Skip to main content
Top
Published in: Microsystem Technologies 8/2017

21-10-2016 | Technical Paper

Vacuum cavity encapsulation for response time shortening in flexible thermal flow sensor

Authors: Mitsuhiro Shikida, Pilyoung Kim, Shunji Shibata

Published in: Microsystem Technologies | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A vacuum cavity encapsulation fabrication process for a thermal sensor based on a Cu on polyimide (COP) substrate was studied to shorten the response time, and it was applied to a flow sensor application. First, the sacrificial etching properties of a Cu layer for designing and forming a cavity under a heater for thermal isolation and an electrical feedthrough into the Cu layer were evaluated. The etching rates depended on the hole size of an etching mask pattern and the distance between two holes. Then, the relationship between the amount of parylene dimer and the sealing thickness in a lateral direction in the etching hole by its deposition was investigated to encapsulate the cavity under a vacuum condition. The thickness increased linearly with the amount of dimer, and the hole was successfully sealed by the parylene film under a vacuum condition. The vacuum cavity encapsulation was applied to the flexible thermal flow sensor to shorten the response time. The response time value was successfully shortened to three-fifths by applying the vacuum cavity encapsulation, and it did not change after 2 months.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Courteaud J, Crespy N, Combette P, Sorli B, Giani A (2008) Studies and optimization of the frequency response of a micromachined thermal accelerometer. Sens Actuator A 147:75–85CrossRef Courteaud J, Crespy N, Combette P, Sorli B, Giani A (2008) Studies and optimization of the frequency response of a micromachined thermal accelerometer. Sens Actuator A 147:75–85CrossRef
go back to reference Dauderstädt UA, de Vries PHS, Hiratsuka R, Sarro PM (1995) Silicon accelerometer based on thermopiles. Sens Actuator A 46:201–204CrossRef Dauderstädt UA, de Vries PHS, Hiratsuka R, Sarro PM (1995) Silicon accelerometer based on thermopiles. Sens Actuator A 46:201–204CrossRef
go back to reference Egert D, Peterson RL, Najafi K (2011) Parylene microprobes with engineered stiffness and shape for improved insertion. Tech. Digest The 16th International Conference on Solid-State Sensors, Actuators and Microsystems, pp198–201 Egert D, Peterson RL, Najafi K (2011) Parylene microprobes with engineered stiffness and shape for improved insertion. Tech. Digest The 16th International Conference on Solid-State Sensors, Actuators and Microsystems, pp198–201
go back to reference Elwenspoek M, Wiegerink R (2001) Mechanical microsensors. Springer, Berlin Elwenspoek M, Wiegerink R (2001) Mechanical microsensors. Springer, Berlin
go back to reference Gianchandani Y, Tabata O, Zappe H (2008) Comprehensive MEMS (2, Flow sensor). Elsevier, Amsterdam, pp 209–272 Gianchandani Y, Tabata O, Zappe H (2008) Comprehensive MEMS (2, Flow sensor). Elsevier, Amsterdam, pp 209–272
go back to reference Gutierrez CA, Meng E (2011) Liquid encapsulation in parylene microstructures using integrated annular-plate stiction valve. Micromachines 2:356–368CrossRef Gutierrez CA, Meng E (2011) Liquid encapsulation in parylene microstructures using integrated annular-plate stiction valve. Micromachines 2:356–368CrossRef
go back to reference Huang JB, Tung S, Ho CM, Liu C, Tai YC (1996) Improved micro thermal shear-stress sensor. IEEE Transac Instrum Meas 45(2):540–547 Huang JB, Tung S, Ho CM, Liu C, Tai YC (1996) Improved micro thermal shear-stress sensor. IEEE Transac Instrum Meas 45(2):540–547
go back to reference Imaeda K, Shibata S, Matsushima M, Kawabe T, Shikida M (2015) Responsible time shorting of flexible thermal flow sensor for medical applications. Proc IEEE Sens 2015:283–286 Imaeda K, Shibata S, Matsushima M, Kawabe T, Shikida M (2015) Responsible time shorting of flexible thermal flow sensor for medical applications. Proc IEEE Sens 2015:283–286
go back to reference Jiang F, Lee GB, Tai YC, Ho CM (2000) A flexible micromachined-based shear-stress sensor array and its application to separation-point detection. Sens Actuator A 79:194–203CrossRef Jiang F, Lee GB, Tai YC, Ho CM (2000) A flexible micromachined-based shear-stress sensor array and its application to separation-point detection. Sens Actuator A 79:194–203CrossRef
go back to reference Kim P, Shibata S, Shikida M (2015) Vacuum cavity formation for high thermal isolation in flexible thermal sensor. Tech. Digest The 28th IEEE International Conference on Micro Electro Mechanical Systems, p 845–848 Kim P, Shibata S, Shikida M (2015) Vacuum cavity formation for high thermal isolation in flexible thermal sensor. Tech. Digest The 28th IEEE International Conference on Micro Electro Mechanical Systems, p 845–848
go back to reference King LV (1914) On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philos Transac R Soc Lond Ser A Contain Pap Math Phys Charact 214:373–432CrossRef King LV (1914) On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philos Transac R Soc Lond Ser A Contain Pap Math Phys Charact 214:373–432CrossRef
go back to reference Kuo JTW, Kim BJ, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E (2013) 3D parylene sheath probes for reliable long-term neuroprosthetic recording. Tech. Digest The 26th IEEE International Conference on Micro Electro Mechanical Systems, pp 1073–1076 Kuo JTW, Kim BJ, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E (2013) 3D parylene sheath probes for reliable long-term neuroprosthetic recording. Tech. Digest The 26th IEEE International Conference on Micro Electro Mechanical Systems, pp 1073–1076
go back to reference Lin L, McNair KM, Howe RT, Pisano A (1993) Vacuum-encapsulated lateral microresonators, Tech. Digest The 7th International Conference on Solid-State Sensors, Actuators and Microsystems, p 270–273 Lin L, McNair KM, Howe RT, Pisano A (1993) Vacuum-encapsulated lateral microresonators, Tech. Digest The 7th International Conference on Solid-State Sensors, Actuators and Microsystems, p 270–273
go back to reference Liu C, Huang JB, Zhu Z, Jiang F, Tung S, Tai YC, Ho CM (1999) A micromachined flow shear-stress sensor based on thermal transfer principle. J Microelectromech Syst 8(1):90–99CrossRef Liu C, Huang JB, Zhu Z, Jiang F, Tung S, Tai YC, Ho CM (1999) A micromachined flow shear-stress sensor based on thermal transfer principle. J Microelectromech Syst 8(1):90–99CrossRef
go back to reference Mailly F, Giani A, Martinez A, Bonnot R, Temple-Boyer P, Boyer A (2003) Micromachined thermal accelerometer. Sens Actuator A 103:359–363CrossRef Mailly F, Giani A, Martinez A, Bonnot R, Temple-Boyer P, Boyer A (2003) Micromachined thermal accelerometer. Sens Actuator A 103:359–363CrossRef
go back to reference Maluf N (2000) An introduction to microelectromechanical systems engineering. Artech House, Boston Maluf N (2000) An introduction to microelectromechanical systems engineering. Artech House, Boston
go back to reference Muller RS, Howe RT, Senturia SD, Smith RL, White RM (1991) Microsensor. IEEE press, New York Muller RS, Howe RT, Senturia SD, Smith RL, White RM (1991) Microsensor. IEEE press, New York
go back to reference Ohsawa K, Takahashi H, Noda K, Kan T, Matsumoto K, Shimoyama I (2011) Tech. Digest The 24th IEEE International Conference on Micro Electro Mechanical Systems, pp 525–528 Ohsawa K, Takahashi H, Noda K, Kan T, Matsumoto K, Shimoyama I (2011) Tech. Digest The 24th IEEE International Conference on Micro Electro Mechanical Systems, pp 525–528
go back to reference Ristic L (1994) Sensor technology and devices. Artech House, Boston Ristic L (1994) Sensor technology and devices. Artech House, Boston
go back to reference Sawano S, Naka K, Werber A, Zappe H, Konishi S (2008) Tech. Digest The 21st IEEE International Conference on Micro Electro Mechanical Systems, pp 419–422 Sawano S, Naka K, Werber A, Zappe H, Konishi S (2008) Tech. Digest The 21st IEEE International Conference on Micro Electro Mechanical Systems, pp 419–422
go back to reference Shibata S, Niimi Y, Shikida M (2014) Flexible thermal MEMS flow sensor based on Cu on polyimide substrate. Proc IEEE Sens 2014:424–427 Shibata S, Niimi Y, Shikida M (2014) Flexible thermal MEMS flow sensor based on Cu on polyimide substrate. Proc IEEE Sens 2014:424–427
go back to reference Shikida M, Naito J, Yokota T, Kawabe T, Hayashi Y, Sato K (2009) A catheter-type flow sensor for measurement of aspirated- and inspired-air characteristics in bronchial region. J Micromech Microeng 19:105027 (9 p) CrossRef Shikida M, Naito J, Yokota T, Kawabe T, Hayashi Y, Sato K (2009) A catheter-type flow sensor for measurement of aspirated- and inspired-air characteristics in bronchial region. J Micromech Microeng 19:105027 (9 p) CrossRef
go back to reference Shikida M, Yokota T, Kawabe T, Funaki T, Matsushima M, Iwai S, Matsunaga N, Sato K (2010) Characteristics of an optimized catheter-type thermal flow sensor for measuring reciprocating airflows in bronchial pathways. J Micromech. Microeng 20:125030 (11 p) CrossRef Shikida M, Yokota T, Kawabe T, Funaki T, Matsushima M, Iwai S, Matsunaga N, Sato K (2010) Characteristics of an optimized catheter-type thermal flow sensor for measuring reciprocating airflows in bronchial pathways. J Micromech. Microeng 20:125030 (11 p) CrossRef
go back to reference Shikida M, Yoshikawa K, Iwai S, Sato K (2012) Flexible flow sensor for large scale air-conditioning network systems. Sens Actuator A 188:2–8CrossRef Shikida M, Yoshikawa K, Iwai S, Sato K (2012) Flexible flow sensor for large scale air-conditioning network systems. Sens Actuator A 188:2–8CrossRef
go back to reference Shikida M, Yamazaki Y, Yoshikawa K, Sato K (2013) A MEMS flow sensor applied in a variable-air-volume air-conditioning system unit in a building. Sens Actuator A 189:212–217CrossRef Shikida M, Yamazaki Y, Yoshikawa K, Sato K (2013) A MEMS flow sensor applied in a variable-air-volume air-conditioning system unit in a building. Sens Actuator A 189:212–217CrossRef
go back to reference Shikida M, Shikano T, Matsuyama T, Yamazaki Y, Matsushima M, Kawabe T (2014) Micromachined catheter flow sensor and its applications in breathing measurements in animal experiments. Microsyst Technol 20:505–513CrossRef Shikida M, Shikano T, Matsuyama T, Yamazaki Y, Matsushima M, Kawabe T (2014) Micromachined catheter flow sensor and its applications in breathing measurements in animal experiments. Microsyst Technol 20:505–513CrossRef
go back to reference Shikida M, Niimi Y, Shibata S (2015) Fabrication of flexible thermal MEMS device based on Cu on polyimide substrate and its flow sensor application. Microsyst Technol. doi:10.1007/s00542-015-2704-3 Shikida M, Niimi Y, Shibata S (2015) Fabrication of flexible thermal MEMS device based on Cu on polyimide substrate and its flow sensor application. Microsyst Technol. doi:10.​1007/​s00542-015-2704-3
go back to reference Tu H, Xu Y (2013) A SOI-CMOS compatible smart yarn technology. Tech. Digest The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, pp 147–150 Tu H, Xu Y (2013) A SOI-CMOS compatible smart yarn technology. Tech. Digest The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, pp 147–150
go back to reference Watanabe S, Hasegawa Y, Matsushima M, Kawabe T, Shikida M (2016) Response time shortening in thermal catheter flow sensor, Tech. Dig. of Asia-Pacific Conference on Transducers and Micro-Nano Technology, pp 253–254 Watanabe S, Hasegawa Y, Matsushima M, Kawabe T, Shikida M (2016) Response time shortening in thermal catheter flow sensor, Tech. Dig. of Asia-Pacific Conference on Transducers and Micro-Nano Technology, pp 253–254
go back to reference Xu Y, Tai YC, Huang A, Ho CM (2003) IC-integrated flexible shear-stress sensor skin. J. Microelectro Mech Syst 12:740–747CrossRef Xu Y, Tai YC, Huang A, Ho CM (2003) IC-integrated flexible shear-stress sensor skin. J. Microelectro Mech Syst 12:740–747CrossRef
go back to reference Yamasaki H (1996) Handbook of sensors and actuators—Intelligent sensors, vol 3. Elsevier, Amsterdam Yamasaki H (1996) Handbook of sensors and actuators—Intelligent sensors, vol 3. Elsevier, Amsterdam
Metadata
Title
Vacuum cavity encapsulation for response time shortening in flexible thermal flow sensor
Authors
Mitsuhiro Shikida
Pilyoung Kim
Shunji Shibata
Publication date
21-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 8/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3168-9

Other articles of this Issue 8/2017

Microsystem Technologies 8/2017 Go to the issue