Skip to main content
Top
Published in: Rare Metals 7/2022

02-04-2022 | Original Article

Vanadium nitride nanoparticles embedded in carbon matrix with pseudocapacitive behavior for high performance lithium-ion capacitors

Authors: Jin-Hui Zhang, Zi-Yang Chen, Tie-Zhu Xu, Liu-Feng Ai, Ying-Hong Xu, Xiao-Gang Zhang, Lai-Fa Shen

Published in: Rare Metals | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium-ion capacitors (LICs) have attracted wide attention due to their potential of achieving merits of high-power output as well as high energy density. However, the key issue of kinetics mismatch between anode and cathode hinders the electrochemical performance of LICs. Therefore, a vanadium nitride composite with nanoparticles embedded in carbon matrix (VN-C) was prepared as an efficiently pseudocapacitive anode material with high electronic conductivity and fast Li-ion diffusion rate. The VN-C composites were synthesized through one-step ammonia heating treatment at different temperatures among which the sample annealed at 600 °C exhibits high specific capacity (513 mAh·g−1 at 0.1 A·g−1), outstanding rate performance (~ 300 mAh·g−1 at 10 A·g−1), and excellent cyclic steadiness (negligible capacity decay over 2000 cycles) in half-cell devices. A high-performance lithium-ion capacitor device was also fabricated by using VN-C-600 as the anode and activated carbon as the cathode, delivering a maximum energy density of 112.6 Wh·kg−1 and an extreme power density of 10 kW·kg−1.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev. 2011;111(5):3577.CrossRef Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev. 2011;111(5):3577.CrossRef
[2]
go back to reference Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294.CrossRef Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294.CrossRef
[3]
go back to reference Li C, Zhang X, Wang K, Su FY, Chen CM, Liu FY, Wu ZS, Ma YW. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J Energy Chem. 2021;54:352.CrossRef Li C, Zhang X, Wang K, Su FY, Chen CM, Liu FY, Wu ZS, Ma YW. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J Energy Chem. 2021;54:352.CrossRef
[4]
go back to reference Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0<x<1): a new cathode material for batteries of high energy density. Solid State Ion. 1981;3–4:171.CrossRef Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0<x<1): a new cathode material for batteries of high energy density. Solid State Ion. 1981;3–4:171.CrossRef
[5]
go back to reference Ke CZ, Liu F, Zheng ZM, Zhang HH, Cai MT, Li M, Yan QZ, Chen HX, Zhang QB. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021;40(6):1347.CrossRef Ke CZ, Liu F, Zheng ZM, Zhang HH, Cai MT, Li M, Yan QZ, Chen HX, Zhang QB. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021;40(6):1347.CrossRef
[6]
go back to reference Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.CrossRef Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.CrossRef
[7]
go back to reference Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater. 2010;22(35):E235.CrossRef Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater. 2010;22(35):E235.CrossRef
[8]
go back to reference Adusei PK, Gbordzoe S, Kanakaraj SN, Hsieh YY, Alvarez NT, Fang YB, Johnson K, McConnell C, Shanov V. Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J Energy Chem. 2020;40:120.CrossRef Adusei PK, Gbordzoe S, Kanakaraj SN, Hsieh YY, Alvarez NT, Fang YB, Johnson K, McConnell C, Shanov V. Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J Energy Chem. 2020;40:120.CrossRef
[9]
go back to reference Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J Power Sources. 2010;195(24):7880.CrossRef Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J Power Sources. 2010;195(24):7880.CrossRef
[10]
go back to reference Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nat Mater. 2020;19(11):1151.CrossRef Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nat Mater. 2020;19(11):1151.CrossRef
[11]
go back to reference Jiang SH, Ding J, Wang RH, Chen FY, Sun J, Deng YX, Li XL. Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Met. 2021;40(12):3520.CrossRef Jiang SH, Ding J, Wang RH, Chen FY, Sun J, Deng YX, Li XL. Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Met. 2021;40(12):3520.CrossRef
[12]
go back to reference Huang YJ, Luo C, Zhang QB, Zhang HH, Wang MS. Rational design of three-dimensional branched NiCo-P@CoNiMo-P core/shell nanowire heterostructures for high-performance hybrid supercapacitor. J Energy Chem. 2021;61:489.CrossRef Huang YJ, Luo C, Zhang QB, Zhang HH, Wang MS. Rational design of three-dimensional branched NiCo-P@CoNiMo-P core/shell nanowire heterostructures for high-performance hybrid supercapacitor. J Energy Chem. 2021;61:489.CrossRef
[13]
go back to reference Li C, Zhang X, Lv ZS, Wang K, Sun XZ, Chen XD, Ma YW. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem Eng J. 2021;414:128781.CrossRef Li C, Zhang X, Lv ZS, Wang K, Sun XZ, Chen XD, Ma YW. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem Eng J. 2021;414:128781.CrossRef
[14]
go back to reference Sikha G, White RE, Popov BN. A mathematical model for a lithium-ion battery/electrochemical capacitor hybrid system. J Electrochem Soc. 2005;152(8):A1682.CrossRef Sikha G, White RE, Popov BN. A mathematical model for a lithium-ion battery/electrochemical capacitor hybrid system. J Electrochem Soc. 2005;152(8):A1682.CrossRef
[15]
go back to reference Amatucci GG, Badway F, Du Pasquier A, Zheng T. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc. 2001;148(8):A930.CrossRef Amatucci GG, Badway F, Du Pasquier A, Zheng T. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc. 2001;148(8):A930.CrossRef
[16]
go back to reference Jin L, Shen C, Shellikeri A, Wu Q, Zheng J, Andrei P, Zhang JG, Zheng JP. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ Sci. 2020;13(8):2341.CrossRef Jin L, Shen C, Shellikeri A, Wu Q, Zheng J, Andrei P, Zhang JG, Zheng JP. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ Sci. 2020;13(8):2341.CrossRef
[17]
go back to reference Aravindan V, Gnanaraj J, Lee YS, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev. 2014;114(23):11619.CrossRef Aravindan V, Gnanaraj J, Lee YS, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev. 2014;114(23):11619.CrossRef
[18]
go back to reference Iwama E, Ueda T, Ishihara Y, Ohshima K, Naoi W, Reid MTH, Naoi K. High-voltage operation of Li4Ti5O12/AC hybrid supercapacitor cell in carbonate and sulfone electrolytes: gas generation and its characterization. Electrochim Acta. 2019;301:312.CrossRef Iwama E, Ueda T, Ishihara Y, Ohshima K, Naoi W, Reid MTH, Naoi K. High-voltage operation of Li4Ti5O12/AC hybrid supercapacitor cell in carbonate and sulfone electrolytes: gas generation and its characterization. Electrochim Acta. 2019;301:312.CrossRef
[19]
go back to reference Jin L, Guo X, Shen C, Qin N, Zheng J, Wu Q, Zhang C, Zheng JP. A universal matching approach for high power-density and high cycling-stability lithium ion capacitor. J Power Sources. 2019;441:227211.CrossRef Jin L, Guo X, Shen C, Qin N, Zheng J, Wu Q, Zhang C, Zheng JP. A universal matching approach for high power-density and high cycling-stability lithium ion capacitor. J Power Sources. 2019;441:227211.CrossRef
[20]
go back to reference Zhang S, Tan H, Rui X, Yu Y. Vanadium-based materials: next generation electrodes powering the battery revolution. Acc Chem Res. 2020;53(8):1660.CrossRef Zhang S, Tan H, Rui X, Yu Y. Vanadium-based materials: next generation electrodes powering the battery revolution. Acc Chem Res. 2020;53(8):1660.CrossRef
[21]
go back to reference Yan Y, Li B, Guo W, Pang H, Xue H. Vanadium based materials as electrode materials for high performance supercapacitors. J Power Sources. 2016;329:148.CrossRef Yan Y, Li B, Guo W, Pang H, Xue H. Vanadium based materials as electrode materials for high performance supercapacitors. J Power Sources. 2016;329:148.CrossRef
[22]
go back to reference Xu X, Xiong F, Meng J, An Q, Mai L. Multi-electron reactions of vanadium-based nanomaterials for high-capacity lithium batteries: challenges and opportunities. Mater Today Nano. 2020;10:100073.CrossRef Xu X, Xiong F, Meng J, An Q, Mai L. Multi-electron reactions of vanadium-based nanomaterials for high-capacity lithium batteries: challenges and opportunities. Mater Today Nano. 2020;10:100073.CrossRef
[23]
go back to reference Iwama E, Kawabata N, Nishio N, Kisu K, Miyamoto J, Naoi W, Rozier P, Simon P, Naoi K. Enhanced electrochemical performance of ultracentrifugation-derived nc-Li3VO4/MWCNT composites for hybrid super capacitors. ACS Nano. 2016;10(5):5398.CrossRef Iwama E, Kawabata N, Nishio N, Kisu K, Miyamoto J, Naoi W, Rozier P, Simon P, Naoi K. Enhanced electrochemical performance of ultracentrifugation-derived nc-Li3VO4/MWCNT composites for hybrid super capacitors. ACS Nano. 2016;10(5):5398.CrossRef
[24]
go back to reference Xu X, Niu F, Zhang D, Chu C, Wang C, Yang J, Qian Y. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors. J Power Sources. 2018;384:240.CrossRef Xu X, Niu F, Zhang D, Chu C, Wang C, Yang J, Qian Y. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors. J Power Sources. 2018;384:240.CrossRef
[25]
go back to reference Ren X, Ai D, Zhan C, Lv R, Kang F, Huang ZH. 3D porous Li3VO4@C composite anodes with ultra-high rate capacity for lithium-ion capacitors. Electrochim Acta. 2020;355:136819.CrossRef Ren X, Ai D, Zhan C, Lv R, Kang F, Huang ZH. 3D porous Li3VO4@C composite anodes with ultra-high rate capacity for lithium-ion capacitors. Electrochim Acta. 2020;355:136819.CrossRef
[26]
go back to reference Shen L, Lv H, Chen S, Kopold P, van Aken PA, Wu X, Maier J, Yu Y. Peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Adv Mater. 2017;29(27):1700142.CrossRef Shen L, Lv H, Chen S, Kopold P, van Aken PA, Wu X, Maier J, Yu Y. Peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Adv Mater. 2017;29(27):1700142.CrossRef
[27]
go back to reference Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater. 2011;23(6):791.CrossRef Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater. 2011;23(6):791.CrossRef
[28]
go back to reference Kong N, Jia M, Yang C, Lan J, Yu Y, Yang X. Encapsulating V2O3 nanoparticles in carbon nanofibers with internal void spaces for a self-supported anode material in superior lithium-ion capacitors. ACS Sustain Chem Eng. 2019;7(24):19483.CrossRef Kong N, Jia M, Yang C, Lan J, Yu Y, Yang X. Encapsulating V2O3 nanoparticles in carbon nanofibers with internal void spaces for a self-supported anode material in superior lithium-ion capacitors. ACS Sustain Chem Eng. 2019;7(24):19483.CrossRef
[29]
go back to reference Sahoo R, Lee TH, Pham DT, Luu THT, Lee YH. Fast-charging high-energy battery-supercapacitor hybrid: anodic reduced graphene oxide-vanadium(IV) oxide sheet-on-sheet heterostructure. ACS Nano. 2019;13(9):10776.CrossRef Sahoo R, Lee TH, Pham DT, Luu THT, Lee YH. Fast-charging high-energy battery-supercapacitor hybrid: anodic reduced graphene oxide-vanadium(IV) oxide sheet-on-sheet heterostructure. ACS Nano. 2019;13(9):10776.CrossRef
[30]
go back to reference Wu CZ, Feng F, Xie Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev. 2013;42(12):5157.CrossRef Wu CZ, Feng F, Xie Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev. 2013;42(12):5157.CrossRef
[31]
go back to reference Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan HJ. Transition metal carbides and nitrides in energy storage and conversion. Adv Sci. 2016;3(5):1500286.CrossRef Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan HJ. Transition metal carbides and nitrides in energy storage and conversion. Adv Sci. 2016;3(5):1500286.CrossRef
[32]
go back to reference Sun Q, Fu Z-W. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries. Electrochim Acta. 2008;54(2):403.CrossRef Sun Q, Fu Z-W. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries. Electrochim Acta. 2008;54(2):403.CrossRef
[33]
go back to reference Zhang K, Wang H, He X, Liu Z, Wang L, Gu L, Xu H, Han P, Dong S, Zhang C, Yao J, Cui G, Chen L. A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. J Mater Chem. 2011;21(32):11916.CrossRef Zhang K, Wang H, He X, Liu Z, Wang L, Gu L, Xu H, Han P, Dong S, Zhang C, Yao J, Cui G, Chen L. A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. J Mater Chem. 2011;21(32):11916.CrossRef
[34]
go back to reference Wang R, Lang J, Zhang P, Lin Z, Yan X. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv Func Mater. 2015;25(15):2270.CrossRef Wang R, Lang J, Zhang P, Lin Z, Yan X. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv Func Mater. 2015;25(15):2270.CrossRef
[35]
go back to reference Chen M, Fan H, Zhang Y, Liang X, Chen Q, Xia X. Coupling PEDOT on mesoporous vanadium nitride arrays for advanced flexible all-solid-state supercapacitors. Small. 2020;16(37):2003434.CrossRef Chen M, Fan H, Zhang Y, Liang X, Chen Q, Xia X. Coupling PEDOT on mesoporous vanadium nitride arrays for advanced flexible all-solid-state supercapacitors. Small. 2020;16(37):2003434.CrossRef
[36]
go back to reference Kim H, Cho MY, Kim MH, Park KY, Gwon H, Lee Y, Roh KC, Kang K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater. 2013;3(11):1500.CrossRef Kim H, Cho MY, Kim MH, Park KY, Gwon H, Lee Y, Roh KC, Kang K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater. 2013;3(11):1500.CrossRef
[37]
go back to reference He J, Manthiram A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite Inhibitor. Adv Energy Mater. 2019;10(3):1903241.CrossRef He J, Manthiram A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite Inhibitor. Adv Energy Mater. 2019;10(3):1903241.CrossRef
[38]
go back to reference Liu Y, Zhou T, Zheng Y, He Z, Xiao C, Pang WK, Tong W, Zou Y, Pan B, Guo Z, Xie Y. Local electric field facilitates high-performance li-ion batteries. ACS Nano. 2017;11(8):8519.CrossRef Liu Y, Zhou T, Zheng Y, He Z, Xiao C, Pang WK, Tong W, Zou Y, Pan B, Guo Z, Xie Y. Local electric field facilitates high-performance li-ion batteries. ACS Nano. 2017;11(8):8519.CrossRef
[39]
go back to reference Xia T, Zhang W, Murowchick J, Liu G, Chen X. Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano Lett. 2013;13(11):5296.CrossRef Xia T, Zhang W, Murowchick J, Liu G, Chen X. Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano Lett. 2013;13(11):5296.CrossRef
[40]
go back to reference Zheng Y, Zhou T, Zhao X, Pang WK, Gao H, Li S, Zhou Z, Liu H, Guo Z. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv Mater. 2017;29(26):1700396.CrossRef Zheng Y, Zhou T, Zhao X, Pang WK, Gao H, Li S, Zhou Z, Liu H, Guo Z. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv Mater. 2017;29(26):1700396.CrossRef
[41]
go back to reference Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2(Anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925.CrossRef Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2(Anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925.CrossRef
[42]
go back to reference Chao J, Yang L, Zhang H, Liu J, Hu R, Zhu M. Engineering layer structure of MoS2/polyaniline/graphene nanocomposites to achieve fast and reversible lithium storage for high energy density aqueous lithium-ion capacitors. J Power Sources. 2020;450:227680.CrossRef Chao J, Yang L, Zhang H, Liu J, Hu R, Zhu M. Engineering layer structure of MoS2/polyaniline/graphene nanocomposites to achieve fast and reversible lithium storage for high energy density aqueous lithium-ion capacitors. J Power Sources. 2020;450:227680.CrossRef
[43]
go back to reference Bi R, Xu N, Ren H, Yang N, Sun Y, Cao A, Yu R, Wang D. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew Chem Int Ed Engl. 2020;59(12):4865.CrossRef Bi R, Xu N, Ren H, Yang N, Sun Y, Cao A, Yu R, Wang D. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew Chem Int Ed Engl. 2020;59(12):4865.CrossRef
[44]
go back to reference Shang P, Zhang J, Tang W, Xu Q, Guo S. 2D thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitors. Adv Func Mater. 2016;26(43):7766.CrossRef Shang P, Zhang J, Tang W, Xu Q, Guo S. 2D thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitors. Adv Func Mater. 2016;26(43):7766.CrossRef
[45]
go back to reference Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong CP, Kang F, Lin Z, Li B. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon. 2018;140:296.CrossRef Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong CP, Kang F, Lin Z, Li B. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon. 2018;140:296.CrossRef
[46]
go back to reference Liu W, Zhang X, Li C, Wang K, Sun X, Ma Y. Carbon-coated Li3VO4 with optimized structure as high capacity anode material for lithium-ion capacitors. Chin Chem Lett. 2020;31(9):2225.CrossRef Liu W, Zhang X, Li C, Wang K, Sun X, Ma Y. Carbon-coated Li3VO4 with optimized structure as high capacity anode material for lithium-ion capacitors. Chin Chem Lett. 2020;31(9):2225.CrossRef
[47]
go back to reference Jung HG, Venugopal N, Scrosati B, Sun YK. A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. J Power Sources. 2013;221:266.CrossRef Jung HG, Venugopal N, Scrosati B, Sun YK. A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. J Power Sources. 2013;221:266.CrossRef
[48]
go back to reference Liu C, Zhang C, Fu H, Nan X, Cao G. Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors. Adv Energy Mater. 2017;7(1):1601127.CrossRef Liu C, Zhang C, Fu H, Nan X, Cao G. Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors. Adv Energy Mater. 2017;7(1):1601127.CrossRef
Metadata
Title
Vanadium nitride nanoparticles embedded in carbon matrix with pseudocapacitive behavior for high performance lithium-ion capacitors
Authors
Jin-Hui Zhang
Zi-Yang Chen
Tie-Zhu Xu
Liu-Feng Ai
Ying-Hong Xu
Xiao-Gang Zhang
Lai-Fa Shen
Publication date
02-04-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 7/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01950-7

Other articles of this Issue 7/2022

Rare Metals 7/2022 Go to the issue

Premium Partners