Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2019

16-08-2019

Visible-light-responsive photocatalyst with a microsphere structure: preparation and photocatalytic performance of CQDs@BiOCl

Authors: Xiaosong Gu, Qiutong Yan, Ying Wei, Yujie Luo, Yaofang Sun, Deqiang Zhao, Fangying Ji, Xuan Xu

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the effects of carbon quantum dot (CQD) doping on the photocatalytic performance of semiconductor BiOCl microspheres were investigated. Highly dispersed CQDs with up-conversion luminescence properties were prepared using the hydrothermal method, and visible-light-responsive CQDs@BiOCl photocatalysts with regular morphology were prepared via CQD doping. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible (UV–Vis) spectroscopy were used to investigate the morphology and light absorption properties of the materials. The degradation rate of rhodamine B (RhB) was 76.1% after 180 min of visible-light irradiation when CQDs@BiOCl were used and only 19.4% when pure BiOCl was used. The photoluminescence (PL), UV–Vis diffuse reflectance spectra (UV–Vis DRS) and electron paramagnetic resonance (EPR) results were analyzed to determine the possible reasons for the increased photocatalytic activity of CQDs@BiOCl microspheres. The results showed CQD doping expanded the visible light absorption range, CQDs exhibited fast photoinduced electron transfer, and CQDs@BiOCl possessed high mesoporosity, which promoted the effective separation of photogenerated electron–hole pairs. In addition, the microsphere structure of CQDs@BiOCl exhibited a larger specific surface area and a more regular morphology than its sheet-like structure. These features increased the number of photocatalytic reaction sites and the surface adsorption of the catalyst. In addition, the electronic conjugated structure of CQDs was demonstrated to function as an effective electron trap. CQD doping effectively inhibited the photogenerated electron–hole pair recombination of the composite photocatalyst, which enhanced the photocatalytic performance of the system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Shi, Y. Yu, Z. Yi, X. Feng, X. Zhao, H. Tan, S.U. Khan, Y. Li, E. Wang, Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl. Catal. B 221, S0926337317308664 (2017) H. Shi, Y. Yu, Z. Yi, X. Feng, X. Zhao, H. Tan, S.U. Khan, Y. Li, E. Wang, Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl. Catal. B 221, S0926337317308664 (2017)
2.
go back to reference D. Lu, P. Fang, X. Liu, S. Zhai, C. Li, X. Zhao, J. Ding, R. Xiong, A facile one-pot synthesis of TiO2-based nanosheets loaded with Mn x O y nanoparticles with enhanced visible light–driven photocatalytic performance for removal of Cr(VI) or RhB. Appl. Catal. B 179, 558–573 (2015)CrossRef D. Lu, P. Fang, X. Liu, S. Zhai, C. Li, X. Zhao, J. Ding, R. Xiong, A facile one-pot synthesis of TiO2-based nanosheets loaded with Mn x O y nanoparticles with enhanced visible light–driven photocatalytic performance for removal of Cr(VI) or RhB. Appl. Catal. B 179, 558–573 (2015)CrossRef
3.
go back to reference S. Shenawi-Khalil, V. Uvarov, Y. Kritsman, E. Menes, I. Popov, Y. Sasson, A new family of BiO(ClBr 1–x) visible light sensitive photocatalysts. Catal. Commun. 12(12), 1136–1141 (2011)CrossRef S. Shenawi-Khalil, V. Uvarov, Y. Kritsman, E. Menes, I. Popov, Y. Sasson, A new family of BiO(ClBr 1–x) visible light sensitive photocatalysts. Catal. Commun. 12(12), 1136–1141 (2011)CrossRef
4.
go back to reference R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Spatial separation of photogenerated electrons and holes among 010 and 110 crystal facets of BiVO4. Nat Commun 4(2), 1432 (2013)CrossRef R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Spatial separation of photogenerated electrons and holes among 010 and 110 crystal facets of BiVO4. Nat Commun 4(2), 1432 (2013)CrossRef
5.
go back to reference J. Zhang, X. Yuan, L. Jiang, Z. Wu, X. Chen, H. Wang, H. Wang, G. Zeng, Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized Bi 2 WO 6 based on interfacial charge transfer. J. Colloid Interface Sci. 511, S002197971731113X (2017) J. Zhang, X. Yuan, L. Jiang, Z. Wu, X. Chen, H. Wang, H. Wang, G. Zeng, Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized Bi 2 WO 6 based on interfacial charge transfer. J. Colloid Interface Sci. 511, S002197971731113X (2017)
6.
go back to reference G. Lei, C. Han, L. Jing, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C 3N 4 loaded with Ag nanoparticles. Appl. Catal. A 409(23), 215–222 (2011) G. Lei, C. Han, L. Jing, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C 3N 4 loaded with Ag nanoparticles. Appl. Catal. A 409(23), 215–222 (2011)
7.
go back to reference H. Yu, C. Cong, X. Wang, J. Yu, Ag-modified BiOCl single-crystal nanosheets: the dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles. J. Phys. Chem. C 121(24), 13191 (2017)CrossRef H. Yu, C. Cong, X. Wang, J. Yu, Ag-modified BiOCl single-crystal nanosheets: the dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles. J. Phys. Chem. C 121(24), 13191 (2017)CrossRef
8.
go back to reference K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68(3), 125–129 (2006)CrossRef K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68(3), 125–129 (2006)CrossRef
9.
go back to reference Y. Li, Z. Yan, G. Wu, H. Ma, J. Zhao, Bi superlattice nanopolygons at BiOCl (001) nanosheet assembled architectures for visible-light photocatalysis. Mater. Res. Bull. 101, 39 (2018)CrossRef Y. Li, Z. Yan, G. Wu, H. Ma, J. Zhao, Bi superlattice nanopolygons at BiOCl (001) nanosheet assembled architectures for visible-light photocatalysis. Mater. Res. Bull. 101, 39 (2018)CrossRef
10.
go back to reference L.T. Bao, C. Gang, Z. Chao, S.Z. Yu, J.R. Cheng, S.J. Xue, New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans. 40(25), 6751–6758 (2011)CrossRef L.T. Bao, C. Gang, Z. Chao, S.Z. Yu, J.R. Cheng, S.J. Xue, New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans. 40(25), 6751–6758 (2011)CrossRef
11.
go back to reference J. Jing, Z. Kun, X. Xiaoyi, Z. Lizhi, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 134(10), 4473–4476 (2012)CrossRef J. Jing, Z. Kun, X. Xiaoyi, Z. Lizhi, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 134(10), 4473–4476 (2012)CrossRef
12.
go back to reference B. Pare, B. Sarwan, S.B. Jonnalagadda, Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition. Appl. Surf. Sci. 258(1), 247–253 (2011)CrossRef B. Pare, B. Sarwan, S.B. Jonnalagadda, Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition. Appl. Surf. Sci. 258(1), 247–253 (2011)CrossRef
15.
16.
go back to reference L.M. Shen, J. Liu, New development in carbon quantum dots technical applications. Talanta 156–157, 245–256 (2016)CrossRef L.M. Shen, J. Liu, New development in carbon quantum dots technical applications. Talanta 156–157, 245–256 (2016)CrossRef
19.
go back to reference J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, H. Li, Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl. Mater. Interfaces 7(36), 150901094431002 (2015)CrossRef J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, H. Li, Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl. Mater. Interfaces 7(36), 150901094431002 (2015)CrossRef
20.
go back to reference Q. Que, Y. Xing, Z. He, Y. Yang, X. Yin, W. Que, Bi 2 O 3/carbon quantum dots heterostructured photocatalysts with enhanced photocatalytic activity. Mater. Lett. 209, 220 (2017)CrossRef Q. Que, Y. Xing, Z. He, Y. Yang, X. Yin, W. Que, Bi 2 O 3/carbon quantum dots heterostructured photocatalysts with enhanced photocatalytic activity. Mater. Lett. 209, 220 (2017)CrossRef
21.
go back to reference J. Li, M. Yue, Z. Ye, M. Zhou, H. Wang, C. Ma, D. Wang, P. Huo, Y. Yan, Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In2S3/single-wall carbon nanotubes. Appl. Catal. B 204, 224–238 (2016)CrossRef J. Li, M. Yue, Z. Ye, M. Zhou, H. Wang, C. Ma, D. Wang, P. Huo, Y. Yan, Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In2S3/single-wall carbon nanotubes. Appl. Catal. B 204, 224–238 (2016)CrossRef
22.
go back to reference S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134(36), 15033–15041 (2012). https://doi.org/10.1021/ja305603t CrossRef S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134(36), 15033–15041 (2012). https://​doi.​org/​10.​1021/​ja305603t CrossRef
23.
go back to reference F. Duo, Y. Wang, C. Fan, X. Zhang, Y. Wang, Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: the upconversion effect of CQDs. J. Alloy. Compd. 685, 34–41 (2016)CrossRef F. Duo, Y. Wang, C. Fan, X. Zhang, Y. Wang, Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: the upconversion effect of CQDs. J. Alloy. Compd. 685, 34–41 (2016)CrossRef
25.
go back to reference R. Miao, Z. Luo, W. Zhong, S.Y. Chen, T. Jiang, B. Dutta, Y. Nasr, Y. Zhang, S.L. Suib, Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl. Catal. B 189, 26–38 (2016)CrossRef R. Miao, Z. Luo, W. Zhong, S.Y. Chen, T. Jiang, B. Dutta, Y. Nasr, Y. Zhang, S.L. Suib, Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl. Catal. B 189, 26–38 (2016)CrossRef
26.
go back to reference J. Di, J. Xia, X. Chen, M. Ji, Y. Sheng, Z. Qi, H. Li, Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis. Carbon 114, 601–607 (2016)CrossRef J. Di, J. Xia, X. Chen, M. Ji, Y. Sheng, Z. Qi, H. Li, Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis. Carbon 114, 601–607 (2016)CrossRef
27.
go back to reference D. Cui, W. Liang, X. Kang, R. Long, W. Li, Y. Yu, D. Yi, W. Hao, Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 6, 2193 (2018)CrossRef D. Cui, W. Liang, X. Kang, R. Long, W. Li, Y. Yu, D. Yi, W. Hao, Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 6, 2193 (2018)CrossRef
28.
go back to reference Q. Chang, K.K. Li, S.L. Hu, Y.G. Dong, J.L. Yang, Hydroxyapatite supported N-doped carbon quantum dots for visible-light photocatalysis. Mater. Lett. 175, 44–47 (2016)CrossRef Q. Chang, K.K. Li, S.L. Hu, Y.G. Dong, J.L. Yang, Hydroxyapatite supported N-doped carbon quantum dots for visible-light photocatalysis. Mater. Lett. 175, 44–47 (2016)CrossRef
Metadata
Title
Visible-light-responsive photocatalyst with a microsphere structure: preparation and photocatalytic performance of CQDs@BiOCl
Authors
Xiaosong Gu
Qiutong Yan
Ying Wei
Yujie Luo
Yaofang Sun
Deqiang Zhao
Fangying Ji
Xuan Xu
Publication date
16-08-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02003-7

Other articles of this Issue 17/2019

Journal of Materials Science: Materials in Electronics 17/2019 Go to the issue