Skip to main content
Top
Published in: Surface Engineering and Applied Electrochemistry 1/2024

01-02-2024

Voltammetric Determination of Nitrite Using Modified Glassy Carbon Electrode

Authors: Fariba Beigmoradi, Hadi Beitollahi

Published in: Surface Engineering and Applied Electrochemistry | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current study was conducted to measure the concentrations of nitrite by a glassy carbon electrode modified with MXene/La3+ doped ZnO/hemoglobin (Hb) nanocomposite as a new voltammetric sensor. Chronoamperometry, differential pulse voltammetry, and cyclic voltammetry were employed to characterize the modification of the electrode surface. According to the analytical results, the glassy carbon electrode incorporated with MXene/La3+ doped ZnO/Hb nanocomposite was able to detect the presence of different concentrations of nitrite (0.1–700.0 μM), with the detection limit of 4.0 × 10–8 M. The proposed sensor can be proposed as acceptable electrochemical detector of nitrite in real samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mani, V., Wu, T.Y., and Chen, S.M., Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitive determination of nitrite, J. Solid State Electrochem., 2014, vol. 18, p. 1015.CrossRef Mani, V., Wu, T.Y., and Chen, S.M., Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitive determination of nitrite, J. Solid State Electrochem., 2014, vol. 18, p. 1015.CrossRef
2.
go back to reference Raja Jamaluddin, R.Z.A., Yook Heng, L., Tan, L.L., and Chong, K.F., Electrochemical biosensor for nitrite based on polyacrylic-graphene composite film with covalently immobilized hemoglobin, Sensors, 2018, vol. 18, p. 1343.CrossRef Raja Jamaluddin, R.Z.A., Yook Heng, L., Tan, L.L., and Chong, K.F., Electrochemical biosensor for nitrite based on polyacrylic-graphene composite film with covalently immobilized hemoglobin, Sensors, 2018, vol. 18, p. 1343.CrossRef
3.
go back to reference Kesavan, S., Kumar, D.R., Baynosa, M.L., and Shim, J.J., Potentiodynamic formation of diaminobenzene films on an electrochemically reduced graphene oxide surface: Determination of nitrite in water samples, Mater. Sci. Eng. C, 2018, vol. 85, p. 97.CrossRef Kesavan, S., Kumar, D.R., Baynosa, M.L., and Shim, J.J., Potentiodynamic formation of diaminobenzene films on an electrochemically reduced graphene oxide surface: Determination of nitrite in water samples, Mater. Sci. Eng. C, 2018, vol. 85, p. 97.CrossRef
4.
go back to reference Wan, D., Liu, H., Liu, R., Qu, J., et al., Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg–Al) hydrotalcite of different Mg/Al ratio, Chem. Eng. J., 2012, vol. 195, p. 241.CrossRef Wan, D., Liu, H., Liu, R., Qu, J., et al., Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg–Al) hydrotalcite of different Mg/Al ratio, Chem. Eng. J., 2012, vol. 195, p. 241.CrossRef
5.
go back to reference Fawell, J.K., Nitrate and nitrite in drinking-water, in Background Document for Development of WHO Guidelines for Drinking-Water Quality (GDWQ), Geneva: WHO Press, 2011. Fawell, J.K., Nitrate and nitrite in drinking-water, in Background Document for Development of WHO Guidelines for Drinking-Water Quality (GDWQ), Geneva: WHO Press, 2011.
6.
go back to reference Shen, Y., Zhang, Q., Qian, X., and Yang, Y., Practical assay for nitrite and nitrosothiol as an alternative to the Griess assay or the 2,3-diaminonaphthalene assay, Anal. Chem., 2015, vol. 87, p. 1274.CrossRef Shen, Y., Zhang, Q., Qian, X., and Yang, Y., Practical assay for nitrite and nitrosothiol as an alternative to the Griess assay or the 2,3-diaminonaphthalene assay, Anal. Chem., 2015, vol. 87, p. 1274.CrossRef
7.
go back to reference Wu, J., Wang, X., Lin, Y., Zheng, Y., et al., Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on Microfluidic chip, Talanta, 2016, vol. 154, p. 73.CrossRef Wu, J., Wang, X., Lin, Y., Zheng, Y., et al., Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on Microfluidic chip, Talanta, 2016, vol. 154, p. 73.CrossRef
8.
go back to reference Wu, A., Duan, T., Tang, D., Zheng, Z., et al., Review the application of chromatography in the analysis of nitric oxide-derived nitrite and nitrate ions in biological fluids, Curr. Anal. Chem., 2014, vol. 10, p. 609.CrossRef Wu, A., Duan, T., Tang, D., Zheng, Z., et al., Review the application of chromatography in the analysis of nitric oxide-derived nitrite and nitrate ions in biological fluids, Curr. Anal. Chem., 2014, vol. 10, p. 609.CrossRef
9.
go back to reference Chen, J., Pang, S., He, L., and Nugen, S.R., Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy, Biosens. Bioelectron., 2016, vol. 85, p. 726.CrossRef Chen, J., Pang, S., He, L., and Nugen, S.R., Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy, Biosens. Bioelectron., 2016, vol. 85, p. 726.CrossRef
10.
go back to reference Erol, Ö.Ö., Erdoğan, B.Y., and Onar, A.N., Nitrate and nitrite determination in gunshot residue samples by capillary electrophoresis in acidic run buffer, J. Forensic Sci., 2017, vol. 62, p. 423.CrossRef Erol, Ö.Ö., Erdoğan, B.Y., and Onar, A.N., Nitrate and nitrite determination in gunshot residue samples by capillary electrophoresis in acidic run buffer, J. Forensic Sci., 2017, vol. 62, p. 423.CrossRef
11.
go back to reference Liu, Y.L., Kang, N., Ke, X.B., Wang, D., et al., A fluorescent nanoprobe based on metal-enhanced fluorescence combined with Förster resonance energy transfer for the trace detection of nitrite ions, RSC Adv., 2016, vol. 6, p. 27395.CrossRef Liu, Y.L., Kang, N., Ke, X.B., Wang, D., et al., A fluorescent nanoprobe based on metal-enhanced fluorescence combined with Förster resonance energy transfer for the trace detection of nitrite ions, RSC Adv., 2016, vol. 6, p. 27395.CrossRef
12.
go back to reference Liu, X., Guo, L., Cheng, L., and Ju, H., Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots, Talanta, 2009, vol. 78, p. 691.CrossRef Liu, X., Guo, L., Cheng, L., and Ju, H., Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots, Talanta, 2009, vol. 78, p. 691.CrossRef
13.
go back to reference Karimi-Maleh, H., Liu, Y., Li, Z., Darabi, R., et al., Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study, Chemosphere, 2023, vol. 332, p. 138815.CrossRef Karimi-Maleh, H., Liu, Y., Li, Z., Darabi, R., et al., Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study, Chemosphere, 2023, vol. 332, p. 138815.CrossRef
14.
go back to reference Garkani Nejad, F., Tajik, S., Beitollahi, H., and Sheikhshoaie, I., Magnetic nanomaterials based electrochemical (bio) sensors for food analysis, Talanta, 2021, vol. 228, p. 122075.CrossRef Garkani Nejad, F., Tajik, S., Beitollahi, H., and Sheikhshoaie, I., Magnetic nanomaterials based electrochemical (bio) sensors for food analysis, Talanta, 2021, vol. 228, p. 122075.CrossRef
15.
go back to reference Zhang, Z. and Karimi-Maleh, H., Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal, Adv. Compos. Hybrid Mater., 2023, vol. 6, p. 68.CrossRef Zhang, Z. and Karimi-Maleh, H., Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal, Adv. Compos. Hybrid Mater., 2023, vol. 6, p. 68.CrossRef
16.
go back to reference Losada, J., Armada, M.P.G., Garcia, E., Casado, C.M., et al., Electrochemical preparation of gold nanoparticles on ferrocenyl-dendrimer film modified electrodes and their application for the electrocatalytic oxidation and amperometric detection of nitrite, J. Electroanal. Chem., 2017, vol. 788, p. 14.CrossRef Losada, J., Armada, M.P.G., Garcia, E., Casado, C.M., et al., Electrochemical preparation of gold nanoparticles on ferrocenyl-dendrimer film modified electrodes and their application for the electrocatalytic oxidation and amperometric detection of nitrite, J. Electroanal. Chem., 2017, vol. 788, p. 14.CrossRef
17.
go back to reference Baghbamidi, S.E., Beitollahi, H., and Tajik, S., Graphene oxide nano-sheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine, Anal. Bioanal. Electrochem., 2014, vol. 6, p. 634. Baghbamidi, S.E., Beitollahi, H., and Tajik, S., Graphene oxide nano-sheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine, Anal. Bioanal. Electrochem., 2014, vol. 6, p. 634.
18.
go back to reference Karimi-Maleh, H., Darabi, R., Karimi, F., Karaman, C., et al., State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review, Environ. Res., 2023, vol. 222, p. 115338.CrossRef Karimi-Maleh, H., Darabi, R., Karimi, F., Karaman, C., et al., State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review, Environ. Res., 2023, vol. 222, p. 115338.CrossRef
19.
go back to reference Kozub, B.R., Rees, N.V., and Compton, R.G., Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens. Actuators B: Chem., 2010, vol. 143, p. 539.CrossRef Kozub, B.R., Rees, N.V., and Compton, R.G., Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens. Actuators B: Chem., 2010, vol. 143, p. 539.CrossRef
20.
go back to reference Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., et al., ZnO@graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd(II) and Pb(II), Synth. Met., 2018, vol. 245, p. 251.CrossRef Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., et al., ZnO@graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd(II) and Pb(II), Synth. Met., 2018, vol. 245, p. 251.CrossRef
21.
go back to reference Ren, Q., Shen, X., Sun, Y., Fan, R., et al., A highly sensitive competitive immunosensor based on branched polyethyleneimine functionalized reduced graphene oxide and gold nanoparticles modified electrode for detection of melamine, Food Chem., 2020, vol. 304, p. 125397.CrossRef Ren, Q., Shen, X., Sun, Y., Fan, R., et al., A highly sensitive competitive immunosensor based on branched polyethyleneimine functionalized reduced graphene oxide and gold nanoparticles modified electrode for detection of melamine, Food Chem., 2020, vol. 304, p. 125397.CrossRef
22.
go back to reference Harris, P.J., New perspectives on the structure of graphitic carbons, Crit. Rev. Solid State Mater. Sci., 2005, vol. 30, p. 235.CrossRef Harris, P.J., New perspectives on the structure of graphitic carbons, Crit. Rev. Solid State Mater. Sci., 2005, vol. 30, p. 235.CrossRef
23.
go back to reference Craievich, A.F., On the structure of glassy carbon, Mater. Res. Bull., 1976, vol. 11, p. 1249.CrossRef Craievich, A.F., On the structure of glassy carbon, Mater. Res. Bull., 1976, vol. 11, p. 1249.CrossRef
24.
go back to reference Palakollu, V.N., Chiwunze, T.E., Liu, C., and Karpoormath, R., Electrochemical sensitive determination of acetaminophen in pharmaceutical formulations at iron oxide/graphene composite modified electrode, Arab. J. Chem., 2020, vol. 13, p. 4350.CrossRef Palakollu, V.N., Chiwunze, T.E., Liu, C., and Karpoormath, R., Electrochemical sensitive determination of acetaminophen in pharmaceutical formulations at iron oxide/graphene composite modified electrode, Arab. J. Chem., 2020, vol. 13, p. 4350.CrossRef
25.
go back to reference Hojjati-Najafabadi, A., Mansoorianfar, M., Liang, T.X., Shahin, K., et al., A review on magnetic sensors for monitoring of hazardous pollutants in water resources, Sci. Total Environ., 2022, vol. 824, p. 153844.CrossRef Hojjati-Najafabadi, A., Mansoorianfar, M., Liang, T.X., Shahin, K., et al., A review on magnetic sensors for monitoring of hazardous pollutants in water resources, Sci. Total Environ., 2022, vol. 824, p. 153844.CrossRef
26.
go back to reference Paim, L.L. and Stradiotto, N.R., Electrochemical behavior of a glassy-carbon electrode chemically modified with cadmium pentacyanonitrosylferrate in the presence of tetrahydrothiophene, J. Electroanal. Chem., 2011, vol. 663, p. 43.CrossRef Paim, L.L. and Stradiotto, N.R., Electrochemical behavior of a glassy-carbon electrode chemically modified with cadmium pentacyanonitrosylferrate in the presence of tetrahydrothiophene, J. Electroanal. Chem., 2011, vol. 663, p. 43.CrossRef
27.
go back to reference Tajik, S., Orooji, Y., Karimi, F., Ghazanfari, Z., et al., High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth, J. Food Meas. Charact., 2021, vol. 15, p. 4617.CrossRef Tajik, S., Orooji, Y., Karimi, F., Ghazanfari, Z., et al., High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth, J. Food Meas. Charact., 2021, vol. 15, p. 4617.CrossRef
28.
go back to reference Tajik, S., Beitollahi, H., Jang, H.W., and Shokouhimehr, M., A screen printed electrode modified with Fe3O4@ polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta, 2021, vol. 232, p. 122379.CrossRef Tajik, S., Beitollahi, H., Jang, H.W., and Shokouhimehr, M., A screen printed electrode modified with Fe3O4@ polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta, 2021, vol. 232, p. 122379.CrossRef
29.
go back to reference Zhang, Z. and Karimi-Maleh, H., In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids, Chemosphere, 2023, vol. 324, p. 138302.CrossRef Zhang, Z. and Karimi-Maleh, H., In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids, Chemosphere, 2023, vol. 324, p. 138302.CrossRef
30.
go back to reference Bijad, M., Karimi-Maleh, H., Farsi, M., and Shahidi, S.A., An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples, J. Food Meas. Charact., 2018, vol. 12, p. 634.CrossRef Bijad, M., Karimi-Maleh, H., Farsi, M., and Shahidi, S.A., An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples, J. Food Meas. Charact., 2018, vol. 12, p. 634.CrossRef
31.
go back to reference Foroughi, M.M., Beitollahi, H., Tajik, S., Akbari, A., et al., Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 8407.CrossRef Foroughi, M.M., Beitollahi, H., Tajik, S., Akbari, A., et al., Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 8407.CrossRef
32.
go back to reference Karimi-Maleh, H., Fakude, C.T., Mabuba, N., Peleyeju, G.M., et al., The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor, J. Colloid Interface Sci., 2019, vol. 554, p. 603.CrossRef Karimi-Maleh, H., Fakude, C.T., Mabuba, N., Peleyeju, G.M., et al., The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor, J. Colloid Interface Sci., 2019, vol. 554, p. 603.CrossRef
33.
go back to reference Mohanraj, J., Durgalakshmi, D., Rakkesh, R.A., Balakumar, S., et al., Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor, J. Colloid Interface Sci., 2020, vol. 566, p. 463.CrossRef Mohanraj, J., Durgalakshmi, D., Rakkesh, R.A., Balakumar, S., et al., Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor, J. Colloid Interface Sci., 2020, vol. 566, p. 463.CrossRef
34.
go back to reference Cheraghi, S., Taher, M.A., Karimi-Maleh, H., Karimi, F., et al., Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids, Chemosphere, 2022, vol. 287, p. 132187.CrossRef Cheraghi, S., Taher, M.A., Karimi-Maleh, H., Karimi, F., et al., Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids, Chemosphere, 2022, vol. 287, p. 132187.CrossRef
35.
go back to reference Buledi, J.A., Mahar, N., Mallah, A., Solangi, A.R., et al., Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: A potential method for environmental remediation, Food Chem. Toxicol., 2022, vol. 161, p. 112843.CrossRef Buledi, J.A., Mahar, N., Mallah, A., Solangi, A.R., et al., Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: A potential method for environmental remediation, Food Chem. Toxicol., 2022, vol. 161, p. 112843.CrossRef
36.
go back to reference Khatami, M., Mortazavi, S.M., Kishani-Farahani, Z., Amini, A., et al., Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency, Iran. J. Biotechnol., 2107, vol. 15, p. 95. Khatami, M., Mortazavi, S.M., Kishani-Farahani, Z., Amini, A., et al., Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency, Iran. J. Biotechnol., 2107, vol. 15, p. 95.
37.
go back to reference Ridhuan, N.S., Razak, K.A., and Lockman, Z., Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods, Sci. Rep., 2018, vol. 8, p. 13722.CrossRef Ridhuan, N.S., Razak, K.A., and Lockman, Z., Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods, Sci. Rep., 2018, vol. 8, p. 13722.CrossRef
38.
go back to reference Dourandish, Z., Tajik, S., Beitollahi, H., Mohammadzadeh Jahani, P., et al., A comprehensive review of metal–organic framework: Synthesis, characterization, and investigation of their application in electrochemical biosensors for biomedical analysis, Sensors, 2022, vol. 22, p. 2238.CrossRef Dourandish, Z., Tajik, S., Beitollahi, H., Mohammadzadeh Jahani, P., et al., A comprehensive review of metal–organic framework: Synthesis, characterization, and investigation of their application in electrochemical biosensors for biomedical analysis, Sensors, 2022, vol. 22, p. 2238.CrossRef
39.
go back to reference Naguib, M., Mashtalir, O., Carle, J., Presser, V., et al., Two-dimensional transition metal carbides, ACS Nano, 2012, vol. 6, p. 1322.CrossRef Naguib, M., Mashtalir, O., Carle, J., Presser, V., et al., Two-dimensional transition metal carbides, ACS Nano, 2012, vol. 6, p. 1322.CrossRef
40.
go back to reference Naguib, M., Kurtoglu, M., Presser, V., Lu, J., et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 2011, vol. 23, p. 4248.CrossRef Naguib, M., Kurtoglu, M., Presser, V., Lu, J., et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 2011, vol. 23, p. 4248.CrossRef
41.
go back to reference Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall’Agnese, Y., et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 2013, vol. 341, p. 1502.CrossRef Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall’Agnese, Y., et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 2013, vol. 341, p. 1502.CrossRef
42.
go back to reference Taheri, M., Abdizadeh, H., and Golobostanfard, M.R., Hierarchical ZnO nanoflowers urchin-like shapes synthesized via sol-gel electrophoretic deposition with enhanced photocatalytic performance, J. Mater. Chem. Physics., 2018, vol. 220, p. 118.CrossRef Taheri, M., Abdizadeh, H., and Golobostanfard, M.R., Hierarchical ZnO nanoflowers urchin-like shapes synthesized via sol-gel electrophoretic deposition with enhanced photocatalytic performance, J. Mater. Chem. Physics., 2018, vol. 220, p. 118.CrossRef
43.
go back to reference Lai, H., Ming, P., Liu, Y., Wang, S., et al., MWCNTs and ZnO-based Ce-MOF nanocomposites as enhanced sensing platform for electrochemical detection of carbendazim in Chinese traditional herbs samples, Microchim. Acta, 2023, vol. 190, p. 281.CrossRef Lai, H., Ming, P., Liu, Y., Wang, S., et al., MWCNTs and ZnO-based Ce-MOF nanocomposites as enhanced sensing platform for electrochemical detection of carbendazim in Chinese traditional herbs samples, Microchim. Acta, 2023, vol. 190, p. 281.CrossRef
44.
go back to reference Arpitha, S.B., Swamy, B.K., and Shashikumara, J.K., An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol, Inorg. Chem. Commun., 2023, vol. 152, p. 110656.CrossRef Arpitha, S.B., Swamy, B.K., and Shashikumara, J.K., An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol, Inorg. Chem. Commun., 2023, vol. 152, p. 110656.CrossRef
45.
go back to reference Sun, W., Li, X., Wang, Y., Zhao, R., et al., Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier, Electrochim. Acta, 2009, vol. 54, p. 4141.CrossRef Sun, W., Li, X., Wang, Y., Zhao, R., et al., Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier, Electrochim. Acta, 2009, vol. 54, p. 4141.CrossRef
46.
go back to reference Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater., 2017, vol. 29, p. 7633.CrossRef Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater., 2017, vol. 29, p. 7633.CrossRef
47.
go back to reference Bard, A.J. and Faulkner, L. R., Fundamentals and applications, J. Electrochem. Methods, 2001, vol. 2, p. 580. Bard, A.J. and Faulkner, L. R., Fundamentals and applications, J. Electrochem. Methods, 2001, vol. 2, p. 580.
48.
go back to reference Teymourian, H., Salimi, A., and Khezrian, S., Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform, Biosens. Bioelectron., 2013, vol. 49, p. 1.CrossRef Teymourian, H., Salimi, A., and Khezrian, S., Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform, Biosens. Bioelectron., 2013, vol. 49, p. 1.CrossRef
49.
go back to reference Ramachandran, K., Kalpana, D., Sathishkumar, Y., Lee, Y.S., et al., A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection, J. Ind. Eng. Chem., 2015, vol. 35, p. 29.CrossRef Ramachandran, K., Kalpana, D., Sathishkumar, Y., Lee, Y.S., et al., A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection, J. Ind. Eng. Chem., 2015, vol. 35, p. 29.CrossRef
50.
go back to reference Yang, W., Bai, Y., Li, Y., and Sun, C., Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film, Anal. Bioanal. Chem., 2005, vol. 382, p. 44.CrossRef Yang, W., Bai, Y., Li, Y., and Sun, C., Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film, Anal. Bioanal. Chem., 2005, vol. 382, p. 44.CrossRef
Metadata
Title
Voltammetric Determination of Nitrite Using Modified Glassy Carbon Electrode
Authors
Fariba Beigmoradi
Hadi Beitollahi
Publication date
01-02-2024
Publisher
Pleiades Publishing
Published in
Surface Engineering and Applied Electrochemistry / Issue 1/2024
Print ISSN: 1068-3755
Electronic ISSN: 1934-8002
DOI
https://doi.org/10.3103/S1068375524010034

Other articles of this Issue 1/2024

Surface Engineering and Applied Electrochemistry 1/2024 Go to the issue

Premium Partners