Skip to main content
Top

2018 | OriginalPaper | Chapter

UV-Cured Composite Films Containing ZnO Nanostructures: Effect of Filler Shape on Piezoelectric Response

Authors : L. Francioso, G. Malucelli, A. Fioravanti, C. De Pascali, M. A. Signore, M. C. Carotta, A. Bonanno, D. Duraccio

Published in: Sensors and Microsystems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a facile aqueous sol-gel approach was exploited for synthesizing different ZnO nanostructures; these latter were employed at 4 wt% loading in a UV-curable acrylic system. The piezoelectric behavior of the resulting UV-cured nanocomposite films (NCFs) at resonance and at low frequency (150 Hz, typical value of interest in energy harvesting applications) was thoroughly investigated and correlated to the structure and morphology of the utilized ZnO nanostructures. For this purpose, the NCFs were used as active material into cantilever-shaped energy harvesters obtained through standard microfabrication technology. Interesting piezoelectric behavior was found for all the prepared UV-cured nanostructured films; the piezoelectric response of the different nanofillers was compared in terms of RMS voltage measured as a function of the applied waveform and normalized to the maximum acceleration applied to the cantilever devices. The obtained results confirmed the promising energy harvesting capability of such ZnO nanostructured films. In particular, flower-like structures showed the best piezoelectric performance both at resonance and 150 Hz, gaining a maximum normalized RMS of 0.914 mV and a maximum peak-peak voltage of about 16.0 mVp-p corresponding to the application of 5.79 g acceleration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Di Salvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703 (1999)CrossRef Di Salvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703 (1999)CrossRef
2.
go back to reference Chapin, D., Fuller, C., Pearson, G.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954)CrossRef Chapin, D., Fuller, C., Pearson, G.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954)CrossRef
3.
go back to reference Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRef Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRef
4.
go back to reference Wang, X.D., Song, J.H., Liu, J., Wang, Z.L.: Growth of self-assembled ZnO nanowire arrays. Science 316, 102–105 (2007)CrossRef Wang, X.D., Song, J.H., Liu, J., Wang, Z.L.: Growth of self-assembled ZnO nanowire arrays. Science 316, 102–105 (2007)CrossRef
5.
go back to reference Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energ. Environ. Sci. 7, 25–44 (2014)CrossRef Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energ. Environ. Sci. 7, 25–44 (2014)CrossRef
6.
go back to reference Briscoe, J., Dunn, S.: Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano. Energ. 14, 15–29 (2015)CrossRef Briscoe, J., Dunn, S.: Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano. Energ. 14, 15–29 (2015)CrossRef
7.
go back to reference Wang, X.: Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano. Energ. 1, 13–24 (2012)CrossRef Wang, X.: Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano. Energ. 1, 13–24 (2012)CrossRef
8.
go back to reference Wang, Z.L., Wu, W.: Nanotechnology-enabled energy harvesting for self powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)CrossRef Wang, Z.L., Wu, W.: Nanotechnology-enabled energy harvesting for self powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)CrossRef
9.
go back to reference Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef
10.
go back to reference Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)CrossRef Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)CrossRef
11.
go back to reference Wang, Z.Y., Hu, J., Suryavanshi, A.P., Yum, K., Yu, M.F.: Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 7, 2966–2969 (2007)CrossRef Wang, Z.Y., Hu, J., Suryavanshi, A.P., Yum, K., Yu, M.F.: Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 7, 2966–2969 (2007)CrossRef
12.
go back to reference Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRef Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRef
13.
go back to reference Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)CrossRef Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)CrossRef
14.
go back to reference Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009)CrossRef Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009)CrossRef
15.
go back to reference Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)CrossRef Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)CrossRef
16.
go back to reference Chen, X., Xu, S., Yao, N., Xu, W., Shi, Y.: Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl. Phys. Lett. 94, 253113 (2009)CrossRef Chen, X., Xu, S., Yao, N., Xu, W., Shi, Y.: Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl. Phys. Lett. 94, 253113 (2009)CrossRef
17.
go back to reference Zhang, G., Xu, S., Shi, Y.: Electromechanical coupling of lead zirconate titanate nanofibres. Micro Nano Lett. 6, 59–61 (2011)CrossRef Zhang, G., Xu, S., Shi, Y.: Electromechanical coupling of lead zirconate titanate nanofibres. Micro Nano Lett. 6, 59–61 (2011)CrossRef
18.
go back to reference Huang, C.T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., Chen, L.-J., Wang, Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132, 4766–4771 (2010)CrossRef Huang, C.T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., Chen, L.-J., Wang, Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132, 4766–4771 (2010)CrossRef
19.
go back to reference Ni, X., Wang, F., Lin, A., Xu, Q., Yang, Z., Qin, Y.: Flexible nanogenerator based on single BaTiO3 nanowire. Sci. Adv. Mater. 5, 1781–1787 (2013)CrossRef Ni, X., Wang, F., Lin, A., Xu, Q., Yang, Z., Qin, Y.: Flexible nanogenerator based on single BaTiO3 nanowire. Sci. Adv. Mater. 5, 1781–1787 (2013)CrossRef
20.
go back to reference Koka, A., Zhou, Z., Sodano, H.A.: Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ. Sci. 7, 288–296 (2014)CrossRef Koka, A., Zhou, Z., Sodano, H.A.: Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ. Sci. 7, 288–296 (2014)CrossRef
21.
go back to reference Koka, A., Sodano, H.A.: A low-frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays. Adv. Energy Mater. 4, 1301660 (2014)CrossRef Koka, A., Sodano, H.A.: A low-frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays. Adv. Energy Mater. 4, 1301660 (2014)CrossRef
22.
go back to reference Crossley, S., Whiter, R.A., Kar-Narayan, S.: Polymer-based nanopiezoelectric generators for energy harvesting applications. Mater. Sci. Technol. 30, 1613–1624 (2014)CrossRef Crossley, S., Whiter, R.A., Kar-Narayan, S.: Polymer-based nanopiezoelectric generators for energy harvesting applications. Mater. Sci. Technol. 30, 1613–1624 (2014)CrossRef
23.
go back to reference Chang, C.E., Tran, V.H., Wang, J.B., Fuh, Y.K., Lin, L.W.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef Chang, C.E., Tran, V.H., Wang, J.B., Fuh, Y.K., Lin, L.W.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef
24.
go back to reference Chang, C.E., Fuh, Y.-K., Lin, L.: A direct-write piezoelectric PVDF nanogenerator, transducers 2009. In: Solid-state Sensors, Actuators and Microsystems Conference, pp. 1485–1488. Denver (2009) Chang, C.E., Fuh, Y.-K., Lin, L.: A direct-write piezoelectric PVDF nanogenerator, transducers 2009. In: Solid-state Sensors, Actuators and Microsystems Conference, pp. 1485–1488. Denver (2009)
25.
go back to reference Cha, S.N., Kim, S.M., Kim, H., Ku, J., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., Kim, K.: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 5142–5147 (2011)CrossRef Cha, S.N., Kim, S.M., Kim, H., Ku, J., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., Kim, K.: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 5142–5147 (2011)CrossRef
26.
go back to reference Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., Siores, E.: Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7, 1670–1679 (2014)CrossRef Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., Siores, E.: Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7, 1670–1679 (2014)CrossRef
27.
go back to reference Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P.M., Cain, M., Dunn, S.: Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6, 3035–3045 (2013)CrossRef Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P.M., Cain, M., Dunn, S.: Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6, 3035–3045 (2013)CrossRef
28.
go back to reference Granstrom, J., Feenstra, J., Sodano, H.A., Farinholt, K.: A review of power harvesting from vibration using piezoelectric materials. Smart Mater. Struct. 16, 1810–1820 (2007)CrossRef Granstrom, J., Feenstra, J., Sodano, H.A., Farinholt, K.: A review of power harvesting from vibration using piezoelectric materials. Smart Mater. Struct. 16, 1810–1820 (2007)CrossRef
29.
go back to reference Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., Lee, K.J.: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24, 2999–3004 (2012)CrossRef Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., Lee, K.J.: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24, 2999–3004 (2012)CrossRef
30.
go back to reference Jung, J.H., Lee, M., Hong, J.I., Ding, Y., Chen, C.Y., Chou, L.J., Wang, Z.L.: Leadfree NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041–10046 (2011)CrossRef Jung, J.H., Lee, M., Hong, J.I., Ding, Y., Chen, C.Y., Chou, L.J., Wang, Z.L.: Leadfree NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041–10046 (2011)CrossRef
31.
go back to reference Jung, J.H., Chen, C.Y., Yun, B.K., Lee, N., Zhou, Y., Jo, W., Chou, L.J., Wang, Z.L.: Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23, 375401 (2012) Jung, J.H., Chen, C.Y., Yun, B.K., Lee, N., Zhou, Y., Jo, W., Chou, L.J., Wang, Z.L.: Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23, 375401 (2012)
32.
go back to reference Park, K.I., Jeong, C.K., Ryu, J., Hwang, G.T., Lee, K.J.: Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energ. Mater. 3, 1539–1544 (2013)CrossRef Park, K.I., Jeong, C.K., Ryu, J., Hwang, G.T., Lee, K.J.: Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energ. Mater. 3, 1539–1544 (2013)CrossRef
33.
go back to reference Jeong, C.K., Park, K.I., Ryu, J., Hwang, G.T., Lee, K.J.: Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Funct. Mater. 24, 2620–2629 (2014)CrossRef Jeong, C.K., Park, K.I., Ryu, J., Hwang, G.T., Lee, K.J.: Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Funct. Mater. 24, 2620–2629 (2014)CrossRef
34.
go back to reference Park, K.I., Jeong, C.K., Kim, N.K., Lee, K.J.: Stretchable piezoelectric nanocomposite generator. Nano Convergence 3, 12 (2016) Park, K.I., Jeong, C.K., Kim, N.K., Lee, K.J.: Stretchable piezoelectric nanocomposite generator. Nano Convergence 3, 12 (2016)
35.
go back to reference Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, R829 (2004) Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, R829 (2004)
Metadata
Title
UV-Cured Composite Films Containing ZnO Nanostructures: Effect of Filler Shape on Piezoelectric Response
Authors
L. Francioso
G. Malucelli
A. Fioravanti
C. De Pascali
M. A. Signore
M. C. Carotta
A. Bonanno
D. Duraccio
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-66802-4_40