Skip to main content
Top
Published in: Acta Mechanica 2/2024

09-11-2023 | Original Paper

Vibrational analysis of two crossed graphene nanoribbons via nonlocal differential/integral models

Authors: Hossein Pakdaman, Mojtaba Roshan, Soroush Soltani

Published in: Acta Mechanica | Issue 2/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper deals with the free vibrational behavior of two crossed graphene nanoribbons (GNRs) embedded in an elastic medium using nonlocal continuum-based models. The interactional van der Waals (vdW) forces have a crucial role to play in the vibration of the graphene-based nanostructure. The Lennard–Jones potential function is employed to model the non-uniform vdW force between two crossed GNRs. Eringen’s differential/integral nonlocal models are developed to derive the equations of motion on the basis of Rayleigh and Timoshenko beam theories. Then, Galerkin’s procedure, as a discretization method, and the assumed mode technique, as a solution method for ordinary integro-differential equations, are implemented. Several numerical studies, including the effects of intersection angle, intersection point, nonlocal parameter, and stiffness of elastic medium on the mechanics of nanostructure, are provided to show how the present models affect the free vibration of the system. The study results show that the consideration of non-uniform interactional vdW force leads to a more comprehensive model for dynamic analysis of nanostructure, and the value of intersection angle has a significant influence on the vibration of two crossed GNRs.
Literature
1.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSPubMed Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSPubMed
2.
go back to reference Bunch, J.S., Van Der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007)ADSPubMed Bunch, J.S., Van Der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007)ADSPubMed
3.
go back to reference Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)ADSPubMed Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)ADSPubMed
4.
go back to reference Cadelano, E.: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102, 235502 (2009)ADSPubMed Cadelano, E.: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102, 235502 (2009)ADSPubMed
5.
go back to reference Guo, Z., Zhang, D., Gong, X.-G.: Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95, 163103 (2009)ADS Guo, Z., Zhang, D., Gong, X.-G.: Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95, 163103 (2009)ADS
6.
go back to reference Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Elías, A.L., Muñoz-Sandoval, E., Cano-Márquez, A.G., Charlier, J.C., Terrones, H.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010) Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Elías, A.L., Muñoz-Sandoval, E., Cano-Márquez, A.G., Charlier, J.C., Terrones, H.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010)
7.
go back to reference Falkovsky, L.A.: Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008) Falkovsky, L.A.: Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008)
8.
go back to reference Shimada, T., Huang, K., Ozaki, N., Jang, B., Kitamura, T.: Beyond conventional nonlinear fracture mechanics in graphene nanoribbons. Nanoscale 12, 18363–18370 (2020)PubMed Shimada, T., Huang, K., Ozaki, N., Jang, B., Kitamura, T.: Beyond conventional nonlinear fracture mechanics in graphene nanoribbons. Nanoscale 12, 18363–18370 (2020)PubMed
9.
go back to reference Ritter, K.A., Lyding, J.W.: The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009)ADSPubMed Ritter, K.A., Lyding, J.W.: The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009)ADSPubMed
10.
go back to reference Son, Y.-W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006)ADSPubMed Son, Y.-W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006)ADSPubMed
11.
go back to reference Medina-Rull, A., Pasadas, F., Marin, E.G., Toral-Lopez, A., Cuesta, J., Godoy, A., Jimélnez, D., Ruiz, F.G.: A graphene field-effect transistor based analogue phase shifter for high-frequency applications. IEEE Access 8, 209055–209063 (2020) Medina-Rull, A., Pasadas, F., Marin, E.G., Toral-Lopez, A., Cuesta, J., Godoy, A., Jimélnez, D., Ruiz, F.G.: A graphene field-effect transistor based analogue phase shifter for high-frequency applications. IEEE Access 8, 209055–209063 (2020)
12.
go back to reference Anand, S., Sriram Kumar, D., Wu, R.J., Chavali, M.: Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik 125, 5546–5549 (2014)ADS Anand, S., Sriram Kumar, D., Wu, R.J., Chavali, M.: Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik 125, 5546–5549 (2014)ADS
13.
go back to reference Lam, K.-T., Lee, C., Liang, G.: Bilayer graphene nanoribbon nanoelectromechanical system device: a computational study. Appl. Phys. Lett. 95, 143107 (2009)ADS Lam, K.-T., Lee, C., Liang, G.: Bilayer graphene nanoribbon nanoelectromechanical system device: a computational study. Appl. Phys. Lett. 95, 143107 (2009)ADS
14.
go back to reference Akgöz, B., Civalek, Ö.: Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171 (2012) Akgöz, B., Civalek, Ö.: Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171 (2012)
15.
go back to reference Shi, J.-X., Ni, Q.-Q., Lei, X.-W., Natsuki, T.: Nonlocal vibration of embedded double-layer graphene nanoribbons in in-phase and anti-phase modes. Phys. E Low Dimens. Syst. Nanostruct. 44, 1136–1141 (2012)ADS Shi, J.-X., Ni, Q.-Q., Lei, X.-W., Natsuki, T.: Nonlocal vibration of embedded double-layer graphene nanoribbons in in-phase and anti-phase modes. Phys. E Low Dimens. Syst. Nanostruct. 44, 1136–1141 (2012)ADS
16.
go back to reference Nazemnezhad, R., Zare, M., Hosseini-Hashemi, S., Shokrollahi, H.: Molecular dynamics simulation for interlayer interactions of graphene nanoribbons with multiple layers. Superlattices Microstruct. 98, 228–234 (2016)ADS Nazemnezhad, R., Zare, M., Hosseini-Hashemi, S., Shokrollahi, H.: Molecular dynamics simulation for interlayer interactions of graphene nanoribbons with multiple layers. Superlattices Microstruct. 98, 228–234 (2016)ADS
17.
go back to reference Arash, B., Wang, Q.: Vibration of single- and double-layered graphene sheets. J. Nanotechnol. Eng. Med. 2, 1–7 (2011) Arash, B., Wang, Q.: Vibration of single- and double-layered graphene sheets. J. Nanotechnol. Eng. Med. 2, 1–7 (2011)
18.
go back to reference Jena, S.K., Chakraverty, S.: Dynamic analysis of single-layered graphene nano-ribbons (SLGNRs) with variable cross-section resting on elastic foundation. Curved Layer. Struct. 6, 132–145 (2019) Jena, S.K., Chakraverty, S.: Dynamic analysis of single-layered graphene nano-ribbons (SLGNRs) with variable cross-section resting on elastic foundation. Curved Layer. Struct. 6, 132–145 (2019)
19.
go back to reference Nazemnezhad, R., Hosseini-Hashemi, S.: Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity. Phys. Lett. A 378, 3225–3232 (2014)ADSMathSciNet Nazemnezhad, R., Hosseini-Hashemi, S.: Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity. Phys. Lett. A 378, 3225–3232 (2014)ADSMathSciNet
20.
go back to reference Nazemnezhad, R.: Nonlocal Timoshenko beam model for considering shear effect of van der Waals interactions on free vibration of multilayer graphene nanoribbons. Compos. Struct. 133, 522–528 (2015) Nazemnezhad, R.: Nonlocal Timoshenko beam model for considering shear effect of van der Waals interactions on free vibration of multilayer graphene nanoribbons. Compos. Struct. 133, 522–528 (2015)
21.
go back to reference Murmu, T., McCarthy, M.A., Adhikari, S.: In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos. Struct. 96, 57–63 (2013) Murmu, T., McCarthy, M.A., Adhikari, S.: In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos. Struct. 96, 57–63 (2013)
22.
go back to reference Zhang, Y., Zhang, L.W., Liew, K.M., Yu, J.L.: Free vibration analysis of bilayer graphene sheets subjected to in-plane magnetic fields. Compos. Struct. 144, 86–95 (2016) Zhang, Y., Zhang, L.W., Liew, K.M., Yu, J.L.: Free vibration analysis of bilayer graphene sheets subjected to in-plane magnetic fields. Compos. Struct. 144, 86–95 (2016)
23.
go back to reference Li, C., Zhu, C.X., Zhang, N., Sui, S.H., Zhao, J.B.: Free vibration of self-powered nanoribbons subjected to thermal–mechanical–electrical fields based on a nonlocal strain gradient theory. Appl. Math. Model. 110, 583–602 (2022)MathSciNet Li, C., Zhu, C.X., Zhang, N., Sui, S.H., Zhao, J.B.: Free vibration of self-powered nanoribbons subjected to thermal–mechanical–electrical fields based on a nonlocal strain gradient theory. Appl. Math. Model. 110, 583–602 (2022)MathSciNet
24.
go back to reference Seifoori, S., Ebrahimi, F., Mahdian Parrany, A., Liaghat, G.H.: Dynamic analysis of single-layered graphene sheet subjected to a moving nanoparticle: a molecular dynamics study. Mater. Sci. Eng. B 285, 115956 (2022) Seifoori, S., Ebrahimi, F., Mahdian Parrany, A., Liaghat, G.H.: Dynamic analysis of single-layered graphene sheet subjected to a moving nanoparticle: a molecular dynamics study. Mater. Sci. Eng. B 285, 115956 (2022)
25.
go back to reference Pirmoradian, M., Torkan, E., Abdali, N., Hashemian, M., Toghraie, D.: Thermo-mechanical stability of single-layered graphene sheets embedded in an elastic medium under action of a moving nanoparticle. Mech. Mater. 141, 103248 (2020) Pirmoradian, M., Torkan, E., Abdali, N., Hashemian, M., Toghraie, D.: Thermo-mechanical stability of single-layered graphene sheets embedded in an elastic medium under action of a moving nanoparticle. Mech. Mater. 141, 103248 (2020)
26.
go back to reference Awrejcewicz, J., Kudra, G., Mazur, O.: Parametric vibrations of graphene sheets based on the double mode model and the nonlocal elasticity theory. Nonlinear Dyn. 105, 2173–2193 (2021) Awrejcewicz, J., Kudra, G., Mazur, O.: Parametric vibrations of graphene sheets based on the double mode model and the nonlocal elasticity theory. Nonlinear Dyn. 105, 2173–2193 (2021)
27.
go back to reference Li, H.B., Wang, X., Chen, J.B.: Nonlinear dynamic responses of triple-layered graphene sheets under moving particles and an external magnetic field. Int. J. Mech. Sci. 136, 413–423 (2018) Li, H.B., Wang, X., Chen, J.B.: Nonlinear dynamic responses of triple-layered graphene sheets under moving particles and an external magnetic field. Int. J. Mech. Sci. 136, 413–423 (2018)
28.
go back to reference Shen, H.-S., Xu, Y.-M., Zhang, C.-L.: Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput. Methods Appl. Mech. Eng. 267, 458–470 (2013)ADSMathSciNet Shen, H.-S., Xu, Y.-M., Zhang, C.-L.: Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput. Methods Appl. Mech. Eng. 267, 458–470 (2013)ADSMathSciNet
29.
go back to reference Ebrahimi, F., Hosseini, S.H.S., Bayrami, S.S.: Nonlinear forced vibration of pre-stressed graphene sheets subjected to a mechanical shock: an analytical study. Thin-Walled Struct. 141, 293–307 (2019) Ebrahimi, F., Hosseini, S.H.S., Bayrami, S.S.: Nonlinear forced vibration of pre-stressed graphene sheets subjected to a mechanical shock: an analytical study. Thin-Walled Struct. 141, 293–307 (2019)
30.
go back to reference Arghavan, S., Singh, A.V.: Effects of van der Waals interactions on the nonlinear vibration of multi-layered graphene sheets. J. Phys. Appl. Phys. 45, 455305 (2012) Arghavan, S., Singh, A.V.: Effects of van der Waals interactions on the nonlinear vibration of multi-layered graphene sheets. J. Phys. Appl. Phys. 45, 455305 (2012)
31.
go back to reference Yali, R.P., Mehri, A., Jamaati, M.: Nonlinear thermal transport in graphene nanoribbon: a molecular dynamics study. Phys. Stat. Mech. Appl. 610, 128416 (2023)MathSciNet Yali, R.P., Mehri, A., Jamaati, M.: Nonlinear thermal transport in graphene nanoribbon: a molecular dynamics study. Phys. Stat. Mech. Appl. 610, 128416 (2023)MathSciNet
32.
go back to reference Zhang, L.W., Zhang, Y., Liew, K.M.: Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory. Appl. Math. Model. 49, 691–704 (2017)MathSciNet Zhang, L.W., Zhang, Y., Liew, K.M.: Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory. Appl. Math. Model. 49, 691–704 (2017)MathSciNet
33.
go back to reference Kitipornchai, S.: Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B 72, 075443 (2005)ADS Kitipornchai, S.: Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B 72, 075443 (2005)ADS
34.
go back to reference Pradhan, S.C., Phadikar, J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009)ADS Pradhan, S.C., Phadikar, J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009)ADS
35.
go back to reference Shi, J.-X., Ni, Q.-Q., Lei, X.-W., Natsuki, T.: Wave propagation in embedded double-layer graphene nanoribbons as electromechanical oscillators. J. Appl. Phys. 110, 084321 (2011)ADS Shi, J.-X., Ni, Q.-Q., Lei, X.-W., Natsuki, T.: Wave propagation in embedded double-layer graphene nanoribbons as electromechanical oscillators. J. Appl. Phys. 110, 084321 (2011)ADS
36.
go back to reference Kiani, K.: Dynamic interactions of doubly orthogonal stocky single-walled carbon nanotubes. Compos. Struct. 125, 144–158 (2015) Kiani, K.: Dynamic interactions of doubly orthogonal stocky single-walled carbon nanotubes. Compos. Struct. 125, 144–158 (2015)
37.
go back to reference Kiani, K.: Vibration analysis of two orthogonal slender single-walled carbon nanotubes with a new insight into continuum-based modeling of van der Waals forces. Compos. Part B Eng. 73, 72–81 (2015) Kiani, K.: Vibration analysis of two orthogonal slender single-walled carbon nanotubes with a new insight into continuum-based modeling of van der Waals forces. Compos. Part B Eng. 73, 72–81 (2015)
38.
go back to reference Zhbanov, A.I., Pogorelov, E.G., Chang, Y.C.: Van der Waals interaction between two crossed carbon nanotubes. ACS Nano 4(10), 5937–5945 (2010)PubMed Zhbanov, A.I., Pogorelov, E.G., Chang, Y.C.: Van der Waals interaction between two crossed carbon nanotubes. ACS Nano 4(10), 5937–5945 (2010)PubMed
39.
go back to reference Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)ADS Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)ADS
40.
go back to reference Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)MathSciNet Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)MathSciNet
41.
go back to reference Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972) Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)
42.
go back to reference Kiani, K., Roshan, M.: Nonlocal dynamic response of double-nanotube-systems for delivery of lagged-inertial-nanoparticles. Int. J. Mech. Sci. 152, 576–595 (2019) Kiani, K., Roshan, M.: Nonlocal dynamic response of double-nanotube-systems for delivery of lagged-inertial-nanoparticles. Int. J. Mech. Sci. 152, 576–595 (2019)
43.
go back to reference Kiani, K., Soltani, S.: Three-dimensional dynamics of beam-like nanorotors on the basis of newly developed nonlocal shear deformable mode shapes. Eur. Phys. J. Plus 133, 1–21 (2018) Kiani, K., Soltani, S.: Three-dimensional dynamics of beam-like nanorotors on the basis of newly developed nonlocal shear deformable mode shapes. Eur. Phys. J. Plus 133, 1–21 (2018)
44.
go back to reference Murmu, T., Adhikari, S.: Nonlocal transverse vibration of double-nanobeam-systems. J. Appl. Phys. 108, 083514 (2010)ADS Murmu, T., Adhikari, S.: Nonlocal transverse vibration of double-nanobeam-systems. J. Appl. Phys. 108, 083514 (2010)ADS
45.
go back to reference Kiani, K., Pakdaman, H.: On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes. Phys. Scr. 95, 035221 (2020) Kiani, K., Pakdaman, H.: On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes. Phys. Scr. 95, 035221 (2020)
46.
go back to reference Ebrahimi, F., Barati, M.R., Civalek, Ö.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 953–964 (2020) Ebrahimi, F., Barati, M.R., Civalek, Ö.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 953–964 (2020)
47.
go back to reference Ke, L.-L., Wang, Y.-S., Wang, Z.-D.: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94, 2038–2047 (2012) Ke, L.-L., Wang, Y.-S., Wang, Z.-D.: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94, 2038–2047 (2012)
48.
go back to reference Thai, H.-T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)MathSciNet Thai, H.-T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)MathSciNet
49.
go back to reference Kiani, K., Pakdaman, H.: Nonlocal vibrations and potential instability of monolayers from double-walled carbon nanotubes subjected to temperature gradients. Int. J. Mech. Sci. 144, 576–599 (2018) Kiani, K., Pakdaman, H.: Nonlocal vibrations and potential instability of monolayers from double-walled carbon nanotubes subjected to temperature gradients. Int. J. Mech. Sci. 144, 576–599 (2018)
50.
go back to reference Kiani, K., Pakdaman, H.: Bilaterally nonlocal dynamics of layer-by-layer assembly of double-walled carbon nanotubes accounting for intertube rigorous van der Waals forces. Eur. J. Mech. A Solids 80, 103876 (2020)ADSMathSciNet Kiani, K., Pakdaman, H.: Bilaterally nonlocal dynamics of layer-by-layer assembly of double-walled carbon nanotubes accounting for intertube rigorous van der Waals forces. Eur. J. Mech. A Solids 80, 103876 (2020)ADSMathSciNet
51.
go back to reference Zhang, L.W., Zhang, Y., Liew, K.M.: Vibration analysis of quadrilateral graphene sheets subjected to an in-plane magnetic field based on nonlocal elasticity theory. Compos. Part B Eng. 118, 96–103 (2017) Zhang, L.W., Zhang, Y., Liew, K.M.: Vibration analysis of quadrilateral graphene sheets subjected to an in-plane magnetic field based on nonlocal elasticity theory. Compos. Part B Eng. 118, 96–103 (2017)
52.
go back to reference Liu, C., Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013) Liu, C., Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013)
53.
go back to reference Murmu, T., Adhikari, S.: Nonlocal vibration of bonded double-nanoplate-systems. Compos. Part B Eng. 42, 1901–1911 (2011) Murmu, T., Adhikari, S.: Nonlocal vibration of bonded double-nanoplate-systems. Compos. Part B Eng. 42, 1901–1911 (2011)
54.
go back to reference Despotovic, N.: Stability and vibration of a nanoplate under body force using nonlocal elasticity theory. Acta Mech. 229, 273–284 (2018)MathSciNet Despotovic, N.: Stability and vibration of a nanoplate under body force using nonlocal elasticity theory. Acta Mech. 229, 273–284 (2018)MathSciNet
55.
go back to reference Li, Y.S., Cai, Z.Y., Shi, S.Y.: Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos. Struct. 111, 522–529 (2014) Li, Y.S., Cai, Z.Y., Shi, S.Y.: Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos. Struct. 111, 522–529 (2014)
56.
go back to reference Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos. Struct. 93, 774–779 (2011) Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos. Struct. 93, 774–779 (2011)
57.
go back to reference Kamali, K., Nazemnezhad, R.: Interlayer influences between double-layer graphene nanoribbons (shear and tensile-compressive) on free vibration using nonlocal elasticity theory. Mech. Adv. Mater. Struct. 25, 225–237 (2018) Kamali, K., Nazemnezhad, R.: Interlayer influences between double-layer graphene nanoribbons (shear and tensile-compressive) on free vibration using nonlocal elasticity theory. Mech. Adv. Mater. Struct. 25, 225–237 (2018)
58.
go back to reference Jena, S.K., Chakraverty, S.: Free vibration analysis of variable cross-section single-layered graphene nano-ribbons (SLGNRs) using differential quadrature method. Front. Built Environ. 4, 63 (2018) Jena, S.K., Chakraverty, S.: Free vibration analysis of variable cross-section single-layered graphene nano-ribbons (SLGNRs) using differential quadrature method. Front. Built Environ. 4, 63 (2018)
59.
go back to reference Shi, J.-X., Ni, Q.-Q., Lei, X.-W., Natsuki, T.: Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model. Comput. Mater. Sci. 50, 3085–3090 (2011) Shi, J.-X., Ni, Q.-Q., Lei, X.-W., Natsuki, T.: Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model. Comput. Mater. Sci. 50, 3085–3090 (2011)
60.
go back to reference Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 178, 87–96 (2017) Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 178, 87–96 (2017)
61.
go back to reference Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)ADS Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)ADS
62.
go back to reference Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)MathSciNet Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)MathSciNet
63.
go back to reference Khodabakhshi, P., Reddy, J.N.: A unified integro-differential nonlocal model. Int. J. Eng. Sci. 95, 60–75 (2015)MathSciNet Khodabakhshi, P., Reddy, J.N.: A unified integro-differential nonlocal model. Int. J. Eng. Sci. 95, 60–75 (2015)MathSciNet
Metadata
Title
Vibrational analysis of two crossed graphene nanoribbons via nonlocal differential/integral models
Authors
Hossein Pakdaman
Mojtaba Roshan
Soroush Soltani
Publication date
09-11-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 2/2024
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03779-w

Other articles of this Issue 2/2024

Acta Mechanica 2/2024 Go to the issue

Premium Partners