Skip to main content
Top
Published in: Telecommunication Systems 4/2023

03-10-2023

User plane acceleration service for next-generation cellular networks

Authors: Engin Zeydan, Yekta Turk

Published in: Telecommunication Systems | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reducing end-to-end latency is a key requirement for efficient and reliable new services offered by next-generation mobile networks. In this context, it is critical for mobile network operators (MNOs) to enable faster communications over backhaul transport networks between next-generation base stations and core networks. However, MNOs will need to make new investments and optimize many points of their current transport infrastructure to serve next-generation services well. In addition, even if MNOs make these investments, there may always be faults and performance degradation in transport networks. This paper presents a new approach to reduce the dependence of MNOs services on the quality of transport networks and rely on software updates on radio access network and core network components. A hyper text transfer protocol (HTTP)-based user plane that can be cached and accelerated is proposed, making it an ideal solution to combat transport problems in next-generation mobile networks. Numerical tests validate our proposed approach and underscore the significant improvements in transfer time, throughput, and overall performance achieved by leveraging HTTP caching and acceleration techniques. More specifically, GPRS tunneling protocol-user plane (GTP-U) is, on average, 35% slower than HTTP, with the performance difference increasing as the data size grows, primarily due to additional overhead and GTP-U encapsulation time. Additionally, HTTP caching with a size of 20 MB provides a 9.5% acceleration in data transfer time, with an average increase of approximately 9% when the data size exceeds 20 MB.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmadi, K., Miralavy, S. P., & Ghassemian, M. (2020). Software-defined networking to improve handover in mobile edge networks. International Journal of Communication Systems, 33(14), e4510.CrossRef Ahmadi, K., Miralavy, S. P., & Ghassemian, M. (2020). Software-defined networking to improve handover in mobile edge networks. International Journal of Communication Systems, 33(14), e4510.CrossRef
2.
go back to reference Zeydan, E., Dedeoglu, O., & Turk, Y. (2021). Performance monitoring and evaluation of FTTX networks for 5G backhauling. Telecommunication Systems, 77, 399–412.CrossRef Zeydan, E., Dedeoglu, O., & Turk, Y. (2021). Performance monitoring and evaluation of FTTX networks for 5G backhauling. Telecommunication Systems, 77, 399–412.CrossRef
3.
go back to reference Turk, Y., & Zeydan, E. (2020). An experimental measurement analysis of congestion over converged fixed and mobile networks. Wireless Networks, 26, 1017–1032.CrossRef Turk, Y., & Zeydan, E. (2020). An experimental measurement analysis of congestion over converged fixed and mobile networks. Wireless Networks, 26, 1017–1032.CrossRef
4.
go back to reference Turk, Y., & Zeydan, E. (2020). Hubble: An optical link management system for dense wavelength division multiplexing networks. Turkish Journal of Electrical Engineering & Computer Sciences, 28, 743–756.CrossRef Turk, Y., & Zeydan, E. (2020). Hubble: An optical link management system for dense wavelength division multiplexing networks. Turkish Journal of Electrical Engineering & Computer Sciences, 28, 743–756.CrossRef
5.
go back to reference 3GPP Technical Specification. (2018). Service requirements for the 5G system. 3GPP TS 22.261 V16.6.0. 3GPP Technical Specification. (2018). Service requirements for the 5G system. 3GPP TS 22.261 V16.6.0.
6.
go back to reference Turk, Y., & Zeydan, E. (2019). A dynamic replication scheme of user plane data over lossy backhaul links. In 2019 IEEE symposium on computers and communications (ISCC) (pp. 1–7). Turk, Y., & Zeydan, E. (2019). A dynamic replication scheme of user plane data over lossy backhaul links. In 2019 IEEE symposium on computers and communications (ISCC) (pp. 1–7).
7.
go back to reference 3GPP Technical Specification. (2019). Technical specification group services and system aspects; Security architecture and procedures for 5G system (Release 16). 3GPP TS 33.501 V16.0.0. 3GPP Technical Specification. (2019). Technical specification group services and system aspects; Security architecture and procedures for 5G system (Release 16). 3GPP TS 33.501 V16.0.0.
8.
go back to reference Border, J., Kojo, M., Griner, J., Montenegro, G., & Shelby, Z. (2001). Performance enhancing proxies intended to mitigate link-related degradations. IETF RFC 3135. Border, J., Kojo, M., Griner, J., Montenegro, G., & Shelby, Z. (2001). Performance enhancing proxies intended to mitigate link-related degradations. IETF RFC 3135.
9.
go back to reference Zeydan, E., & Turk, Y. (2019). On the impact of satellite communications over mobile networks: An experimental analysis. IEEE Transactions on Vehicular Technology, 68(11), 11146–11157.CrossRef Zeydan, E., & Turk, Y. (2019). On the impact of satellite communications over mobile networks: An experimental analysis. IEEE Transactions on Vehicular Technology, 68(11), 11146–11157.CrossRef
11.
go back to reference Ahmad, I., Suomalainen, J., Porambage, P., Gurtov, A., Huusko, J., & Höyhtyä, M. (2022). Security of satellite-terrestrial communications: Challenges and potential solutions. IEEE Access, 10, 96038–96052.CrossRef Ahmad, I., Suomalainen, J., Porambage, P., Gurtov, A., Huusko, J., & Höyhtyä, M. (2022). Security of satellite-terrestrial communications: Challenges and potential solutions. IEEE Access, 10, 96038–96052.CrossRef
12.
go back to reference Jeong, J., Shen, Y., Oh, T., Céspedes, S., Benamar, N., Wetterwald, M., & Härri, J. (2021). A comprehensive survey on vehicular networks for smart roads: A focus on IP-based approaches. Vehicular Communications, 29, 100334.CrossRef Jeong, J., Shen, Y., Oh, T., Céspedes, S., Benamar, N., Wetterwald, M., & Härri, J. (2021). A comprehensive survey on vehicular networks for smart roads: A focus on IP-based approaches. Vehicular Communications, 29, 100334.CrossRef
13.
go back to reference Jiang, P., Wang, Q., Huang, M., Wang, C., Li, Q., Shen, C., & Ren, K. (2021). Building in-the-cloud network functions: Security and privacy challenges. Proceedings of the IEEE, 109(12), 1888–1919.CrossRef Jiang, P., Wang, Q., Huang, M., Wang, C., Li, Q., Shen, C., & Ren, K. (2021). Building in-the-cloud network functions: Security and privacy challenges. Proceedings of the IEEE, 109(12), 1888–1919.CrossRef
14.
go back to reference Turk, Y., Zeydan, E., & Akbulut, C. A. (2019). On performance analysis of single frequency network with c-ran. IEEE Access, 7, 1502–1519.CrossRef Turk, Y., Zeydan, E., & Akbulut, C. A. (2019). On performance analysis of single frequency network with c-ran. IEEE Access, 7, 1502–1519.CrossRef
15.
go back to reference Haque, M. E., Tariq, F., Khandaker, M. R. A., Wong, K.-K., & Zhang, Y. (2023). A survey of scheduling in 5G URLLC and outlook for emerging 6G systems. IEEE Access. Haque, M. E., Tariq, F., Khandaker, M. R. A., Wong, K.-K., & Zhang, Y. (2023). A survey of scheduling in 5G URLLC and outlook for emerging 6G systems. IEEE Access.
16.
go back to reference Mamane, A., Fattah, M., El Ghazi, M., El Bekkali, M., Balboul, Y., & Mazer, S. (2022). Scheduling algorithms for 5G networks and beyond: Classification and survey. IEEE Access, 10, 51643–51661.CrossRef Mamane, A., Fattah, M., El Ghazi, M., El Bekkali, M., Balboul, Y., & Mazer, S. (2022). Scheduling algorithms for 5G networks and beyond: Classification and survey. IEEE Access, 10, 51643–51661.CrossRef
17.
go back to reference Turk, Y., Zeydan, E., & Akbulut, C. (2019). Experimental performance evaluations of CoMP and CA in centralized radio access networks. Telecommunication Systems, 72, 115–130.CrossRef Turk, Y., Zeydan, E., & Akbulut, C. (2019). Experimental performance evaluations of CoMP and CA in centralized radio access networks. Telecommunication Systems, 72, 115–130.CrossRef
18.
go back to reference Varis, N., Manner, J., & Heinonen, J. (2011). A layer-2 approach for mobility and transport in the mobile backhaul. In 2011 11th international conference on ITS telecommunications (pp. 268–273). Varis, N., Manner, J., & Heinonen, J. (2011). A layer-2 approach for mobility and transport in the mobile backhaul. In 2011 11th international conference on ITS telecommunications (pp. 268–273).
19.
go back to reference Homma, S., Miyasaka, T., Matsushima, S., & Voyer, D. (2018). User plane protocol and architectural analysis on 3GPP 5G system. IETF draft-hmm-dmm-5g-uplane-analysis-00. Homma, S., Miyasaka, T., Matsushima, S., & Voyer, D. (2018). User plane protocol and architectural analysis on 3GPP 5G system. IETF draft-hmm-dmm-5g-uplane-analysis-00.
21.
go back to reference Bogineni, K., Akhavain, A., Herbert, T., Farinacci, D., Rodriguez-Natal, A., Carofiglio, G., Auge, J., Muscariello, L., Garvia, P.C., & Homma, S. (2018). Optimized mobile user plane solutions for 5G. Internet-Draft. Bogineni, K., Akhavain, A., Herbert, T., Farinacci, D., Rodriguez-Natal, A., Carofiglio, G., Auge, J., Muscariello, L., Garvia, P.C., & Homma, S. (2018). Optimized mobile user plane solutions for 5G. Internet-Draft.
23.
go back to reference IEEE 802.1CM-2018. (2018). Time-sensitive networking for fronthaul. IEEE standard for local and metropolitan area networks IEEE 802.1CM-2018. (2018). Time-sensitive networking for fronthaul. IEEE standard for local and metropolitan area networks
24.
go back to reference Hirschman, B., Mehta, P., Ramia, K. B., Rajan, A. S., Dylag, E., Singh, A., & McDonald, M. (2015). High-performance evolved packet core signaling and bearer processing on general-purpose processors. IEEE Network, 29(3), 6–14.CrossRef Hirschman, B., Mehta, P., Ramia, K. B., Rajan, A. S., Dylag, E., Singh, A., & McDonald, M. (2015). High-performance evolved packet core signaling and bearer processing on general-purpose processors. IEEE Network, 29(3), 6–14.CrossRef
25.
go back to reference Ahluwalia, S., Choquette, G., & Barnett, C. (2018). Acceleration of GTP traffic flows, over a satellite link, in a terrestrial wireless mobile communications system. US Patent No. US2016/0192235A1, issued on August 21. Ahluwalia, S., Choquette, G., & Barnett, C. (2018). Acceleration of GTP traffic flows, over a satellite link, in a terrestrial wireless mobile communications system. US Patent No. US2016/0192235A1, issued on August 21.
26.
go back to reference Hecht, Y., Katz, H., & Tajika, A. (2018). Methods and apparatus for optimizing tunneled traffic. US Patent No. US2015/10057391B2, issued on November 10. Hecht, Y., Katz, H., & Tajika, A. (2018). Methods and apparatus for optimizing tunneled traffic. US Patent No. US2015/10057391B2, issued on November 10.
27.
go back to reference Liu, K., & Lee, J. Y. B. (2016). On improving TCP performance over mobile data networks. IEEE Transactions on Mobile Computing, 15(10), 2522–2536.CrossRef Liu, K., & Lee, J. Y. B. (2016). On improving TCP performance over mobile data networks. IEEE Transactions on Mobile Computing, 15(10), 2522–2536.CrossRef
28.
go back to reference Liu, K., Aggarwal, V., Shao, Z., & Chen, M. (2017). Joint upload-download TCP acceleration over mobile data networks. In 14th Annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 1–9). IEEE. Liu, K., Aggarwal, V., Shao, Z., & Chen, M. (2017). Joint upload-download TCP acceleration over mobile data networks. In 14th Annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 1–9). IEEE.
29.
go back to reference Zeydan, E., Bastug, E., Bennis, M., Kader, M. A., Karatepe, I. A., Er, A. S., & Debbah, M. (2016). Big data caching for networking: Moving from cloud to edge. IEEE Communications Magazine, 54(9), 36–42.CrossRef Zeydan, E., Bastug, E., Bennis, M., Kader, M. A., Karatepe, I. A., Er, A. S., & Debbah, M. (2016). Big data caching for networking: Moving from cloud to edge. IEEE Communications Magazine, 54(9), 36–42.CrossRef
30.
go back to reference Baştuğ, E., Bennis, M., Zeydan, E., Kader, M. A., Karatepe, I. A., Er, A. S., & Debbah, M. (2015). Big data meets telcos: A proactive caching perspective. Journal of Communications and Networks, 17(6), 549–557.CrossRef Baştuğ, E., Bennis, M., Zeydan, E., Kader, M. A., Karatepe, I. A., Er, A. S., & Debbah, M. (2015). Big data meets telcos: A proactive caching perspective. Journal of Communications and Networks, 17(6), 549–557.CrossRef
31.
go back to reference Khichane, A., Fajjari, I., Aitsaadi, N., & Gueroui, M. (2022). Cloud native 5G: an efficient orchestration of cloud native 5G system. In NOMS 2022-2022 IEEE/IFIP network operations and management symposium (pp. 1–9). IEEE. Khichane, A., Fajjari, I., Aitsaadi, N., & Gueroui, M. (2022). Cloud native 5G: an efficient orchestration of cloud native 5G system. In NOMS 2022-2022 IEEE/IFIP network operations and management symposium (pp. 1–9). IEEE.
32.
go back to reference Moreira, J. B., Mamede, H., Pereira, V., & Sousa, B. (2020). Next generation of microservices for the 5G service-based architecture. Int. J. Netw. Manag., 8, 1–22. Moreira, J. B., Mamede, H., Pereira, V., & Sousa, B. (2020). Next generation of microservices for the 5G service-based architecture. Int. J. Netw. Manag., 8, 1–22.
34.
go back to reference Yang, M., Li, Y., Li, B., Jin, D., & Chen, S. (2016). Service-oriented 5G network architecture: An end-to-end software defining approach. International Journal of Communication Systems, 29(10), 1645–1657.CrossRef Yang, M., Li, Y., Li, B., Jin, D., & Chen, S. (2016). Service-oriented 5G network architecture: An end-to-end software defining approach. International Journal of Communication Systems, 29(10), 1645–1657.CrossRef
35.
go back to reference Zeydan, E., Mangues-Bafalluy, J., Baranda, J., Requena, M., & Turk, Y. (2022). Service based virtual ran architecture for next generation cellular systems. IEEE Access, 10, 9455–9470.CrossRef Zeydan, E., Mangues-Bafalluy, J., Baranda, J., Requena, M., & Turk, Y. (2022). Service based virtual ran architecture for next generation cellular systems. IEEE Access, 10, 9455–9470.CrossRef
36.
go back to reference Fielding, R., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Message syntax and routing. IETF RFC 7230. Fielding, R., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Message syntax and routing. IETF RFC 7230.
37.
go back to reference Fielding, R., Nottingham, M., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Caching. IETF RFC 7234. Fielding, R., Nottingham, M., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Caching. IETF RFC 7234.
38.
go back to reference ETSI. Network Functions Virtualisation (NFV); Management and Orchestration. (2014). GS NFV-MAN 001 V1.1.1 (2014-12). ETSI. Network Functions Virtualisation (NFV); Management and Orchestration. (2014). GS NFV-MAN 001 V1.1.1 (2014-12).
39.
go back to reference Zeydan, E., Mangues-Bafalluy, J., & Turk, Y. (2021). Intelligent service orchestration in edge cloud networks. IEEE Network, 35(6), 126–132.CrossRef Zeydan, E., Mangues-Bafalluy, J., & Turk, Y. (2021). Intelligent service orchestration in edge cloud networks. IEEE Network, 35(6), 126–132.CrossRef
40.
go back to reference Zeydan, E., Turk, Y., & Zorba, B. B. (2022). Enhancing the capabilities of mobile backhaul: A user plane perspective. Journal of Network and Systems Management, 30, 31.CrossRef Zeydan, E., Turk, Y., & Zorba, B. B. (2022). Enhancing the capabilities of mobile backhaul: A user plane perspective. Journal of Network and Systems Management, 30, 31.CrossRef
41.
go back to reference Pedrycz, W. (2022). Granular data compression and representation. IEEE Transactions on Fuzzy Systems. Pedrycz, W. (2022). Granular data compression and representation. IEEE Transactions on Fuzzy Systems.
42.
go back to reference Chiba, M., Clemm, A., Medley, S., Salowey, J., Thombare, S., & Yedavalli, E. (2013). Cisco service-level assurance protocol. IETF RFC 6812. Chiba, M., Clemm, A., Medley, S., Salowey, J., Thombare, S., & Yedavalli, E. (2013). Cisco service-level assurance protocol. IETF RFC 6812.
43.
go back to reference Hedayat, K., Krzanowski, R., Morton, A., Yum, K. & Babiarz, J. (2008). A two-way active measurement protocol (twamp). IETF RFC 5357. Hedayat, K., Krzanowski, R., Morton, A., Yum, K. & Babiarz, J. (2008). A two-way active measurement protocol (twamp). IETF RFC 5357.
44.
go back to reference Crispin, M. (2003). Internet message access protocol—version 4rev1. IETF RFC 3501. Crispin, M. (2003). Internet message access protocol—version 4rev1. IETF RFC 3501.
45.
go back to reference Stanford-Clark, A., & Nipper, A. (2014). MQTT Version 3.1.1. OASIS Standard. Stanford-Clark, A., & Nipper, A. (2014). MQTT Version 3.1.1. OASIS Standard.
50.
go back to reference Deutsch, P. (1996). Deflate compressed data format specification version 1.3. IETF RFC 1951. Deutsch, P. (1996). Deflate compressed data format specification version 1.3. IETF RFC 1951.
51.
go back to reference Zeydan, E., Mangues-Bafalluy, J., Dedeoglu, O., & Turk, Y. (2020). Performance comparison of QoS deployment strategies for cellular network services. IEEE Access, 8, 176073–176088.CrossRef Zeydan, E., Mangues-Bafalluy, J., Dedeoglu, O., & Turk, Y. (2020). Performance comparison of QoS deployment strategies for cellular network services. IEEE Access, 8, 176073–176088.CrossRef
52.
go back to reference Turk, Y., & Zeydan, E. (2021). On performance analysis of multioperator ran sharing for mobile network operators. Turkish Journal of Electrical Engineering & Computer Sciences, 29(2), 816–830. Turk, Y., & Zeydan, E. (2021). On performance analysis of multioperator ran sharing for mobile network operators. Turkish Journal of Electrical Engineering & Computer Sciences, 29(2), 816–830.
Metadata
Title
User plane acceleration service for next-generation cellular networks
Authors
Engin Zeydan
Yekta Turk
Publication date
03-10-2023
Publisher
Springer US
Published in
Telecommunication Systems / Issue 4/2023
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-023-01058-6

Other articles of this Issue 4/2023

Telecommunication Systems 4/2023 Go to the issue