Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 1/2024

01-03-2024

Using Piecewise Parabolic Reconstruction of Physical Variables in Rusanov’s Solver. II. Special Relativistic Magnetohydrodynamics Equations

Author: I. M. Kulikov

Published in: Journal of Applied and Industrial Mathematics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rusanov’s scheme for solving hydrodynamic equations is one of the most robust in the class of Riemann solvers. It was previously shown that Rusanov’s scheme based on piecewise parabolic reconstruction of primitive variables gives a low-dissipative scheme relevant to Roe and Harten–Lax–Van Leer solvers when using a similar reconstruction. Moreover, unlike these solvers, the numerical solution is free from artifacts. In the case of equations of special relativistic magnetohydrodynamics, the spectral decomposition for solving the Riemann problem is quite complex and does not have an analytical solution. The present paper proposes the development of Rusanov’s scheme using a piecewise parabolic reconstruction of primitive variables to use in the equations of special relativistic magnetohydrodynamics. The developed scheme was verified using eight classical problems on the decay of an arbitrary discontinuity that describe the main features of relativistic magnetized flows.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Ferrari, “Modeling extragalactic jets,” Annu. Rev. Astron. Astrophys. 36, 539–598 (1998).CrossRef A. Ferrari, “Modeling extragalactic jets,” Annu. Rev. Astron. Astrophys. 36, 539–598 (1998).CrossRef
2.
go back to reference D. C. Gabuzda, A. B. Pushkarev, and N. N. Garnich, “Unusual radio properties of the BL Lac object 0820+225,” Mon. Not. R. Astron. Soc. 327 (1), 1–9 (2001).CrossRef D. C. Gabuzda, A. B. Pushkarev, and N. N. Garnich, “Unusual radio properties of the BL Lac object 0820+225,” Mon. Not. R. Astron. Soc. 327 (1), 1–9 (2001).CrossRef
3.
go back to reference D. C. Gabuzda and J. L. Gomez, “VSOP polarization observations of the BL Lacertae object OJ 287,” Mon. Not. R. Astron. Soc. 320 (4), L49–L54 (2001).CrossRef D. C. Gabuzda and J. L. Gomez, “VSOP polarization observations of the BL Lacertae object OJ 287,” Mon. Not. R. Astron. Soc. 320 (4), L49–L54 (2001).CrossRef
4.
go back to reference J. Attridge, D. Roberts, and J. Wardle, “Radio jet-ambient medium interactions on parsec scales in the Blazar 1055+018,” Astrophys. J. 518 (2), L87–L90 (1999).CrossRef J. Attridge, D. Roberts, and J. Wardle, “Radio jet-ambient medium interactions on parsec scales in the Blazar 1055+018,” Astrophys. J. 518 (2), L87–L90 (1999).CrossRef
5.
go back to reference M. Krause and A. Lohr, “The magnetic field along the jets of NGC 4258,” Astron. Astrophys. 420 (1), 115–123 (2004).CrossRef M. Krause and A. Lohr, “The magnetic field along the jets of NGC 4258,” Astron. Astrophys. 420 (1), 115–123 (2004).CrossRef
6.
go back to reference H. Kigure, Y. Uchida, M. Nakamura, S. Hirose, and R. Cameron, “Distribution of Faraday rotation measure in jets from active galactic nuclei. II. Prediction from our sweeping magnetic twist model for the wiggled parts of active galactic nucleus jets and tails,” Astrophys. J. 608 (1), 119–135 (2004).CrossRef H. Kigure, Y. Uchida, M. Nakamura, S. Hirose, and R. Cameron, “Distribution of Faraday rotation measure in jets from active galactic nuclei. II. Prediction from our sweeping magnetic twist model for the wiggled parts of active galactic nucleus jets and tails,” Astrophys. J. 608 (1), 119–135 (2004).CrossRef
7.
go back to reference L. Anton, J. Miralles, J. Marti, J. Ibanez, M. Aloy, and P. Mimica, “Relativistic magnetohydrodynamics: renormalized eigenvectors and full wave decomposition Riemann solver,” Astrophys. J. Suppl. Ser. 188 (1), 1–31 (2010).CrossRef L. Anton, J. Miralles, J. Marti, J. Ibanez, M. Aloy, and P. Mimica, “Relativistic magnetohydrodynamics: renormalized eigenvectors and full wave decomposition Riemann solver,” Astrophys. J. Suppl. Ser. 188 (1), 1–31 (2010).CrossRef
8.
go back to reference T. Leismann, L. Anton, M. Aloy, E. Mueller, J. Marti, J. Miralles, and J.Ibanez, “Relativistic MHD simulations of extragalactic jets,” Astron. Astrophys. 436 (2), 503–526 (2005).CrossRef T. Leismann, L. Anton, M. Aloy, E. Mueller, J. Marti, J. Miralles, and J.Ibanez, “Relativistic MHD simulations of extragalactic jets,” Astron. Astrophys. 436 (2), 503–526 (2005).CrossRef
9.
go back to reference J. Nunez-de la Rosa and C.-D. Munz, “XTROEM-FV: A new code for computational astrophysics based on very high order finite-volume methods—II. Relativistic hydro- and magnetohydrodynamics,” Mon. Not. R. Astron. Soc. 460 (1), 535–559 (2016).CrossRef J. Nunez-de la Rosa and C.-D. Munz, “XTROEM-FV: A new code for computational astrophysics based on very high order finite-volume methods—II. Relativistic hydro- and magnetohydrodynamics,” Mon. Not. R. Astron. Soc. 460 (1), 535–559 (2016).CrossRef
10.
go back to reference F. Lora-Clavijo, A. Cruz-Osorio, and F. Guzman, “CAFE: A new relativistic MHD code,” Astrophys. J. Suppl. Ser. 218 (2), 24 (2015).CrossRef F. Lora-Clavijo, A. Cruz-Osorio, and F. Guzman, “CAFE: A new relativistic MHD code,” Astrophys. J. Suppl. Ser. 218 (2), 24 (2015).CrossRef
11.
go back to reference I. M. Kulikov, “Using piecewise parabolic reconstruction of physical variables in the Rusanov solver. I. The special relativistic hydrodynamics equations,” J. Appl. Ind. Math. 17 (4), 737–749 (2023).CrossRef I. M. Kulikov, “Using piecewise parabolic reconstruction of physical variables in the Rusanov solver. I. The special relativistic hydrodynamics equations,” J. Appl. Ind. Math. 17 (4), 737–749 (2023).CrossRef
12.
go back to reference S. S. Komissarov, “A Godunov-type scheme for relativistic magnetohydrodynamics,” Mon. Not. R. Astron. Soc. 303 (2), 343–366 (1999).CrossRef S. S. Komissarov, “A Godunov-type scheme for relativistic magnetohydrodynamics,” Mon. Not. R. Astron. Soc. 303 (2), 343–366 (1999).CrossRef
13.
go back to reference D. Balsara, “Total variation diminishing scheme for relativistic magnetohydrodynamics,” Astrophys. J. Suppl. Ser. 132 (1), 83–101 (2001).CrossRef D. Balsara, “Total variation diminishing scheme for relativistic magnetohydrodynamics,” Astrophys. J. Suppl. Ser. 132 (1), 83–101 (2001).CrossRef
14.
go back to reference B. Giacomazzo and L. Rezzolla, “The exact solution of the Riemann problem in relativistic magnetohydrodynamics,” J. Fluid Mech. 562, 223–259 (2006).MathSciNetCrossRef B. Giacomazzo and L. Rezzolla, “The exact solution of the Riemann problem in relativistic magnetohydrodynamics,” J. Fluid Mech. 562, 223–259 (2006).MathSciNetCrossRef
15.
go back to reference M. Brio and C. Wu, “An upwind differencing scheme for the equations of ideal magnetohydrodynamics,” J. Comput. Phys. 75 (2), 400–422 (1988).MathSciNetCrossRef M. Brio and C. Wu, “An upwind differencing scheme for the equations of ideal magnetohydrodynamics,” J. Comput. Phys. 75 (2), 400–422 (1988).MathSciNetCrossRef
16.
go back to reference Y. A. Kriksin and V. F. Tishkin, “Variational entropic regularization of the discontinuous Galerkin method for gasdynamic equations,” Math. Models Comput. Simul. 11 (6), 1032–1040 (2019).MathSciNetCrossRef Y. A. Kriksin and V. F. Tishkin, “Variational entropic regularization of the discontinuous Galerkin method for gasdynamic equations,” Math. Models Comput. Simul. 11 (6), 1032–1040 (2019).MathSciNetCrossRef
17.
go back to reference S. K. Godunov, “Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field,” Comput. Math. Math. Phys. 52 (5), 787–799 (2012).MathSciNetCrossRef S. K. Godunov, “Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field,” Comput. Math. Math. Phys. 52 (5), 787–799 (2012).MathSciNetCrossRef
18.
go back to reference S. K. Godunov, “About inclusion of Maxwell’s equations in systems relativistic of the invariant equations,” Comput. Math. Math. Phys. 53 (8), 1179–1182 (2013).MathSciNetCrossRef S. K. Godunov, “About inclusion of Maxwell’s equations in systems relativistic of the invariant equations,” Comput. Math. Math. Phys. 53 (8), 1179–1182 (2013).MathSciNetCrossRef
19.
go back to reference S. K. Godunov and I. M. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee,” Comput. Math. Math. Phys. 54 (6), 1012–1024 (2014).MathSciNetCrossRef S. K. Godunov and I. M. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee,” Comput. Math. Math. Phys. 54 (6), 1012–1024 (2014).MathSciNetCrossRef
20.
go back to reference H. Freistuehler and Yu. Trakhinin, “Symmetrizations of RMHD equations and stability of relativistic current–vortex sheets,” Class. Quantum Gravity 30 (8), 085012 (2013).MathSciNetCrossRef H. Freistuehler and Yu. Trakhinin, “Symmetrizations of RMHD equations and stability of relativistic current–vortex sheets,” Class. Quantum Gravity 30 (8), 085012 (2013).MathSciNetCrossRef
21.
go back to reference Yu. Trakhinin, “Local existence of contact discontinuities in relativistic magnetohydrodynamics,” Sib. Adv. Math. 30 (2), 55–76 (2020).MathSciNetCrossRef Yu. Trakhinin, “Local existence of contact discontinuities in relativistic magnetohydrodynamics,” Sib. Adv. Math. 30 (2), 55–76 (2020).MathSciNetCrossRef
22.
go back to reference D. Lee, H. Faller, and A. Reyes, “The Piecewise Cubic Method (PCM) for computational fluid dynamics,” J. Comput. Phys. 341 (1), 230–257 (2017).MathSciNetCrossRef D. Lee, H. Faller, and A. Reyes, “The Piecewise Cubic Method (PCM) for computational fluid dynamics,” J. Comput. Phys. 341 (1), 230–257 (2017).MathSciNetCrossRef
Metadata
Title
Using Piecewise Parabolic Reconstruction of Physical Variables in Rusanov’s Solver. II. Special Relativistic Magnetohydrodynamics Equations
Author
I. M. Kulikov
Publication date
01-03-2024
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 1/2024
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478924010083

Other articles of this Issue 1/2024

Journal of Applied and Industrial Mathematics 1/2024 Go to the issue

Premium Partners