Skip to main content
Top
Published in: Journal of Scientific Computing 2/2016

21-05-2016

Viscous Regularization for the Non-equilibrium Seven-Equation Two-Phase Flow Model

Authors: Marc O. Delchini, Jean C. Ragusa, Ray A. Berry

Published in: Journal of Scientific Computing | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a viscous regularization is derived for the non-equilibrium seven-equation two-phase flow model (SEM). This regularization, based on an entropy condition, is an artificial viscosity stabilization technique that selects a weak solution satisfying an entropy-minimum principle. The viscous regularization ensures nonnegativity of the entropy residual, is consistent with the viscous regularization for Euler equations when one phase disappears, does not depend on the spatial discretization scheme chosen, and is compatible with the generalized Harten entropies. We investigate the behavior of the proposed viscous regularization for two important limit-cases. First, a Chapman–Enskog expansion is performed for the regularized SEM and we show that the five-equation flow model of Kapila is recovered with a well-scaled viscous regularization. Second, a low-Mach asymptotic limit of the regularized seven-equation flow model is carried out whereby the scaling of the non-dimensional numbers associated with the viscous terms is determined such that an incompressible two-phase flow model, with a properly scaled regularization, is recovered. Both limit-cases are illustrated with one-dimensional numerical results, including two-phase flow shock tube tests and steady-state two-phase flows in converging-diverging nozzles. A continuous finite element discretization is employed for all numerical simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)MathSciNetMATHCrossRef Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)MathSciNetMATHCrossRef
2.
go back to reference Alleges, F., Merlet, B.: Approximate shock curves for non-conservative hyperbolic systems in one space dimension. J. Hyperbolic Differ. Equ. 1(4), 769–788 (2004)MathSciNetMATHCrossRef Alleges, F., Merlet, B.: Approximate shock curves for non-conservative hyperbolic systems in one space dimension. J. Hyperbolic Differ. Equ. 1(4), 769–788 (2004)MathSciNetMATHCrossRef
3.
go back to reference Ambroso, A., Chalons, C., Raviart, P.A.: A godunov-type method for the seven-equation model of compressible multiphase mixtures. Comput. Fluids 54, 67–91 (2012)MathSciNetMATHCrossRef Ambroso, A., Chalons, C., Raviart, P.A.: A godunov-type method for the seven-equation model of compressible multiphase mixtures. Comput. Fluids 54, 67–91 (2012)MathSciNetMATHCrossRef
4.
go back to reference Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)MATHCrossRef Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)MATHCrossRef
5.
go back to reference Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12(6), 861–889 (1986)MATHCrossRef Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12(6), 861–889 (1986)MATHCrossRef
6.
go back to reference Berry, R., Saurel, R., LeMetayer, O.: The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross section. Nucl. Eng. Des. 240(11), 3797–3818 (2010)CrossRef Berry, R., Saurel, R., LeMetayer, O.: The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross section. Nucl. Eng. Des. 240(11), 3797–3818 (2010)CrossRef
7.
go back to reference Berry, R.A.: Notes on well-posed, ensemble averaged conservation equations for multiphase, multi-component, and multi-material flows. Tech. rep., Idaho National Laboratory, Idaho Falls, ID (2003, 2005) Berry, R.A.: Notes on well-posed, ensemble averaged conservation equations for multiphase, multi-component, and multi-material flows. Tech. rep., Idaho National Laboratory, Idaho Falls, ID (2003, 2005)
8.
go back to reference Berry, R.A., Saurel, R., Petitpas, F.: A simple and efficient diffuse interface method for compressible two-phase flows. International Conference on Mathematics, Computational Methods and Reactor Physics (M&C 2009) (2009) Berry, R.A., Saurel, R., Petitpas, F.: A simple and efficient diffuse interface method for compressible two-phase flows. International Conference on Mathematics, Computational Methods and Reactor Physics (M&C 2009) (2009)
9.
go back to reference Berry, R.A., Williamson, R.L.: A Multiphase Mixture Model for the Shock Induced Consolidation of Metal Powders in ’Shock Waves in Condensed Matter’. Plenum, New York (1985) Berry, R.A., Williamson, R.L.: A Multiphase Mixture Model for the Shock Induced Consolidation of Metal Powders in ’Shock Waves in Condensed Matter’. Plenum, New York (1985)
10.
11.
go back to reference Coquel, F., Herard, J.M., Saleh, K., Seguin, N.: Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12(3), 593–600 (2014)MathSciNetMATHCrossRef Coquel, F., Herard, J.M., Saleh, K., Seguin, N.: Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12(3), 593–600 (2014)MathSciNetMATHCrossRef
12.
go back to reference Dal, M., LeFloch, G., Murat, P.: Definition and weak stability of a non-conservative product. J. Math. Pures Appl. 74(6), 483–548 (1995)MathSciNetMATH Dal, M., LeFloch, G., Murat, P.: Definition and weak stability of a non-conservative product. J. Math. Pures Appl. 74(6), 483–548 (1995)MathSciNetMATH
13.
go back to reference Delchini, M.: Extension of the entropy viscosity method to multi-d Euler equations and the seven-equation two-phase model. Tech. rep., Texas A & M University, USA (2014) Delchini, M.: Extension of the entropy viscosity method to multi-d Euler equations and the seven-equation two-phase model. Tech. rep., Texas A & M University, USA (2014)
14.
go back to reference Delchini, M., Ragusa, J., Berry, R.: Entropy-based viscous regularization for the multi-dimensional Euler equations in low-Mach and transonic flows. Comput. Fluids 118, 225–244 (2015)MathSciNetCrossRef Delchini, M., Ragusa, J., Berry, R.: Entropy-based viscous regularization for the multi-dimensional Euler equations in low-Mach and transonic flows. Comput. Fluids 118, 225–244 (2015)MathSciNetCrossRef
15.
16.
go back to reference Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Oxford University Press, Oxford (2003)CrossRef Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Oxford University Press, Oxford (2003)CrossRef
17.
18.
go back to reference Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998) Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)
19.
go back to reference Gallouet, T., Herard, J.M., Seguin, N.: Numerical modeling of two-phase flows using the two-fluid two-pressure model. Math. Models Methods Appl. Sci. 14(5), 663–700 (2004)MathSciNetMATHCrossRef Gallouet, T., Herard, J.M., Seguin, N.: Numerical modeling of two-phase flows using the two-fluid two-pressure model. Math. Models Methods Appl. Sci. 14(5), 663–700 (2004)MathSciNetMATHCrossRef
20.
go back to reference Gaston, D., Newsman, C., Hansen, G., Lebrun-Grandié, D.: A parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239, 1768–1778 (2009)CrossRef Gaston, D., Newsman, C., Hansen, G., Lebrun-Grandié, D.: A parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239, 1768–1778 (2009)CrossRef
21.
go back to reference Guermond, J.L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. Comptes Rendus Mathematique 346(13–14), 801–806 (2008)MathSciNetMATHCrossRef Guermond, J.L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. Comptes Rendus Mathematique 346(13–14), 801–806 (2008)MathSciNetMATHCrossRef
22.
go back to reference Guermond, J.L., Pasquetti, R.: Entropy viscosity method for high-order approximations of conservation laws. Lecture Notes Comput. Sci. Eng. 76, 411–418 (2011)MathSciNetMATHCrossRef Guermond, J.L., Pasquetti, R.: Entropy viscosity method for high-order approximations of conservation laws. Lecture Notes Comput. Sci. Eng. 76, 411–418 (2011)MathSciNetMATHCrossRef
23.
go back to reference Guermond, J.L., Pasquetti, R.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)MathSciNetMATHCrossRef Guermond, J.L., Pasquetti, R.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)MathSciNetMATHCrossRef
24.
go back to reference Guermond, J.L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284–305 (2014)MathSciNetMATHCrossRef Guermond, J.L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284–305 (2014)MathSciNetMATHCrossRef
25.
go back to reference Guillard, H., Murrone, A.: A five equation reduced model for compressible two-phase flow problems. J. Comput. Phys. 202(2), 664–698 (2003)MathSciNetMATH Guillard, H., Murrone, A.: A five equation reduced model for compressible two-phase flow problems. J. Comput. Phys. 202(2), 664–698 (2003)MathSciNetMATH
26.
27.
go back to reference Harten, A., Lax, P.D., Levermore, C.D., Morokoff, W.J.: Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal. 35(6), 2117–2127 (1998)MathSciNetMATHCrossRef Harten, A., Lax, P.D., Levermore, C.D., Morokoff, W.J.: Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal. 35(6), 2117–2127 (1998)MathSciNetMATHCrossRef
28.
go back to reference Herard, J.M., Hurisse, O.: A simple method to compute standard two-fluid models. Int. J. Comput. Fluid Dyn. 19(7), 475–482 (2005)MathSciNetMATHCrossRef Herard, J.M., Hurisse, O.: A simple method to compute standard two-fluid models. Int. J. Comput. Fluid Dyn. 19(7), 475–482 (2005)MathSciNetMATHCrossRef
29.
go back to reference Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modelling of deflagration-to-detonation transition in granular materials. Phys. Fluids 13, 3002–3024 (2001)MATHCrossRef Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modelling of deflagration-to-detonation transition in granular materials. Phys. Fluids 13, 3002–3024 (2001)MATHCrossRef
31.
go back to reference Lax, P.D.: Hyperbolic Systems of Conservation Laws and The Mathematical Theory of Shock Waves. New York University, New York (1973)MATHCrossRef Lax, P.D.: Hyperbolic Systems of Conservation Laws and The Mathematical Theory of Shock Waves. New York University, New York (1973)MATHCrossRef
32.
go back to reference LeFloch, G.: Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. Partial Differ. Eq. 13(6), 669–727 (1988)MathSciNetCrossRef LeFloch, G.: Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. Partial Differ. Eq. 13(6), 669–727 (1988)MathSciNetCrossRef
33.
go back to reference LeFloch, G.: Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Forms. Tech. rep, Institute for Mathematics and its Applications, Minneapolis, MN (1989) LeFloch, G.: Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Forms. Tech. rep, Institute for Mathematics and its Applications, Minneapolis, MN (1989)
34.
go back to reference LeFloch, G., Liu, T.P.: Existence theory for nonlinear hyperbolic systems in nonconservative form. Forum Math. 5(5), 261–280 (1993)MathSciNet LeFloch, G., Liu, T.P.: Existence theory for nonlinear hyperbolic systems in nonconservative form. Forum Math. 5(5), 261–280 (1993)MathSciNet
35.
go back to reference Lellis, C.D., Otto, F., Westdickenberg, M.: Minimal entropy conditions for Burgers equation. Quart. Appl. Math. 62(4), 687–700 (2004)MathSciNetMATH Lellis, C.D., Otto, F., Westdickenberg, M.: Minimal entropy conditions for Burgers equation. Quart. Appl. Math. 62(4), 687–700 (2004)MathSciNetMATH
36.
go back to reference LeMartelot, S., Saurel, R., Le Métayer, O.: Steady one-dimensional nozzle flow solutions of liquidgas mixtures. J. Fluid Mech. 737, 146–175 (2013)MathSciNetMATHCrossRef LeMartelot, S., Saurel, R., Le Métayer, O.: Steady one-dimensional nozzle flow solutions of liquidgas mixtures. J. Fluid Mech. 737, 146–175 (2013)MathSciNetMATHCrossRef
37.
go back to reference LeMetayer, O., Massoni, J., Saurel, R.: Elaborating equation of state for a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43, 265–276 (2004)CrossRef LeMetayer, O., Massoni, J., Saurel, R.: Elaborating equation of state for a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43, 265–276 (2004)CrossRef
38.
go back to reference Lohner, R.: Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods. Wiley, Oxford (2008)MATHCrossRef Lohner, R.: Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods. Wiley, Oxford (2008)MATHCrossRef
39.
go back to reference Passman, S.L., Nunziato, J.W., Walsh, E.K.: A Theory of Multiphase Mixtures Appendix 5C of Rational Thermodynamics, 2nd ed. (pp. 286–325), Springer, New York (1984) Passman, S.L., Nunziato, J.W., Walsh, E.K.: A Theory of Multiphase Mixtures Appendix 5C of Rational Thermodynamics, 2nd ed. (pp. 286–325), Springer, New York (1984)
40.
go back to reference Perthane, B., Shu, C.W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73(1), 119–130 (1996)MathSciNetCrossRef Perthane, B., Shu, C.W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73(1), 119–130 (1996)MathSciNetCrossRef
41.
go back to reference Qiang, L., Jian-Hu, F., Ti-min, C., Chun-bo, H.: Difference scheme for two-phase flow. Appl. Math. Mech. 25(5), 536–545 (2004)MathSciNetCrossRef Qiang, L., Jian-Hu, F., Ti-min, C., Chun-bo, H.: Difference scheme for two-phase flow. Appl. Math. Mech. 25(5), 536–545 (2004)MathSciNetCrossRef
42.
go back to reference Saurel, R., Abgrall, R.: A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)MathSciNetMATHCrossRef Saurel, R., Abgrall, R.: A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)MathSciNetMATHCrossRef
43.
go back to reference Saurel, R., Le Métayer, O.: A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239–271 (2001)MATHCrossRef Saurel, R., Le Métayer, O.: A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239–271 (2001)MATHCrossRef
44.
go back to reference Saurel, R., Petitpas, F., Berry, R.A.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228, 1678–1712 (2009)MathSciNetMATHCrossRef Saurel, R., Petitpas, F., Berry, R.A.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228, 1678–1712 (2009)MathSciNetMATHCrossRef
45.
go back to reference Stadtke, H.: Gasdynamic Aspects of Two-Phase Flow. Wiley-VCH, Weinheim (2006)CrossRef Stadtke, H.: Gasdynamic Aspects of Two-Phase Flow. Wiley-VCH, Weinheim (2006)CrossRef
47.
48.
go back to reference Wong, J.S., Darmofal, D.L., Peraire, J.: The solution of the compressible Euler equations at low-Mach numbers using a stabilized finite element algorithm. Comput. Methods Appl. Mech. Eng. 190, 5719–5737 (2001)MathSciNetMATHCrossRef Wong, J.S., Darmofal, D.L., Peraire, J.: The solution of the compressible Euler equations at low-Mach numbers using a stabilized finite element algorithm. Comput. Methods Appl. Mech. Eng. 190, 5719–5737 (2001)MathSciNetMATHCrossRef
49.
go back to reference Zein, A., Hantke, M., Warnecke, G.: Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229(8), 2964–2998 (2010)MathSciNetMATHCrossRef Zein, A., Hantke, M., Warnecke, G.: Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229(8), 2964–2998 (2010)MathSciNetMATHCrossRef
50.
go back to reference Zingan, V., Guermond, J.L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. J. Comput. Phys. 253, 479–490 (2013)MathSciNetMATH Zingan, V., Guermond, J.L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. J. Comput. Phys. 253, 479–490 (2013)MathSciNetMATH
Metadata
Title
Viscous Regularization for the Non-equilibrium Seven-Equation Two-Phase Flow Model
Authors
Marc O. Delchini
Jean C. Ragusa
Ray A. Berry
Publication date
21-05-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0217-6

Other articles of this Issue 2/2016

Journal of Scientific Computing 2/2016 Go to the issue

Premium Partner