. (2018). Optimal transmission policies for multi-hop energy harvesting systems. IEEE Transactions on Green Communications and Networking, 2(3), 751–763.
42.
go back to reference Saeed, W., Shoaib, N., Cheema, H. M., & Khan, M. U. (2018). RF energy harvesting for ubiquitous, zero power wireless sensors. International Journal of Antennas and Propagation, 2018. Saeed, W., Shoaib, N., Cheema, H. M., & Khan, M. U. (2018). RF energy harvesting for ubiquitous, zero power wireless sensors. International Journal of Antennas and Propagation, 2018.
43.
go back to reference Sharma, A., & Kakkar, A. (2019). Machine learning based optimal renewable energy allocation in sustained wireless sensor networks. Wireless Networks, 25(7), 3953–3981. Sharma, A., & Kakkar, A. (2019). Machine learning based optimal renewable energy allocation in sustained wireless sensor networks. Wireless Networks, 25(7), 3953–3981.
44.
go back to reference Takizawa, K., Aoyagi, T., Takada, J. I., Katayama, N., Yekeh, K., Takehiko, Y., & Kohno, K.R. (2008). Channel models for wireless body area networks. In 2008 30th annual international conference of the IEEE engineering in medicine and biology society (pp. 1549–1552). IEEE. Takizawa, K., Aoyagi, T., Takada, J. I., Katayama, N., Yekeh, K., Takehiko, Y., & Kohno, K.R. (2008). Channel models for wireless body area networks. In 2008 30th annual international conference of the IEEE engineering in medicine and biology society (pp. 1549–1552). IEEE.
45.
go back to reference Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.MATH Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.MATH
46.
go back to reference Tutuncuoglu, K., Yener, A., & Ulukus, S. (2015). Optimum policies for an energy harvesting transmitter under energy storage losses. IEEE Journal on Selected Areas in Communications, 33(3), 467–481. Tutuncuoglu, K., Yener, A., & Ulukus, S. (2015). Optimum policies for an energy harvesting transmitter under energy storage losses. IEEE Journal on Selected Areas in Communications, 33(3), 467–481.
47.
go back to reference Yuan, F., Jin, S., Wong, K. K., Zhang, Q., & Zhu, H. (2016). Optimal harvest-use-store design for delay-constrained energy harvesting wireless communications. Journal of Communications and Networks, 18(6), 902–912. Yuan, F., Jin, S., Wong, K. K., Zhang, Q., & Zhu, H. (2016). Optimal harvest-use-store design for delay-constrained energy harvesting wireless communications. Journal of Communications and Networks, 18(6), 902–912.
48.
go back to reference Yuan, F., Jin, S., Wong, K. K., & Zhu, H. (2015). Optimal harvest-use-store policy for energy-harvesting wireless systems in frequency-selective fading channels. EURASIP Journal on Wireless Communications and Networking, 2015(1), 60. Yuan, F., Jin, S., Wong, K. K., & Zhu, H. (2015). Optimal harvest-use-store policy for energy-harvesting wireless systems in frequency-selective fading channels. EURASIP Journal on Wireless Communications and Networking, 2015(1), 60.
49.
go back to reference Yuan, F., Zhang, Q., Jin, S., & Zhu, H. (2014). Optimal harvest-use-store strategy for energy harvesting wireless systems. IEEE Transactions on Wireless Communications, 14(2), 698–710. Yuan, F., Zhang, Q., Jin, S., & Zhu, H. (2014). Optimal harvest-use-store strategy for energy harvesting wireless systems. IEEE Transactions on Wireless Communications, 14(2), 698–710.
50.
go back to reference Zenaidi, M. R., Rezki, Z., & Alouini, M. S. (2017). Performance limits of online energy harvesting communications with noisy channel state information at the transmitter. IEEE Access, 5, 1239–1249. Zenaidi, M. R., Rezki, Z., & Alouini, M. S. (2017). Performance limits of online energy harvesting communications with noisy channel state information at the transmitter. IEEE Access, 5, 1239–1249.
Metadata
Title
Uniform thresholding based transmission policy for energy harvesting wireless sensor nodes in fading channel
Authors
Arpita Jaitawat
Arun Kumar Singh
Publication date
11-11-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2021
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02497-8

Other articles of this Issue 2/2021

Wireless Networks 2/2021 Go to the issue