Skip to main content
Erschienen in: Surface Engineering and Applied Electrochemistry 1/2024

01.02.2024

Voltammetric Determination of Nitrite Using Modified Glassy Carbon Electrode

verfasst von: Fariba Beigmoradi, Hadi Beitollahi

Erschienen in: Surface Engineering and Applied Electrochemistry | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current study was conducted to measure the concentrations of nitrite by a glassy carbon electrode modified with MXene/La3+ doped ZnO/hemoglobin (Hb) nanocomposite as a new voltammetric sensor. Chronoamperometry, differential pulse voltammetry, and cyclic voltammetry were employed to characterize the modification of the electrode surface. According to the analytical results, the glassy carbon electrode incorporated with MXene/La3+ doped ZnO/Hb nanocomposite was able to detect the presence of different concentrations of nitrite (0.1–700.0 μM), with the detection limit of 4.0 × 10–8 M. The proposed sensor can be proposed as acceptable electrochemical detector of nitrite in real samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mani, V., Wu, T.Y., and Chen, S.M., Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitive determination of nitrite, J. Solid State Electrochem., 2014, vol. 18, p. 1015.CrossRef Mani, V., Wu, T.Y., and Chen, S.M., Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitive determination of nitrite, J. Solid State Electrochem., 2014, vol. 18, p. 1015.CrossRef
2.
Zurück zum Zitat Raja Jamaluddin, R.Z.A., Yook Heng, L., Tan, L.L., and Chong, K.F., Electrochemical biosensor for nitrite based on polyacrylic-graphene composite film with covalently immobilized hemoglobin, Sensors, 2018, vol. 18, p. 1343.CrossRef Raja Jamaluddin, R.Z.A., Yook Heng, L., Tan, L.L., and Chong, K.F., Electrochemical biosensor for nitrite based on polyacrylic-graphene composite film with covalently immobilized hemoglobin, Sensors, 2018, vol. 18, p. 1343.CrossRef
3.
Zurück zum Zitat Kesavan, S., Kumar, D.R., Baynosa, M.L., and Shim, J.J., Potentiodynamic formation of diaminobenzene films on an electrochemically reduced graphene oxide surface: Determination of nitrite in water samples, Mater. Sci. Eng. C, 2018, vol. 85, p. 97.CrossRef Kesavan, S., Kumar, D.R., Baynosa, M.L., and Shim, J.J., Potentiodynamic formation of diaminobenzene films on an electrochemically reduced graphene oxide surface: Determination of nitrite in water samples, Mater. Sci. Eng. C, 2018, vol. 85, p. 97.CrossRef
4.
Zurück zum Zitat Wan, D., Liu, H., Liu, R., Qu, J., et al., Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg–Al) hydrotalcite of different Mg/Al ratio, Chem. Eng. J., 2012, vol. 195, p. 241.CrossRef Wan, D., Liu, H., Liu, R., Qu, J., et al., Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg–Al) hydrotalcite of different Mg/Al ratio, Chem. Eng. J., 2012, vol. 195, p. 241.CrossRef
5.
Zurück zum Zitat Fawell, J.K., Nitrate and nitrite in drinking-water, in Background Document for Development of WHO Guidelines for Drinking-Water Quality (GDWQ), Geneva: WHO Press, 2011. Fawell, J.K., Nitrate and nitrite in drinking-water, in Background Document for Development of WHO Guidelines for Drinking-Water Quality (GDWQ), Geneva: WHO Press, 2011.
6.
Zurück zum Zitat Shen, Y., Zhang, Q., Qian, X., and Yang, Y., Practical assay for nitrite and nitrosothiol as an alternative to the Griess assay or the 2,3-diaminonaphthalene assay, Anal. Chem., 2015, vol. 87, p. 1274.CrossRef Shen, Y., Zhang, Q., Qian, X., and Yang, Y., Practical assay for nitrite and nitrosothiol as an alternative to the Griess assay or the 2,3-diaminonaphthalene assay, Anal. Chem., 2015, vol. 87, p. 1274.CrossRef
7.
Zurück zum Zitat Wu, J., Wang, X., Lin, Y., Zheng, Y., et al., Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on Microfluidic chip, Talanta, 2016, vol. 154, p. 73.CrossRef Wu, J., Wang, X., Lin, Y., Zheng, Y., et al., Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on Microfluidic chip, Talanta, 2016, vol. 154, p. 73.CrossRef
8.
Zurück zum Zitat Wu, A., Duan, T., Tang, D., Zheng, Z., et al., Review the application of chromatography in the analysis of nitric oxide-derived nitrite and nitrate ions in biological fluids, Curr. Anal. Chem., 2014, vol. 10, p. 609.CrossRef Wu, A., Duan, T., Tang, D., Zheng, Z., et al., Review the application of chromatography in the analysis of nitric oxide-derived nitrite and nitrate ions in biological fluids, Curr. Anal. Chem., 2014, vol. 10, p. 609.CrossRef
9.
Zurück zum Zitat Chen, J., Pang, S., He, L., and Nugen, S.R., Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy, Biosens. Bioelectron., 2016, vol. 85, p. 726.CrossRef Chen, J., Pang, S., He, L., and Nugen, S.R., Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy, Biosens. Bioelectron., 2016, vol. 85, p. 726.CrossRef
10.
Zurück zum Zitat Erol, Ö.Ö., Erdoğan, B.Y., and Onar, A.N., Nitrate and nitrite determination in gunshot residue samples by capillary electrophoresis in acidic run buffer, J. Forensic Sci., 2017, vol. 62, p. 423.CrossRef Erol, Ö.Ö., Erdoğan, B.Y., and Onar, A.N., Nitrate and nitrite determination in gunshot residue samples by capillary electrophoresis in acidic run buffer, J. Forensic Sci., 2017, vol. 62, p. 423.CrossRef
11.
Zurück zum Zitat Liu, Y.L., Kang, N., Ke, X.B., Wang, D., et al., A fluorescent nanoprobe based on metal-enhanced fluorescence combined with Förster resonance energy transfer for the trace detection of nitrite ions, RSC Adv., 2016, vol. 6, p. 27395.CrossRef Liu, Y.L., Kang, N., Ke, X.B., Wang, D., et al., A fluorescent nanoprobe based on metal-enhanced fluorescence combined with Förster resonance energy transfer for the trace detection of nitrite ions, RSC Adv., 2016, vol. 6, p. 27395.CrossRef
12.
Zurück zum Zitat Liu, X., Guo, L., Cheng, L., and Ju, H., Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots, Talanta, 2009, vol. 78, p. 691.CrossRef Liu, X., Guo, L., Cheng, L., and Ju, H., Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots, Talanta, 2009, vol. 78, p. 691.CrossRef
13.
Zurück zum Zitat Karimi-Maleh, H., Liu, Y., Li, Z., Darabi, R., et al., Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study, Chemosphere, 2023, vol. 332, p. 138815.CrossRef Karimi-Maleh, H., Liu, Y., Li, Z., Darabi, R., et al., Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study, Chemosphere, 2023, vol. 332, p. 138815.CrossRef
14.
Zurück zum Zitat Garkani Nejad, F., Tajik, S., Beitollahi, H., and Sheikhshoaie, I., Magnetic nanomaterials based electrochemical (bio) sensors for food analysis, Talanta, 2021, vol. 228, p. 122075.CrossRef Garkani Nejad, F., Tajik, S., Beitollahi, H., and Sheikhshoaie, I., Magnetic nanomaterials based electrochemical (bio) sensors for food analysis, Talanta, 2021, vol. 228, p. 122075.CrossRef
15.
Zurück zum Zitat Zhang, Z. and Karimi-Maleh, H., Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal, Adv. Compos. Hybrid Mater., 2023, vol. 6, p. 68.CrossRef Zhang, Z. and Karimi-Maleh, H., Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal, Adv. Compos. Hybrid Mater., 2023, vol. 6, p. 68.CrossRef
16.
Zurück zum Zitat Losada, J., Armada, M.P.G., Garcia, E., Casado, C.M., et al., Electrochemical preparation of gold nanoparticles on ferrocenyl-dendrimer film modified electrodes and their application for the electrocatalytic oxidation and amperometric detection of nitrite, J. Electroanal. Chem., 2017, vol. 788, p. 14.CrossRef Losada, J., Armada, M.P.G., Garcia, E., Casado, C.M., et al., Electrochemical preparation of gold nanoparticles on ferrocenyl-dendrimer film modified electrodes and their application for the electrocatalytic oxidation and amperometric detection of nitrite, J. Electroanal. Chem., 2017, vol. 788, p. 14.CrossRef
17.
Zurück zum Zitat Baghbamidi, S.E., Beitollahi, H., and Tajik, S., Graphene oxide nano-sheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine, Anal. Bioanal. Electrochem., 2014, vol. 6, p. 634. Baghbamidi, S.E., Beitollahi, H., and Tajik, S., Graphene oxide nano-sheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine, Anal. Bioanal. Electrochem., 2014, vol. 6, p. 634.
18.
Zurück zum Zitat Karimi-Maleh, H., Darabi, R., Karimi, F., Karaman, C., et al., State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review, Environ. Res., 2023, vol. 222, p. 115338.CrossRef Karimi-Maleh, H., Darabi, R., Karimi, F., Karaman, C., et al., State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review, Environ. Res., 2023, vol. 222, p. 115338.CrossRef
19.
Zurück zum Zitat Kozub, B.R., Rees, N.V., and Compton, R.G., Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens. Actuators B: Chem., 2010, vol. 143, p. 539.CrossRef Kozub, B.R., Rees, N.V., and Compton, R.G., Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens. Actuators B: Chem., 2010, vol. 143, p. 539.CrossRef
20.
Zurück zum Zitat Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., et al., ZnO@graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd(II) and Pb(II), Synth. Met., 2018, vol. 245, p. 251.CrossRef Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., et al., ZnO@graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd(II) and Pb(II), Synth. Met., 2018, vol. 245, p. 251.CrossRef
21.
Zurück zum Zitat Ren, Q., Shen, X., Sun, Y., Fan, R., et al., A highly sensitive competitive immunosensor based on branched polyethyleneimine functionalized reduced graphene oxide and gold nanoparticles modified electrode for detection of melamine, Food Chem., 2020, vol. 304, p. 125397.CrossRef Ren, Q., Shen, X., Sun, Y., Fan, R., et al., A highly sensitive competitive immunosensor based on branched polyethyleneimine functionalized reduced graphene oxide and gold nanoparticles modified electrode for detection of melamine, Food Chem., 2020, vol. 304, p. 125397.CrossRef
22.
Zurück zum Zitat Harris, P.J., New perspectives on the structure of graphitic carbons, Crit. Rev. Solid State Mater. Sci., 2005, vol. 30, p. 235.CrossRef Harris, P.J., New perspectives on the structure of graphitic carbons, Crit. Rev. Solid State Mater. Sci., 2005, vol. 30, p. 235.CrossRef
23.
Zurück zum Zitat Craievich, A.F., On the structure of glassy carbon, Mater. Res. Bull., 1976, vol. 11, p. 1249.CrossRef Craievich, A.F., On the structure of glassy carbon, Mater. Res. Bull., 1976, vol. 11, p. 1249.CrossRef
24.
Zurück zum Zitat Palakollu, V.N., Chiwunze, T.E., Liu, C., and Karpoormath, R., Electrochemical sensitive determination of acetaminophen in pharmaceutical formulations at iron oxide/graphene composite modified electrode, Arab. J. Chem., 2020, vol. 13, p. 4350.CrossRef Palakollu, V.N., Chiwunze, T.E., Liu, C., and Karpoormath, R., Electrochemical sensitive determination of acetaminophen in pharmaceutical formulations at iron oxide/graphene composite modified electrode, Arab. J. Chem., 2020, vol. 13, p. 4350.CrossRef
25.
Zurück zum Zitat Hojjati-Najafabadi, A., Mansoorianfar, M., Liang, T.X., Shahin, K., et al., A review on magnetic sensors for monitoring of hazardous pollutants in water resources, Sci. Total Environ., 2022, vol. 824, p. 153844.CrossRef Hojjati-Najafabadi, A., Mansoorianfar, M., Liang, T.X., Shahin, K., et al., A review on magnetic sensors for monitoring of hazardous pollutants in water resources, Sci. Total Environ., 2022, vol. 824, p. 153844.CrossRef
26.
Zurück zum Zitat Paim, L.L. and Stradiotto, N.R., Electrochemical behavior of a glassy-carbon electrode chemically modified with cadmium pentacyanonitrosylferrate in the presence of tetrahydrothiophene, J. Electroanal. Chem., 2011, vol. 663, p. 43.CrossRef Paim, L.L. and Stradiotto, N.R., Electrochemical behavior of a glassy-carbon electrode chemically modified with cadmium pentacyanonitrosylferrate in the presence of tetrahydrothiophene, J. Electroanal. Chem., 2011, vol. 663, p. 43.CrossRef
27.
Zurück zum Zitat Tajik, S., Orooji, Y., Karimi, F., Ghazanfari, Z., et al., High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth, J. Food Meas. Charact., 2021, vol. 15, p. 4617.CrossRef Tajik, S., Orooji, Y., Karimi, F., Ghazanfari, Z., et al., High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth, J. Food Meas. Charact., 2021, vol. 15, p. 4617.CrossRef
28.
Zurück zum Zitat Tajik, S., Beitollahi, H., Jang, H.W., and Shokouhimehr, M., A screen printed electrode modified with Fe3O4@ polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta, 2021, vol. 232, p. 122379.CrossRef Tajik, S., Beitollahi, H., Jang, H.W., and Shokouhimehr, M., A screen printed electrode modified with Fe3O4@ polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta, 2021, vol. 232, p. 122379.CrossRef
29.
Zurück zum Zitat Zhang, Z. and Karimi-Maleh, H., In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids, Chemosphere, 2023, vol. 324, p. 138302.CrossRef Zhang, Z. and Karimi-Maleh, H., In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids, Chemosphere, 2023, vol. 324, p. 138302.CrossRef
30.
Zurück zum Zitat Bijad, M., Karimi-Maleh, H., Farsi, M., and Shahidi, S.A., An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples, J. Food Meas. Charact., 2018, vol. 12, p. 634.CrossRef Bijad, M., Karimi-Maleh, H., Farsi, M., and Shahidi, S.A., An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples, J. Food Meas. Charact., 2018, vol. 12, p. 634.CrossRef
31.
Zurück zum Zitat Foroughi, M.M., Beitollahi, H., Tajik, S., Akbari, A., et al., Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 8407.CrossRef Foroughi, M.M., Beitollahi, H., Tajik, S., Akbari, A., et al., Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 8407.CrossRef
32.
Zurück zum Zitat Karimi-Maleh, H., Fakude, C.T., Mabuba, N., Peleyeju, G.M., et al., The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor, J. Colloid Interface Sci., 2019, vol. 554, p. 603.CrossRef Karimi-Maleh, H., Fakude, C.T., Mabuba, N., Peleyeju, G.M., et al., The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor, J. Colloid Interface Sci., 2019, vol. 554, p. 603.CrossRef
33.
Zurück zum Zitat Mohanraj, J., Durgalakshmi, D., Rakkesh, R.A., Balakumar, S., et al., Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor, J. Colloid Interface Sci., 2020, vol. 566, p. 463.CrossRef Mohanraj, J., Durgalakshmi, D., Rakkesh, R.A., Balakumar, S., et al., Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor, J. Colloid Interface Sci., 2020, vol. 566, p. 463.CrossRef
34.
Zurück zum Zitat Cheraghi, S., Taher, M.A., Karimi-Maleh, H., Karimi, F., et al., Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids, Chemosphere, 2022, vol. 287, p. 132187.CrossRef Cheraghi, S., Taher, M.A., Karimi-Maleh, H., Karimi, F., et al., Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids, Chemosphere, 2022, vol. 287, p. 132187.CrossRef
35.
Zurück zum Zitat Buledi, J.A., Mahar, N., Mallah, A., Solangi, A.R., et al., Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: A potential method for environmental remediation, Food Chem. Toxicol., 2022, vol. 161, p. 112843.CrossRef Buledi, J.A., Mahar, N., Mallah, A., Solangi, A.R., et al., Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: A potential method for environmental remediation, Food Chem. Toxicol., 2022, vol. 161, p. 112843.CrossRef
36.
Zurück zum Zitat Khatami, M., Mortazavi, S.M., Kishani-Farahani, Z., Amini, A., et al., Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency, Iran. J. Biotechnol., 2107, vol. 15, p. 95. Khatami, M., Mortazavi, S.M., Kishani-Farahani, Z., Amini, A., et al., Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency, Iran. J. Biotechnol., 2107, vol. 15, p. 95.
37.
Zurück zum Zitat Ridhuan, N.S., Razak, K.A., and Lockman, Z., Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods, Sci. Rep., 2018, vol. 8, p. 13722.CrossRef Ridhuan, N.S., Razak, K.A., and Lockman, Z., Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods, Sci. Rep., 2018, vol. 8, p. 13722.CrossRef
38.
Zurück zum Zitat Dourandish, Z., Tajik, S., Beitollahi, H., Mohammadzadeh Jahani, P., et al., A comprehensive review of metal–organic framework: Synthesis, characterization, and investigation of their application in electrochemical biosensors for biomedical analysis, Sensors, 2022, vol. 22, p. 2238.CrossRef Dourandish, Z., Tajik, S., Beitollahi, H., Mohammadzadeh Jahani, P., et al., A comprehensive review of metal–organic framework: Synthesis, characterization, and investigation of their application in electrochemical biosensors for biomedical analysis, Sensors, 2022, vol. 22, p. 2238.CrossRef
39.
Zurück zum Zitat Naguib, M., Mashtalir, O., Carle, J., Presser, V., et al., Two-dimensional transition metal carbides, ACS Nano, 2012, vol. 6, p. 1322.CrossRef Naguib, M., Mashtalir, O., Carle, J., Presser, V., et al., Two-dimensional transition metal carbides, ACS Nano, 2012, vol. 6, p. 1322.CrossRef
40.
Zurück zum Zitat Naguib, M., Kurtoglu, M., Presser, V., Lu, J., et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 2011, vol. 23, p. 4248.CrossRef Naguib, M., Kurtoglu, M., Presser, V., Lu, J., et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 2011, vol. 23, p. 4248.CrossRef
41.
Zurück zum Zitat Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall’Agnese, Y., et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 2013, vol. 341, p. 1502.CrossRef Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall’Agnese, Y., et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 2013, vol. 341, p. 1502.CrossRef
42.
Zurück zum Zitat Taheri, M., Abdizadeh, H., and Golobostanfard, M.R., Hierarchical ZnO nanoflowers urchin-like shapes synthesized via sol-gel electrophoretic deposition with enhanced photocatalytic performance, J. Mater. Chem. Physics., 2018, vol. 220, p. 118.CrossRef Taheri, M., Abdizadeh, H., and Golobostanfard, M.R., Hierarchical ZnO nanoflowers urchin-like shapes synthesized via sol-gel electrophoretic deposition with enhanced photocatalytic performance, J. Mater. Chem. Physics., 2018, vol. 220, p. 118.CrossRef
43.
Zurück zum Zitat Lai, H., Ming, P., Liu, Y., Wang, S., et al., MWCNTs and ZnO-based Ce-MOF nanocomposites as enhanced sensing platform for electrochemical detection of carbendazim in Chinese traditional herbs samples, Microchim. Acta, 2023, vol. 190, p. 281.CrossRef Lai, H., Ming, P., Liu, Y., Wang, S., et al., MWCNTs and ZnO-based Ce-MOF nanocomposites as enhanced sensing platform for electrochemical detection of carbendazim in Chinese traditional herbs samples, Microchim. Acta, 2023, vol. 190, p. 281.CrossRef
44.
Zurück zum Zitat Arpitha, S.B., Swamy, B.K., and Shashikumara, J.K., An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol, Inorg. Chem. Commun., 2023, vol. 152, p. 110656.CrossRef Arpitha, S.B., Swamy, B.K., and Shashikumara, J.K., An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol, Inorg. Chem. Commun., 2023, vol. 152, p. 110656.CrossRef
45.
Zurück zum Zitat Sun, W., Li, X., Wang, Y., Zhao, R., et al., Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier, Electrochim. Acta, 2009, vol. 54, p. 4141.CrossRef Sun, W., Li, X., Wang, Y., Zhao, R., et al., Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier, Electrochim. Acta, 2009, vol. 54, p. 4141.CrossRef
46.
Zurück zum Zitat Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater., 2017, vol. 29, p. 7633.CrossRef Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater., 2017, vol. 29, p. 7633.CrossRef
47.
Zurück zum Zitat Bard, A.J. and Faulkner, L. R., Fundamentals and applications, J. Electrochem. Methods, 2001, vol. 2, p. 580. Bard, A.J. and Faulkner, L. R., Fundamentals and applications, J. Electrochem. Methods, 2001, vol. 2, p. 580.
48.
Zurück zum Zitat Teymourian, H., Salimi, A., and Khezrian, S., Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform, Biosens. Bioelectron., 2013, vol. 49, p. 1.CrossRef Teymourian, H., Salimi, A., and Khezrian, S., Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform, Biosens. Bioelectron., 2013, vol. 49, p. 1.CrossRef
49.
Zurück zum Zitat Ramachandran, K., Kalpana, D., Sathishkumar, Y., Lee, Y.S., et al., A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection, J. Ind. Eng. Chem., 2015, vol. 35, p. 29.CrossRef Ramachandran, K., Kalpana, D., Sathishkumar, Y., Lee, Y.S., et al., A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection, J. Ind. Eng. Chem., 2015, vol. 35, p. 29.CrossRef
50.
Zurück zum Zitat Yang, W., Bai, Y., Li, Y., and Sun, C., Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film, Anal. Bioanal. Chem., 2005, vol. 382, p. 44.CrossRef Yang, W., Bai, Y., Li, Y., and Sun, C., Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film, Anal. Bioanal. Chem., 2005, vol. 382, p. 44.CrossRef
Metadaten
Titel
Voltammetric Determination of Nitrite Using Modified Glassy Carbon Electrode
verfasst von
Fariba Beigmoradi
Hadi Beitollahi
Publikationsdatum
01.02.2024
Verlag
Pleiades Publishing
Erschienen in
Surface Engineering and Applied Electrochemistry / Ausgabe 1/2024
Print ISSN: 1068-3755
Elektronische ISSN: 1934-8002
DOI
https://doi.org/10.3103/S1068375524010034

Weitere Artikel der Ausgabe 1/2024

Surface Engineering and Applied Electrochemistry 1/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.