Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 9/2019

08-07-2019 | Research Article - Mechanical Engineering

Viscous Dissipation and Joule Heating Effects in Non-Fourier MHD Squeezing Flow, Heat and Mass Transfer Between Riga Plates with Thermal Radiation: Variational Parameter Method Solutions

Authors: Md. Shamshuddin, S. R. Mishra, O. Anwar Bég, A. Kadir

Published in: Arabian Journal for Science and Engineering | Issue 9/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A Riga plate is an electromagnetic actuator which comprises permanent magnets and alternating electrodes placed on a plane surface. The present article investigates the influence of viscous and Joule heating (Ohmic dissipation) in the magnetohydrodynamic squeezing flow, heat and mass transfer between two Riga plates. A non-Fourier (Cattaneo–Christov) heat flux model is employed which generalizes the classical Fourier law to incorporate thermal relaxation time. Via suitable transformations, the governing partial differential conservation equations and boundary conditions are non-dimensionalized. The resulting nonlinear ordinary differential boundary value problem is well posed and is solved analytically by the variational parameter method (VPM). Validation of the solutions is included for the special case of non-dissipative flow. Extensive graphical illustrations are presented for the effects of squeeze parameter, magnetic field parameter, modified Hartmann number, radiative parameter, thermal Biot number, concentration Biot number, Eckert number, length parameter, Schmidt number and chemical reaction parameter on the velocity, temperature and concentration distributions. Additionally, the influence of selected parameters on reduced skin friction, Nusselt number and Sherwood number are tabulated. An error analysis is also included for the VPM solutions. Detailed interpretation of the results is provided. The study is relevant to smart lubrication systems in biomechanical engineering and sensor design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Bouzidane, A.; Thomas, M.: Nonlinear dynamic behavior of a flexible shaft supported by smart hydrostatic squeeze film dampers. ASME J. Tribol. 135(3), 031701–031701-9 (2013)CrossRef Bouzidane, A.; Thomas, M.: Nonlinear dynamic behavior of a flexible shaft supported by smart hydrostatic squeeze film dampers. ASME J. Tribol. 135(3), 031701–031701-9 (2013)CrossRef
3.
go back to reference Shamshuddin, M.D.; Mishra, S.R.; Kadir, A.; Bég, O.: Anwar: unsteady chemo-tribological squeezing flow of magnetized bioconvection lubricants: numerical study. J. Nanofluids 8(2), 407–419 (2019)CrossRef Shamshuddin, M.D.; Mishra, S.R.; Kadir, A.; Bég, O.: Anwar: unsteady chemo-tribological squeezing flow of magnetized bioconvection lubricants: numerical study. J. Nanofluids 8(2), 407–419 (2019)CrossRef
4.
go back to reference Cookson, R.A.; Kossa, S.S.: The effectiveness of squeeze-film damper bearings supporting flexible rotors without a centralising spring. Int. J. Mech. Sci. 22, 313–324 (1980)CrossRefMATH Cookson, R.A.; Kossa, S.S.: The effectiveness of squeeze-film damper bearings supporting flexible rotors without a centralising spring. Int. J. Mech. Sci. 22, 313–324 (1980)CrossRefMATH
5.
go back to reference Marrero, V.; Borca-Tasciuc, D.A.; Tichy, J.: On squeeze film damping in microsystems. ASME J. Tribol. 132(3), 031701–031701-6 (2010)CrossRef Marrero, V.; Borca-Tasciuc, D.A.; Tichy, J.: On squeeze film damping in microsystems. ASME J. Tribol. 132(3), 031701–031701-6 (2010)CrossRef
6.
go back to reference Yousif, A.E.; Al-allaq, A.A.: The hydrodynamic squeeze film lubrication of the ankle joint. Int. J. Mech. Eng. Appl. 1(2), 34–42 (2013) Yousif, A.E.; Al-allaq, A.A.: The hydrodynamic squeeze film lubrication of the ankle joint. Int. J. Mech. Eng. Appl. 1(2), 34–42 (2013)
7.
go back to reference Hlaváček, M.: Squeeze-film lubrication of the human ankle joint subjected to the cyclic loading encountered in walking. ASME J. Tribol. 127(1), 141–148 (2005)CrossRef Hlaváček, M.: Squeeze-film lubrication of the human ankle joint subjected to the cyclic loading encountered in walking. ASME J. Tribol. 127(1), 141–148 (2005)CrossRef
8.
go back to reference Bujurke, N.M.; Kudenatti, R.B.; Awati, V.B.: Effect of surface roughness on squeeze film poroelastic bearings with special reference to synovial joints. Math. Biosci. 209, 76–89 (2007)MathSciNetCrossRefMATH Bujurke, N.M.; Kudenatti, R.B.; Awati, V.B.: Effect of surface roughness on squeeze film poroelastic bearings with special reference to synovial joints. Math. Biosci. 209, 76–89 (2007)MathSciNetCrossRefMATH
9.
go back to reference Wang, J.; Feng, N.; Meng, G.; Hahn, E.J.: Vibration control of rotor by squeeze film damper with magnetorheological fluid. J. Intell. Mater. Syst. Struct. 17, 353–357 (2006)CrossRef Wang, J.; Feng, N.; Meng, G.; Hahn, E.J.: Vibration control of rotor by squeeze film damper with magnetorheological fluid. J. Intell. Mater. Syst. Struct. 17, 353–357 (2006)CrossRef
10.
go back to reference Usha, R.; Sridharan, R.: Effect of mass transfer on a similar flow in the magnetohydrodynamic squeeze film. ASME J. Appl. Mech. 64(1), 240–243 (1997)CrossRefMATH Usha, R.; Sridharan, R.: Effect of mass transfer on a similar flow in the magnetohydrodynamic squeeze film. ASME J. Appl. Mech. 64(1), 240–243 (1997)CrossRefMATH
11.
go back to reference Vadher, P.A.; Deheri, G.M.; Patel, R.M.: Performance of hydromagnetic squeeze films between conducting porous rough conical plates. Meccanica 45, 767–783 (2010)MathSciNetCrossRefMATH Vadher, P.A.; Deheri, G.M.; Patel, R.M.: Performance of hydromagnetic squeeze films between conducting porous rough conical plates. Meccanica 45, 767–783 (2010)MathSciNetCrossRefMATH
12.
go back to reference Shrimpi, M.E.; Deheri, G.M.: A study on the performance of a magnetic fluid-based squeeze film in curved porous rotating rough annular plates and deformation effect. Tribol. Int. 47, 90–99 (2012)CrossRef Shrimpi, M.E.; Deheri, G.M.: A study on the performance of a magnetic fluid-based squeeze film in curved porous rotating rough annular plates and deformation effect. Tribol. Int. 47, 90–99 (2012)CrossRef
13.
go back to reference Usha, R.; Vimala, P.: Magnetohydrodynamic squeeze film characteristics between parallel circular plates containing a single central air bubble in the inertial flow regime. ASME J. Appl. Mech. 66(4), 1021–1023 (1999)CrossRef Usha, R.; Vimala, P.: Magnetohydrodynamic squeeze film characteristics between parallel circular plates containing a single central air bubble in the inertial flow regime. ASME J. Appl. Mech. 66(4), 1021–1023 (1999)CrossRef
14.
go back to reference Zueco, J.; Bég, O.: Anwar: network numerical analysis of hydromagnetic squeeze film flow dynamics between two parallel rotating disks with induced magnetic field effects. Tribol. Int. 43, 532–543 (2010)CrossRef Zueco, J.; Bég, O.: Anwar: network numerical analysis of hydromagnetic squeeze film flow dynamics between two parallel rotating disks with induced magnetic field effects. Tribol. Int. 43, 532–543 (2010)CrossRef
15.
go back to reference Kumar, K.G.; Gireesha, B.J.; Krishnamurthy, M.R.; Rudraswamy, N.G.: An unsteady squeezed flow of a tangent hyperbolic fluid over a sensor surface in the presence of variable thermal conductivity. Results Phys. 7, 3031–3036 (2017)CrossRef Kumar, K.G.; Gireesha, B.J.; Krishnamurthy, M.R.; Rudraswamy, N.G.: An unsteady squeezed flow of a tangent hyperbolic fluid over a sensor surface in the presence of variable thermal conductivity. Results Phys. 7, 3031–3036 (2017)CrossRef
16.
go back to reference Gailitis, A.; Lielausis, O.: On a possibility to reduce the hydrodynamics resistance of a plate in an electrolyte. Appl. Magn. Rep. Phys. Inst. 12, 143–146 (1961) Gailitis, A.; Lielausis, O.: On a possibility to reduce the hydrodynamics resistance of a plate in an electrolyte. Appl. Magn. Rep. Phys. Inst. 12, 143–146 (1961)
17.
go back to reference Ahmad, A.; Asghar, S.; Afzal, S.: Flow of a nanofluid past a Riga plate. J. Magn. Magn. Mater. 402, 44–48 (2016)CrossRef Ahmad, A.; Asghar, S.; Afzal, S.: Flow of a nanofluid past a Riga plate. J. Magn. Magn. Mater. 402, 44–48 (2016)CrossRef
20.
go back to reference Mao, J.; Aleksandrova, S.; Molokov, S.: Joule heating in magnetohydrodynamic flows in channels with thin conducting walls. Int. J. Heat Mass Transf. 51, 4392–4399 (2008)CrossRefMATH Mao, J.; Aleksandrova, S.; Molokov, S.: Joule heating in magnetohydrodynamic flows in channels with thin conducting walls. Int. J. Heat Mass Transf. 51, 4392–4399 (2008)CrossRefMATH
21.
go back to reference El-Amin, M.F.: Combined effect of viscous dissipation and Joule heating on MHD forced convection over a non-isothermal horizontal cylinder embedded in a fluid saturated porous medium. J. Magn. Magn. Mater. 263, 337–343 (2003)CrossRef El-Amin, M.F.: Combined effect of viscous dissipation and Joule heating on MHD forced convection over a non-isothermal horizontal cylinder embedded in a fluid saturated porous medium. J. Magn. Magn. Mater. 263, 337–343 (2003)CrossRef
22.
go back to reference Bég, O.A.; Zueco, J.; Takhar, H.S.: Unsteady magnetohydrodynamic Hartmann–Couette flow and heat transfer in a Darcian channel with Hall current, ionslip, viscous and Joule heating effects: network numerical solutions. Commun. Nonlinear Sci. Numer. Simul. 14, 1082–1097 (2009)CrossRef Bég, O.A.; Zueco, J.; Takhar, H.S.: Unsteady magnetohydrodynamic Hartmann–Couette flow and heat transfer in a Darcian channel with Hall current, ionslip, viscous and Joule heating effects: network numerical solutions. Commun. Nonlinear Sci. Numer. Simul. 14, 1082–1097 (2009)CrossRef
23.
go back to reference Srinivasacharya, D.; Jagadeeshwar, P.: MHD flow with Hall current and Joule heating effects over an exponentially stretching sheet. Nonlinear Eng. Model. Appl. 6(2), 101–114 (2017)MATH Srinivasacharya, D.; Jagadeeshwar, P.: MHD flow with Hall current and Joule heating effects over an exponentially stretching sheet. Nonlinear Eng. Model. Appl. 6(2), 101–114 (2017)MATH
24.
go back to reference Zaib, A.; Shafie, S.: Thermal diffusion and diffusion thermo effects on unsteady MHD free convection flow over a stretching surface considering Joule heating and viscous dissipation with thermal stratification, chemical reaction and Hall current. J. Frankl. Inst. 351, 1268–1287 (2014)CrossRefMATH Zaib, A.; Shafie, S.: Thermal diffusion and diffusion thermo effects on unsteady MHD free convection flow over a stretching surface considering Joule heating and viscous dissipation with thermal stratification, chemical reaction and Hall current. J. Frankl. Inst. 351, 1268–1287 (2014)CrossRefMATH
25.
go back to reference Tripathi, D.; Sharma, A.; Bég, O.A.: Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz–Smoluchowski velocity. Int. J. Heat Mass Transf. 111, 138–149 (2017)CrossRef Tripathi, D.; Sharma, A.; Bég, O.A.: Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz–Smoluchowski velocity. Int. J. Heat Mass Transf. 111, 138–149 (2017)CrossRef
26.
go back to reference Golsefid, S.S.M.; Amanifard, N.; Deylami, H.M.; Dolati, F.: Numerical and experimental study on EHD heat transfer enhancement with Joule heating effect through a rectangular enclosure. Appl. Therm. Eng. 123, 689–698 (2017)CrossRef Golsefid, S.S.M.; Amanifard, N.; Deylami, H.M.; Dolati, F.: Numerical and experimental study on EHD heat transfer enhancement with Joule heating effect through a rectangular enclosure. Appl. Therm. Eng. 123, 689–698 (2017)CrossRef
27.
go back to reference Shamshuddin, M.D.; Mishra, S.R.; Bég, O.A.; Kadir, A.: Unsteady reactive magnetic radiative micropolar flow, heat and mass transfer from an inclined plate with Joule heating: a model for magnetic polymer processing. Proc. IMechE Part C Mech. Eng. Sci. (2018). https://doi.org/10.1177/0954406218768837 Shamshuddin, M.D.; Mishra, S.R.; Bég, O.A.; Kadir, A.: Unsteady reactive magnetic radiative micropolar flow, heat and mass transfer from an inclined plate with Joule heating: a model for magnetic polymer processing. Proc. IMechE Part C Mech. Eng. Sci. (2018). https://​doi.​org/​10.​1177/​0954406218768837​
28.
go back to reference Hussain, A.; Malik, M.Y.; Salahuddin, T.; Bilal, S.; Awais, M.: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder. J. Mol. Liq. 231, 341–352 (2017)CrossRef Hussain, A.; Malik, M.Y.; Salahuddin, T.; Bilal, S.; Awais, M.: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder. J. Mol. Liq. 231, 341–352 (2017)CrossRef
29.
go back to reference Bég, O.A.; Gaffar, S.A.; Prasad, V.R.; Uddin, M.J.: Computational solutions for non-isothermal, nonlinear magnetoconvection in porous media with Hall/ionslip currents and Ohmic dissipation. Eng. Sci. Tech Int. J. 19, 377–394 (2016)CrossRef Bég, O.A.; Gaffar, S.A.; Prasad, V.R.; Uddin, M.J.: Computational solutions for non-isothermal, nonlinear magnetoconvection in porous media with Hall/ionslip currents and Ohmic dissipation. Eng. Sci. Tech Int. J. 19, 377–394 (2016)CrossRef
30.
go back to reference Sucharitha, G.; Lakshminarayana, P.; Sandeep, N.: Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. Int. J. Mech. Sci. 131(132), 52–62 (2017)CrossRef Sucharitha, G.; Lakshminarayana, P.; Sandeep, N.: Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. Int. J. Mech. Sci. 131(132), 52–62 (2017)CrossRef
31.
go back to reference Ahmad, S.; Farooq, M.; Anjum, A.; Javed, M.; Malik, M.Y.; Alshomrani, A.S.: Diffusive species in MHD squeezed fluid flow through non-Darcy porous medium with viscous dissipation and Joule heating. J. Magn. 23(2), 323–332 (2018)CrossRef Ahmad, S.; Farooq, M.; Anjum, A.; Javed, M.; Malik, M.Y.; Alshomrani, A.S.: Diffusive species in MHD squeezed fluid flow through non-Darcy porous medium with viscous dissipation and Joule heating. J. Magn. 23(2), 323–332 (2018)CrossRef
32.
go back to reference Ghadikolaei, S.S.; Hosseinzadeh, Kh; Ganji, D.D.: Analysis of unsteady MHD Eyring-Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM. Case Stud. Therm. Eng. 10, 579–594 (2017)CrossRef Ghadikolaei, S.S.; Hosseinzadeh, Kh; Ganji, D.D.: Analysis of unsteady MHD Eyring-Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM. Case Stud. Therm. Eng. 10, 579–594 (2017)CrossRef
33.
go back to reference Christov, C.I.: On frame indifferent formulation of the Maxwell–Cattaneo model of finite speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009)MathSciNetCrossRefMATH Christov, C.I.: On frame indifferent formulation of the Maxwell–Cattaneo model of finite speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009)MathSciNetCrossRefMATH
34.
go back to reference Hayat, T.; Khan, M.; Imtiaz, M.; Alsaedi, A.: Squeezing flow past a Riga plate with chemical reaction and convective conditions. J. Mol. Liq. 225, 569–576 (2017)CrossRef Hayat, T.; Khan, M.; Imtiaz, M.; Alsaedi, A.: Squeezing flow past a Riga plate with chemical reaction and convective conditions. J. Mol. Liq. 225, 569–576 (2017)CrossRef
35.
go back to reference Muhammad, N.; Nadeem, S.; Mustafa, T.: Squeezed flow of a nanofluid with Cattaneo–Christov heat and mass fluxes. Res. Phys. 7, 862–869 (2017) Muhammad, N.; Nadeem, S.; Mustafa, T.: Squeezed flow of a nanofluid with Cattaneo–Christov heat and mass fluxes. Res. Phys. 7, 862–869 (2017)
36.
go back to reference Atlas, M.; Hussain, S.; Sagheer, M.: Entropy generation and squeezing flow past a Riga plate with Cattaneo–Christov heat flux. Bull. Pol. Acad. Sci. Tech. Sci. 66(3), 291–300 (2018) Atlas, M.; Hussain, S.; Sagheer, M.: Entropy generation and squeezing flow past a Riga plate with Cattaneo–Christov heat flux. Bull. Pol. Acad. Sci. Tech. Sci. 66(3), 291–300 (2018)
37.
go back to reference Shamshuddin, M.D.; Mishra, S.R.; Bég, O.A.; Kadir, A.: Numerical study of heat transfer and viscous flow in a dual rotating extendable disk system with a non-Fourier heat flux model. Heat Transf. Asian Res. (2018). https://doi.org/10.1002/htj.21392 Shamshuddin, M.D.; Mishra, S.R.; Bég, O.A.; Kadir, A.: Numerical study of heat transfer and viscous flow in a dual rotating extendable disk system with a non-Fourier heat flux model. Heat Transf. Asian Res. (2018). https://​doi.​org/​10.​1002/​htj.​21392
39.
go back to reference Ma, W.X.; You, Y.: Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Am. Math Soc. 357, 1753–1778 (2014)MathSciNetCrossRefMATH Ma, W.X.; You, Y.: Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Am. Math Soc. 357, 1753–1778 (2014)MathSciNetCrossRefMATH
40.
go back to reference Tian, Z.Z.; Chen, F.; Wang, D.M.: Influence of interface deformation on transmittable torque of disk-type magnetorheological clutch. J. Intell. Mater. Syst. Struct. 26, 414–424 (2016)CrossRef Tian, Z.Z.; Chen, F.; Wang, D.M.: Influence of interface deformation on transmittable torque of disk-type magnetorheological clutch. J. Intell. Mater. Syst. Struct. 26, 414–424 (2016)CrossRef
42.
go back to reference Khaled, R.A.; Vafai, K.: Hydromagnetic squeezed flow and heat transfer over a sensor surface. Int. J. Eng. Sci. 42, 509–519 (2004)CrossRefMATH Khaled, R.A.; Vafai, K.: Hydromagnetic squeezed flow and heat transfer over a sensor surface. Int. J. Eng. Sci. 42, 509–519 (2004)CrossRefMATH
43.
go back to reference Ul Haq, R.; Nadeem, S.; Khan, Z.H.; Noor, N.F.M.: MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Physica E Low Dimens. Syst. Nanostruct. 73, 45–53 (2015)CrossRef Ul Haq, R.; Nadeem, S.; Khan, Z.H.; Noor, N.F.M.: MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Physica E Low Dimens. Syst. Nanostruct. 73, 45–53 (2015)CrossRef
44.
go back to reference Modest, M.F.: Radiation Heat Transfer. MacGraw-Hill, NY (1993) Modest, M.F.: Radiation Heat Transfer. MacGraw-Hill, NY (1993)
45.
go back to reference Moore, T.J.; Jones, M.R.: Solving nonlinear heat transfer problems using variation of parameters. Int. J Therm. Sci. 93, 29–35 (2015)CrossRef Moore, T.J.; Jones, M.R.: Solving nonlinear heat transfer problems using variation of parameters. Int. J Therm. Sci. 93, 29–35 (2015)CrossRef
46.
go back to reference Zaidi, Z.A.; Jan, S.U.; Ahmed, N.; Khan, U.; Mohyud-Din, S.T.: Variation of parameters method for thin film flow of a third-grade fluid down an inclined plane. Ital. J. Pure Appl. Math. 31, 161–168 (2013)MathSciNetMATH Zaidi, Z.A.; Jan, S.U.; Ahmed, N.; Khan, U.; Mohyud-Din, S.T.: Variation of parameters method for thin film flow of a third-grade fluid down an inclined plane. Ital. J. Pure Appl. Math. 31, 161–168 (2013)MathSciNetMATH
47.
go back to reference Khan, S.I.; Khan, U.; Ahmad, N.; Mohyud-Din, S.T.: Variation of parameters method for heat diffusion and heat convection equations. Int. J. Appl. Comput. Math. 3, 185–193 (2017)MathSciNetCrossRefMATH Khan, S.I.; Khan, U.; Ahmad, N.; Mohyud-Din, S.T.: Variation of parameters method for heat diffusion and heat convection equations. Int. J. Appl. Comput. Math. 3, 185–193 (2017)MathSciNetCrossRefMATH
48.
go back to reference Akinshilo, A.T.; Olofinkua, J.O.: Variation of Parameters method for thermal analysis of straight convective-radiative fins with temperature dependent thermal conductivity. J. Comput. Appl. Mech. 49, 125–132 (2018) Akinshilo, A.T.; Olofinkua, J.O.: Variation of Parameters method for thermal analysis of straight convective-radiative fins with temperature dependent thermal conductivity. J. Comput. Appl. Mech. 49, 125–132 (2018)
49.
go back to reference Mahanthesh, B.; Gireesha, B.J.: Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid particle suspension. Results Phys. 8, 869–878 (2018)CrossRef Mahanthesh, B.; Gireesha, B.J.: Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid particle suspension. Results Phys. 8, 869–878 (2018)CrossRef
50.
go back to reference Sampath Kumar, P.B.; Gireesha, B.J.; Mahanthesh, B.; Gorla, R.S.R.: Radiative nonlinear 3D flow of ferrofluid with Joule heating, convective condition and Coriolis force. Therm. Sci. Eng. Prog. 3, 88–94 (2017)CrossRef Sampath Kumar, P.B.; Gireesha, B.J.; Mahanthesh, B.; Gorla, R.S.R.: Radiative nonlinear 3D flow of ferrofluid with Joule heating, convective condition and Coriolis force. Therm. Sci. Eng. Prog. 3, 88–94 (2017)CrossRef
51.
go back to reference Mahanthesh, B.; Gireesha, B.J.; Prasannakumara, B.C.; Shashikumar, N.S.: Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source. Nuclear Eng. Technol. 49(8), 1660–1668 (2017)CrossRef Mahanthesh, B.; Gireesha, B.J.; Prasannakumara, B.C.; Shashikumar, N.S.: Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source. Nuclear Eng. Technol. 49(8), 1660–1668 (2017)CrossRef
52.
go back to reference Gireesha, B.J.; Mahanthesh, B.; Gorla, R.S.R.; Manjunatha, P.T.: Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension. Heat Mass Transf. 52(4), 897–911 (2016)CrossRef Gireesha, B.J.; Mahanthesh, B.; Gorla, R.S.R.; Manjunatha, P.T.: Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension. Heat Mass Transf. 52(4), 897–911 (2016)CrossRef
Metadata
Title
Viscous Dissipation and Joule Heating Effects in Non-Fourier MHD Squeezing Flow, Heat and Mass Transfer Between Riga Plates with Thermal Radiation: Variational Parameter Method Solutions
Authors
Md. Shamshuddin
S. R. Mishra
O. Anwar Bég
A. Kadir
Publication date
08-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 9/2019
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04019-x

Other articles of this Issue 9/2019

Arabian Journal for Science and Engineering 9/2019 Go to the issue

Premium Partners