Skip to main content
Top
Published in: Neural Computing and Applications 7/2018

07-07-2018 | S.I. : Deep Learning for Biomedical and Healthcare Applications

Very deep feature extraction and fusion for arrhythmias detection

Authors: Moussa Amrani, Mohamed Hammad, Feng Jiang, Kuanquan Wang, Amel Amrani

Published in: Neural Computing and Applications | Issue 7/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electrocardiogram (ECG) is a picture of heart electrical conduction, which is widely used to diagnose many types of diseases such as abnormal heartbeat rhythm (arrhythmia). However, it is very difficult to detect the abnormal ECG characteristics because of the nonlinearity and the complexity of ECG signals from one side, and the noise effect of these signals from the other side, which make it very difficult to perform direct information extraction. Therefore, in this study we propose a very deep convolutional neural network (VDCNN) by using small filters throughout the whole net to reduce the noise affect and improve the performance. Our approach introduces multi-canonical correlation analysis (MCCA), a method to learn selective adaptive layer’s features such that the resulting representations are highly linearly correlated and speed up the training task. Moreover, the Q-Gaussian multi-class support vector machine (QG-MSVM) is introduced for classification, an algorithm which has a better learning performance and generalization ability on ECG signals processing. As a result, we come up with expressively more accurate architecture which is able to differentiate between the normal (NSR) heartbeats and three common types of arrhythmia atrial fibrillation (A-Fib), atrial flutter (AFL), and paroxysmal supraventricular tachycardia (PSVT) without performing any noise filtering or pre-processing techniques. Experimental results show that the proposed algorithm outperforms the state-of-the-art methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
6.
go back to reference Sahoo S et al (2016) De-noising of ECG signal and QRS detection using Hilbert transform and adaptive thresholding. Procedia Technol 25:68–75CrossRef Sahoo S et al (2016) De-noising of ECG signal and QRS detection using Hilbert transform and adaptive thresholding. Procedia Technol 25:68–75CrossRef
7.
go back to reference De Albuquerque VHC et al (2016) Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput Appl 1:1–15 De Albuquerque VHC et al (2016) Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput Appl 1:1–15
9.
go back to reference Ebrahimzadeh A et al (2016) Classification of ECG signals using hermite functions and MLP neural networks. J AI Data Min 4(1):55–65 Ebrahimzadeh A et al (2016) Classification of ECG signals using hermite functions and MLP neural networks. J AI Data Min 4(1):55–65
11.
go back to reference Andersen RS et al (2017) A novel approach for automatic detection of atrial fibrillation based on inter beat intervals and support vector machine. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 2039–2042 Andersen RS et al (2017) A novel approach for automatic detection of atrial fibrillation based on inter beat intervals and support vector machine. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 2039–2042
12.
go back to reference Garcia G et al (2017) Inter-patient ECG heartbeat classification with temporal VCG optimized by PSO. Sci Rep 7(1):10543CrossRef Garcia G et al (2017) Inter-patient ECG heartbeat classification with temporal VCG optimized by PSO. Sci Rep 7(1):10543CrossRef
13.
go back to reference Desai U, Martis RJ, Acharya UR, Nayak CG, Seshikala G, Ranjan SK (2016) Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. J Mech Med Biol 16(1):1640005CrossRef Desai U, Martis RJ, Acharya UR, Nayak CG, Seshikala G, Ranjan SK (2016) Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. J Mech Med Biol 16(1):1640005CrossRef
14.
go back to reference Acharya UR, Fujita H, Adam H, Oh SL, Tan JH, Sudarshan VK, Koh JEW (2016) Automated characterization of Arrhythmias using nonlinear features from tachycardia ECG beats. In: IEEE international conference on systems, man, and cybernetics Acharya UR, Fujita H, Adam H, Oh SL, Tan JH, Sudarshan VK, Koh JEW (2016) Automated characterization of Arrhythmias using nonlinear features from tachycardia ECG beats. In: IEEE international conference on systems, man, and cybernetics
15.
go back to reference Acharya D et al (2017) Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci 405:81–90CrossRef Acharya D et al (2017) Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci 405:81–90CrossRef
16.
go back to reference Singh BN, Tiwari AK (2006) Optimal selection of wavelet basis function applied to ECG signal denoising. Digit Signal Process A Rev J 16(3):275–287CrossRef Singh BN, Tiwari AK (2006) Optimal selection of wavelet basis function applied to ECG signal denoising. Digit Signal Process A Rev J 16(3):275–287CrossRef
17.
go back to reference Zubair M, Kim J, Yoon CW (2016) An automated ECG beat classification system using convolutional neural networks. In: IEEE 6th international conference on IT convergence and security Zubair M, Kim J, Yoon CW (2016) An automated ECG beat classification system using convolutional neural networks. In: IEEE 6th international conference on IT convergence and security
18.
go back to reference Acharya D et al (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396CrossRef Acharya D et al (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396CrossRef
19.
go back to reference Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRef Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRef
21.
go back to reference An X et al (2014) A deep learning method for classification of EEG data based on motor imagery. ICIC 8590:203–210 An X et al (2014) A deep learning method for classification of EEG data based on motor imagery. ICIC 8590:203–210
22.
go back to reference Sun Y et al (2014) Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE conference on computer vision and pattern recognition, pp 1891–1898 Sun Y et al (2014) Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE conference on computer vision and pattern recognition, pp 1891–1898
23.
go back to reference Hinton G et al (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(2012):82–97CrossRef Hinton G et al (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(2012):82–97CrossRef
24.
go back to reference Wang X et al (2017) CSI-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66:763–776 Wang X et al (2017) CSI-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66:763–776
25.
go back to reference Burlina P et al (2017) Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med 82:80–86CrossRef Burlina P et al (2017) Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med 82:80–86CrossRef
26.
go back to reference Greenspan H et al (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159CrossRef Greenspan H et al (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159CrossRef
27.
go back to reference Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969CrossRef Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969CrossRef
28.
go back to reference Ravì D et al (2017) Deep learning for health informatics. IEEE J Biomed Health Inf 21:4–21CrossRef Ravì D et al (2017) Deep learning for health informatics. IEEE J Biomed Health Inf 21:4–21CrossRef
29.
go back to reference Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRef Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRef
30.
go back to reference Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of international conference learning represent. (ICLR), San Diego, CA, pp 1–14 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of international conference learning represent. (ICLR), San Diego, CA, pp 1–14
31.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: NIPS, pp 1106–1114 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: NIPS, pp 1106–1114
32.
go back to reference Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of ICLR Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of ICLR
33.
go back to reference Nogueira RF, de Alencar Lotufo R, Machado RC (2016) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Secur 11(6):1206–1213CrossRef Nogueira RF, de Alencar Lotufo R, Machado RC (2016) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Secur 11(6):1206–1213CrossRef
34.
go back to reference Rodriguez R et al (2015) Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. J Appl Res Technol 13(2):261–269CrossRef Rodriguez R et al (2015) Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. J Appl Res Technol 13(2):261–269CrossRef
35.
go back to reference Amrani M (2017) Deep feature extraction and combination for synthetic aperture radar target classification. J Appl Remote Sens 11(4):1CrossRef Amrani M (2017) Deep feature extraction and combination for synthetic aperture radar target classification. J Appl Remote Sens 11(4):1CrossRef
36.
go back to reference Haghighat M, Abdel-Mottaleb M, Alhalabi W (2016) Fully automatic face normalization and single sample face recognition in unconstrained environments. Expert Syst Appl 47:23–34CrossRef Haghighat M, Abdel-Mottaleb M, Alhalabi W (2016) Fully automatic face normalization and single sample face recognition in unconstrained environments. Expert Syst Appl 47:23–34CrossRef
37.
go back to reference Hammad M, Wang K (2017) Fingerprint classification based on a Q-Gaussian multiclass support vector machine. In: Proceedings of the 2017 international conference on biometrics engineering and application. ACM Hammad M, Wang K (2017) Fingerprint classification based on a Q-Gaussian multiclass support vector machine. In: Proceedings of the 2017 international conference on biometrics engineering and application. ACM
38.
go back to reference Silva L et al (2010) Reconstruction of multivariate signals using q-Gaussian radial basis function network. IEEE Comput Cardiol 2010:465–468 Silva L et al (2010) Reconstruction of multivariate signals using q-Gaussian radial basis function network. IEEE Comput Cardiol 2010:465–468
39.
go back to reference Tsallis C (1994) What are the numbers that experiments provide?. Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro Tsallis C (1994) What are the numbers that experiments provide?. Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro
40.
go back to reference Isin Ali, Ozdalili Selen (2017) Cardiac arrhythmia detection using deep learning. Procedia Comput Sci 120:268–275CrossRef Isin Ali, Ozdalili Selen (2017) Cardiac arrhythmia detection using deep learning. Procedia Comput Sci 120:268–275CrossRef
41.
go back to reference Luo K et al (2017) Patient-specific deep architectural model for ECG classification. J Healthc Eng 2017:1–13 Luo K et al (2017) Patient-specific deep architectural model for ECG classification. J Healthc Eng 2017:1–13
42.
go back to reference Acharya UR et al (2018) Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Gener Comp Syst 79:952–959CrossRef Acharya UR et al (2018) Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Gener Comp Syst 79:952–959CrossRef
43.
go back to reference Acharya UR et al (2017) Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci 415:190–198CrossRef Acharya UR et al (2017) Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci 415:190–198CrossRef
44.
go back to reference Jia F, Lei Y, Guo L, Lin J, Xing S (2017) A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing 248:98–109 Jia F, Lei Y, Guo L, Lin J, Xing S (2017) A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing 248:98–109
Metadata
Title
Very deep feature extraction and fusion for arrhythmias detection
Authors
Moussa Amrani
Mohamed Hammad
Feng Jiang
Kuanquan Wang
Amel Amrani
Publication date
07-07-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 7/2018
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3616-9

Other articles of this Issue 7/2018

Neural Computing and Applications 7/2018 Go to the issue

Premium Partner