Skip to main content
Top
Published in: Journal of Scientific Computing 1/2023

01-10-2023

VI-DGP: A Variational Inference Method with Deep Generative Prior for Solving High-Dimensional Inverse Problems

Authors: Yingzhi Xia, Qifeng Liao, Jinglai Li

Published in: Journal of Scientific Computing | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solving high-dimensional Bayesian inverse problems (BIPs) with the variational inference (VI) method is promising but still challenging. The main difficulties arise from two aspects. First, VI methods approximate the posterior distribution using a simple and analytic variational distribution, which makes it difficult to estimate complex spatially-varying parameters in practice. Second, VI methods typically rely on gradient-based optimization, which can be computationally expensive or intractable when applied to BIPs involving partial differential equations (PDEs). To address these challenges, we propose a novel approximation method for estimating the high-dimensional posterior distribution. This approach leverages a deep generative model to learn a prior model capable of generating spatially-varying parameters. This enables posterior approximation over the latent variable instead of the complex parameters, thus improving estimation accuracy. Moreover, to accelerate gradient computation, we employ a differentiable physics-constrained surrogate model to replace the adjoint method. The proposed method can be fully implemented in an automatic differentiation manner. Numerical examples demonstrate two types of log-permeability estimation for flow in heterogeneous media. The results show the validity, accuracy, and high efficiency of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Barajas-Solano, D.A., Tartakovsky, A.M.: Approximate bayesian model inversion for PDEs with heterogeneous and state-dependent coefficients. J. Comput. Phys. 395, 247–262 (2019)MathSciNetMATH Barajas-Solano, D.A., Tartakovsky, A.M.: Approximate bayesian model inversion for PDEs with heterogeneous and state-dependent coefficients. J. Comput. Phys. 395, 247–262 (2019)MathSciNetMATH
2.
go back to reference Bilionis, I., Zabaras, N., Konomi, B.A., Lin, G.: Multi-output separable gaussian process: towards an efficient, fully bayesian paradigm for uncertainty quantification. J. Comput. Phys. 241, 212–239 (2013)MathSciNetMATH Bilionis, I., Zabaras, N., Konomi, B.A., Lin, G.: Multi-output separable gaussian process: towards an efficient, fully bayesian paradigm for uncertainty quantification. J. Comput. Phys. 241, 212–239 (2013)MathSciNetMATH
3.
go back to reference Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)MathSciNet Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)MathSciNet
4.
go back to reference Bora, A., Jalal, A., Price, E., Dimakis, A.G.: Compressed sensing using generative models. In: International Conference on Machine Learning, pp. 537–546. PMLR (2017) Bora, A., Jalal, A., Price, E., Dimakis, A.G.: Compressed sensing using generative models. In: International Conference on Machine Learning, pp. 537–546. PMLR (2017)
5.
go back to reference Bui-Thanh, T., Girolami, M.: Solving large-scale PDE-constrained bayesian inverse problems with Riemann manifold Hamiltonian monte Carlo. Invers. Probl. 30(11), 114014 (2014)MathSciNetMATH Bui-Thanh, T., Girolami, M.: Solving large-scale PDE-constrained bayesian inverse problems with Riemann manifold Hamiltonian monte Carlo. Invers. Probl. 30(11), 114014 (2014)MathSciNetMATH
6.
go back to reference Chen, P., Ghattas, O.: Stein variational reduced basis bayesian inversion. SIAM J. Sci. Comput. 43(2), A1163–A1193 (2021)MathSciNetMATH Chen, P., Ghattas, O.: Stein variational reduced basis bayesian inversion. SIAM J. Sci. Comput. 43(2), A1163–A1193 (2021)MathSciNetMATH
7.
go back to reference Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: Mcmc methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28(3), 424–446 (2013)MathSciNetMATH Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: Mcmc methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28(3), 424–446 (2013)MathSciNetMATH
8.
go back to reference Cui, T., Marzouk, Y.M., Willcox, K.E.: Data-driven model reduction for the bayesian solution of inverse problems. Int. J. Numer. Meth. Eng. 102(5), 966–990 (2015)MathSciNetMATH Cui, T., Marzouk, Y.M., Willcox, K.E.: Data-driven model reduction for the bayesian solution of inverse problems. Int. J. Numer. Meth. Eng. 102(5), 966–990 (2015)MathSciNetMATH
9.
go back to reference Driggs, D., Liang, J., Schönlieb, C.B.: On biased stochastic gradient estimation. J. Mach. Learn. Res. 23(1), 1057–1099 (2022)MathSciNetMATH Driggs, D., Liang, J., Schönlieb, C.B.: On biased stochastic gradient estimation. J. Mach. Learn. Res. 23(1), 1057–1099 (2022)MathSciNetMATH
10.
go back to reference Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer Science & Business Media (1996)MATH Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer Science & Business Media (1996)MATH
12.
go back to reference Geneva, N., Zabaras, N.: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J. Comput. Phys. 403, 109056 (2020)MathSciNetMATH Geneva, N., Zabaras, N.: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J. Comput. Phys. 403, 109056 (2020)MathSciNetMATH
13.
go back to reference Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014) Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)
14.
go back to reference Guha, N., Wu, X., Efendiev, Y., Jin, B., Mallick, B.K.: A variational bayesian approach for inverse problems with skew-t error distributions. J. Comput. Phys. 301, 377–393 (2015)MathSciNetMATH Guha, N., Wu, X., Efendiev, Y., Jin, B., Mallick, B.K.: A variational bayesian approach for inverse problems with skew-t error distributions. J. Comput. Phys. 301, 377–393 (2015)MathSciNetMATH
15.
go back to reference Hairer, M., Stuart, A.M., Vollmer, S.J.: Spectral gaps for a metropolis–hastings algorithm in infinite dimensions. Ann. Appl. Probab. 24(6), 2455–2490 (2014)MathSciNetMATH Hairer, M., Stuart, A.M., Vollmer, S.J.: Spectral gaps for a metropolis–hastings algorithm in infinite dimensions. Ann. Appl. Probab. 24(6), 2455–2490 (2014)MathSciNetMATH
16.
go back to reference Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)
17.
go back to reference Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A.G., Tamir, J.: Robust compressed sensing MRI with deep generative priors. Adv. Neural Inf. Process. Syst. 34, 14938–14954 (2021) Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A.G., Tamir, J.: Robust compressed sensing MRI with deep generative priors. Adv. Neural Inf. Process. Syst. 34, 14938–14954 (2021)
18.
go back to reference Jia, J., Zhao, Q., Xu, Z., Meng, D., Leung, Y.: Variational bayes’ method for functions with applications to some inverse problems. SIAM J. Sci. Comput. 43(1), A355–A383 (2021)MathSciNetMATH Jia, J., Zhao, Q., Xu, Z., Meng, D., Leung, Y.: Variational bayes’ method for functions with applications to some inverse problems. SIAM J. Sci. Comput. 43(1), A355–A383 (2021)MathSciNetMATH
19.
go back to reference Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer Science & Business Media (2006)MATH Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer Science & Business Media (2006)MATH
20.
go back to reference Khoo, Y., Ying, L.: Switchnet: a neural network model for forward and inverse scattering problems. SIAM J. Sci. Comput. 41(5), A3182–A3201 (2019)MathSciNetMATH Khoo, Y., Ying, L.: Switchnet: a neural network model for forward and inverse scattering problems. SIAM J. Sci. Comput. 41(5), A3182–A3201 (2019)MathSciNetMATH
23.
go back to reference Laloy, E., Hérault, R., Jacques, D., Linde, N.: Training-image based geostatistical inversion using a spatial generative adversarial neural network. Water Resour. Res. 54(1), 381–406 (2018) Laloy, E., Hérault, R., Jacques, D., Linde, N.: Training-image based geostatistical inversion using a spatial generative adversarial neural network. Water Resour. Res. 54(1), 381–406 (2018)
24.
go back to reference Laloy, E., Hérault, R., Lee, J., Jacques, D., Linde, N.: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network. Adv. Water Resour. 110, 387–405 (2017) Laloy, E., Hérault, R., Lee, J., Jacques, D., Linde, N.: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network. Adv. Water Resour. 110, 387–405 (2017)
25.
go back to reference Li, S., Xia, Y., Liu, Y., Liao, Q.: A deep domain decomposition method based on Fourier features. J. Comput. Appl. Math. 423, 114963 (2023)MathSciNetMATH Li, S., Xia, Y., Liu, Y., Liao, Q.: A deep domain decomposition method based on Fourier features. J. Comput. Appl. Math. 423, 114963 (2023)MathSciNetMATH
26.
go back to reference Liao, Q., Li, J.: An adaptive reduced basis anova method for high-dimensional bayesian inverse problems. J. Comput. Phys. 396, 364–380 (2019)MathSciNetMATH Liao, Q., Li, J.: An adaptive reduced basis anova method for high-dimensional bayesian inverse problems. J. Comput. Phys. 396, 364–380 (2019)MathSciNetMATH
27.
go back to reference Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3(3), 218–229 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3(3), 218–229 (2021)
28.
go back to reference Lye, K.O., Mishra, S., Ray, D., Chandrashekar, P.: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks. Comput. Meth. Appl. Mech. Eng. 374, 113575 (2021)MathSciNetMATH Lye, K.O., Mishra, S., Ray, D., Chandrashekar, P.: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks. Comput. Meth. Appl. Mech. Eng. 374, 113575 (2021)MathSciNetMATH
29.
go back to reference Martin, J., Wilcox, L.C., Burstedde, C., Ghattas, O.: A stochastic newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci. Comput. 34(3), A1460–A1487 (2012)MathSciNetMATH Martin, J., Wilcox, L.C., Burstedde, C., Ghattas, O.: A stochastic newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci. Comput. 34(3), A1460–A1487 (2012)MathSciNetMATH
30.
go back to reference Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient bayesian solution of inverse problems. J. Comput. Phys. 224(2), 560–586 (2007)MathSciNetMATH Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient bayesian solution of inverse problems. J. Comput. Phys. 224(2), 560–586 (2007)MathSciNetMATH
31.
go back to reference Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)MATH Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)MATH
32.
go back to reference Mo, S., Zabaras, N., Shi, X., Wu, J.: Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification. Water Resour. Res. 55(5), 3856–3881 (2019) Mo, S., Zabaras, N., Shi, X., Wu, J.: Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification. Water Resour. Res. 55(5), 3856–3881 (2019)
33.
go back to reference Mo, S., Zabaras, N., Shi, X., Wu, J.: Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-gaussian hydraulic conductivities. Water Resourc. Res. 56(2), e2019WR026082 (2020) Mo, S., Zabaras, N., Shi, X., Wu, J.: Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-gaussian hydraulic conductivities. Water Resourc. Res. 56(2), e2019WR026082 (2020)
34.
go back to reference Mo, S., Zhu, Y., Zabaras, N., Shi, X., Wu, J.: Deep convolutional encoder–decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media. Water Resourc. Res. 55(1), 703–728 (2019) Mo, S., Zhu, Y., Zabaras, N., Shi, X., Wu, J.: Deep convolutional encoder–decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media. Water Resourc. Res. 55(1), 703–728 (2019)
35.
go back to reference Padmanabha, G.A., Zabaras, N.: Solving inverse problems using conditional invertible neural networks. J. Comput. Phys. 433, 110194 (2021)MathSciNetMATH Padmanabha, G.A., Zabaras, N.: Solving inverse problems using conditional invertible neural networks. J. Comput. Phys. 433, 110194 (2021)MathSciNetMATH
36.
go back to reference Patel, D.V., Ray, D., Oberai, A.A.: Solution of physics-based bayesian inverse problems with deep generative priors. Comput. Meth. Appl. Mech. Eng. 400, 115428 (2022)MathSciNetMATH Patel, D.V., Ray, D., Oberai, A.A.: Solution of physics-based bayesian inverse problems with deep generative priors. Comput. Meth. Appl. Mech. Eng. 400, 115428 (2022)MathSciNetMATH
37.
go back to reference Povala, J., Kazlauskaite, I., Febrianto, E., Cirak, F., Girolami, M.: Variational bayesian approximation of inverse problems using sparse precision matrices. Comput. Meth. Appl. Mech. Eng. 393, 114712 (2022)MathSciNetMATH Povala, J., Kazlauskaite, I., Febrianto, E., Cirak, F., Girolami, M.: Variational bayesian approximation of inverse problems using sparse precision matrices. Comput. Meth. Appl. Mech. Eng. 393, 114712 (2022)MathSciNetMATH
38.
go back to reference Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetMATH Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetMATH
39.
go back to reference Ranganath, R., Gerrish, S., Blei, D.: Black box variational inference. In: Artificial Intelligence and Statistics, pp. 814–822. PMLR (2014) Ranganath, R., Gerrish, S., Blei, D.: Black box variational inference. In: Artificial Intelligence and Statistics, pp. 814–822. PMLR (2014)
40.
go back to reference Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning, pp. 1530–1538. PMLR (2015) Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning, pp. 1530–1538. PMLR (2015)
41.
go back to reference Robert, C.P., Casella, G., Casella, G.: Monte Carlo Statistical Methods, vol. 2. Springer (1999)MATH Robert, C.P., Casella, G., Casella, G.: Monte Carlo Statistical Methods, vol. 2. Springer (1999)MATH
42.
go back to reference Roeder, G., Wu, Y., Duvenaud, D.K.: Sticking the landing: Simple, lower-variance gradient estimators for variational inference. Adv. Neural Inf. Process. Syst. 30 (2017) Roeder, G., Wu, Y., Duvenaud, D.K.: Sticking the landing: Simple, lower-variance gradient estimators for variational inference. Adv. Neural Inf. Process. Syst. 30 (2017)
43.
44.
go back to reference Sun, L., Gao, H., Pan, S., Wang, J.X.: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Meth. Appl. Mech. Eng. 361, 112732 (2020)MathSciNetMATH Sun, L., Gao, H., Pan, S., Wang, J.X.: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Meth. Appl. Mech. Eng. 361, 112732 (2020)MathSciNetMATH
45.
go back to reference Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, vol. 89. SIAM (2005)MATH Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, vol. 89. SIAM (2005)MATH
46.
go back to reference Tripathy, R.K., Bilionis, I.: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification. J. Comput. Phys. 375, 565–588 (2018)MathSciNetMATH Tripathy, R.K., Bilionis, I.: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification. J. Comput. Phys. 375, 565–588 (2018)MathSciNetMATH
47.
go back to reference Tsilifis, P., Bilionis, I., Katsounaros, I., Zabaras, N.: Computationally efficient variational approximations for bayesian inverse problems. J. Verif. Valid. Uncertain. Quantif. 1(3), 031004 (2016) Tsilifis, P., Bilionis, I., Katsounaros, I., Zabaras, N.: Computationally efficient variational approximations for bayesian inverse problems. J. Verif. Valid. Uncertain. Quantif. 1(3), 031004 (2016)
48.
go back to reference Wan, J., Zabaras, N.: A bayesian approach to multiscale inverse problems using the sequential monte Carlo method. Invers. Probl. 27(10), 105004 (2011)MathSciNetMATH Wan, J., Zabaras, N.: A bayesian approach to multiscale inverse problems using the sequential monte Carlo method. Invers. Probl. 27(10), 105004 (2011)MathSciNetMATH
49.
go back to reference Wang, K., Bui-Thanh, T., Ghattas, O.: A randomized maximum a posteriori method for posterior sampling of high dimensional nonlinear bayesian inverse problems. SIAM J. Sci. Comput. 40(1), A142–A171 (2018)MathSciNetMATH Wang, K., Bui-Thanh, T., Ghattas, O.: A randomized maximum a posteriori method for posterior sampling of high dimensional nonlinear bayesian inverse problems. SIAM J. Sci. Comput. 40(1), A142–A171 (2018)MathSciNetMATH
50.
go back to reference Wang, L., Chan, Y.C., Ahmed, F., Liu, Z., Zhu, P., Chen, W.: Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Comput. Meth. Appl. Mech. Eng. 372, 113377 (2020)MathSciNetMATH Wang, L., Chan, Y.C., Ahmed, F., Liu, Z., Zhu, P., Chen, W.: Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Comput. Meth. Appl. Mech. Eng. 372, 113377 (2020)MathSciNetMATH
51.
go back to reference Wang, S., Bhouri, M.A., Perdikaris, P.: Fast pde-constrained optimization via self-supervised operator learning. arXiv preprint arXiv:2110.13297 (2021) Wang, S., Bhouri, M.A., Perdikaris, P.: Fast pde-constrained optimization via self-supervised operator learning. arXiv preprint arXiv:​2110.​13297 (2021)
52.
go back to reference Warner, J.E., Aquino, W., Grigoriu, M.D.: Stochastic reduced order models for inverse problems under uncertainty. Comput. Meth. Appl. Mech. Eng. 285, 488–514 (2015)MathSciNetMATH Warner, J.E., Aquino, W., Grigoriu, M.D.: Stochastic reduced order models for inverse problems under uncertainty. Comput. Meth. Appl. Mech. Eng. 285, 488–514 (2015)MathSciNetMATH
53.
go back to reference Xia, Y., Zabaras, N.: Bayesian multiscale deep generative model for the solution of high-dimensional inverse problems. J. Comput. Phys. 455, 111008 (2022)MathSciNetMATH Xia, Y., Zabaras, N.: Bayesian multiscale deep generative model for the solution of high-dimensional inverse problems. J. Comput. Phys. 455, 111008 (2022)MathSciNetMATH
54.
go back to reference Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)MathSciNetMATH Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)MathSciNetMATH
55.
56.
go back to reference Yan, L., Zhou, T.: Stein variational gradient descent with local approximations. Comput. Meth. Appl. Mech. Eng. 386, 114087 (2021)MathSciNetMATH Yan, L., Zhou, T.: Stein variational gradient descent with local approximations. Comput. Meth. Appl. Mech. Eng. 386, 114087 (2021)MathSciNetMATH
57.
go back to reference Yang, K., Guha, N., Efendiev, Y., Mallick, B.K.: Bayesian and variational bayesian approaches for flows in heterogeneous random media. J. Comput. Phys. 345, 275–293 (2017)MathSciNetMATH Yang, K., Guha, N., Efendiev, Y., Mallick, B.K.: Bayesian and variational bayesian approaches for flows in heterogeneous random media. J. Comput. Phys. 345, 275–293 (2017)MathSciNetMATH
58.
go back to reference Zhang, C., Bütepage, J., Kjellström, H., Mandt, S.: Advances in variational inference. IEEE Trans. Patt. Anal. Mach. Intell. 41(8), 2008–2026 (2018) Zhang, C., Bütepage, J., Kjellström, H., Mandt, S.: Advances in variational inference. IEEE Trans. Patt. Anal. Mach. Intell. 41(8), 2008–2026 (2018)
59.
go back to reference Zhdanov, M.S.: Geophysical Inverse Theory and Regularization Problems, vol. 36. Elsevier (2002) Zhdanov, M.S.: Geophysical Inverse Theory and Regularization Problems, vol. 36. Elsevier (2002)
60.
go back to reference Zhu, Y., Zabaras, N.: Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification. J. Comput. Phys. 366, 415–447 (2018)MathSciNetMATH Zhu, Y., Zabaras, N.: Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification. J. Comput. Phys. 366, 415–447 (2018)MathSciNetMATH
61.
go back to reference Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019)MathSciNetMATH Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019)MathSciNetMATH
Metadata
Title
VI-DGP: A Variational Inference Method with Deep Generative Prior for Solving High-Dimensional Inverse Problems
Authors
Yingzhi Xia
Qifeng Liao
Jinglai Li
Publication date
01-10-2023
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2023
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-023-02328-w

Other articles of this Issue 1/2023

Journal of Scientific Computing 1/2023 Go to the issue

Premium Partner