Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 1-4/2019

23-07-2019 | ORIGINAL ARTICLE

Voxel-based support structures for additive manufacture of topologically optimal geometries

Authors: Martin Leary, Maciej Mazur, Marcus Watson, Etienne Boileau, Milan Brandt

Published in: The International Journal of Advanced Manufacturing Technology | Issue 1-4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Additive manufacturing (AM) enables the direct manufacture of complex geometries with unique engineering properties. In particular, AM is compatible with topology optimisation (TO) and provides a unique opportunity for optimal structural design. Despite the commercial opportunities enabled by AM, technical requirements must be satisfied in order to achieve robust production outcomes. In particular, AM requires support structures to fabricate overhanging geometry and avoid overheating. Support generation tools exist; however, these are generally not directly compatible with the voxel-based representation typical of TO geometries, without additional computational steps. This research proposes the use of voxel-based Cellular automata (CA) as a fundamentally novel method for the generation of AM support structures. A number of CA rules are proposed and applied with the objective of generating robust support structures for an arbitrary TO geometry. Relevant CA parameters are assessed in terms of structure manufacturability, including sequential and random CA, rotation of the cellular array, and alternate CA boundary rules, including permutations not previously reported. From this research, CA with complex cell arrangements that provide robust AM support for TO geometries are identified and demonstrated by manufacture with selective laser melting (SLM) and fused deposition modelling (FDM). These CA may be automatically applied to enable TO geometries to be directly fabricated by AM, thereby providing a unique, and commercially significant, design for AM (DFAM) capability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhai Y, Lados DA, LaGoy JL (2014) Additive manufacturing: making imagination the major limitation. Jom 66(5):808–816CrossRef Zhai Y, Lados DA, LaGoy JL (2014) Additive manufacturing: making imagination the major limitation. Jom 66(5):808–816CrossRef
2.
go back to reference Wong KV, Hernandez A (2012) A Review of additive manufacturing. ISRN Mech Eng 2012:1–10CrossRef Wong KV, Hernandez A (2012) A Review of additive manufacturing. ISRN Mech Eng 2012:1–10CrossRef
3.
go back to reference Steinbuch R (2010) Successful application of evolutionary algorithms in engineering design. J Bionic Eng 7:S199–S211CrossRef Steinbuch R (2010) Successful application of evolutionary algorithms in engineering design. J Bionic Eng 7:S199–S211CrossRef
4.
go back to reference Leary M, Merli L, Torti F, Mazur M, Brandt M (2014) Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater Des 63:678–690CrossRef Leary M, Merli L, Torti F, Mazur M, Brandt M (2014) Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater Des 63:678–690CrossRef
5.
go back to reference Doubrovski Z, Verlinden JC, Geraedts JMP (2011) Optimal design for additive manufacturing: opportunities and challenges. Proc Asme Int Des Eng Tech Conf Comput Inf Eng Conf 9(2012):635–646 Doubrovski Z, Verlinden JC, Geraedts JMP (2011) Optimal design for additive manufacturing: opportunities and challenges. Proc Asme Int Des Eng Tech Conf Comput Inf Eng Conf 9(2012):635–646
6.
go back to reference Langelaar M (2016) Topology optimization of 3D self-supporting structures for additive manufacturing. Addit Manuf 12:60–70CrossRef Langelaar M (2016) Topology optimization of 3D self-supporting structures for additive manufacturing. Addit Manuf 12:60–70CrossRef
7.
go back to reference Ilachinski A (2001) Cellular automata: a discrete universe. World Scientific Publishing Co Inc Ilachinski A (2001) Cellular automata: a discrete universe. World Scientific Publishing Co Inc
9.
go back to reference Brackett D, Ashcroft I, Hague R (2011) Topology optimization for additive manufacturing. In: Proceedings of the solid freeform fabrication symposium. TX, Austin Brackett D, Ashcroft I, Hague R (2011) Topology optimization for additive manufacturing. In: Proceedings of the solid freeform fabrication symposium. TX, Austin
10.
go back to reference Michell AGM (1904) LVIII. The limits of economy of material in frame-structures. Lond Edinburgh Dublin Philos Magazine J Sci 8(47):589–597MATHCrossRef Michell AGM (1904) LVIII. The limits of economy of material in frame-structures. Lond Edinburgh Dublin Philos Magazine J Sci 8(47):589–597MATHCrossRef
11.
go back to reference van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNetCrossRef van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNetCrossRef
12.
go back to reference Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef
13.
go back to reference Huang X, Xie Y-M (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683CrossRef Huang X, Xie Y-M (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683CrossRef
14.
go back to reference Rozvany GIN (2008) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetMATHCrossRef Rozvany GIN (2008) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetMATHCrossRef
15.
go back to reference Rozvany G (2001) Stress ratio and compliance based methods in topology optimisation - a critical review. Struct Multidiscip Optim 21:109–119CrossRef Rozvany G (2001) Stress ratio and compliance based methods in topology optimisation - a critical review. Struct Multidiscip Optim 21:109–119CrossRef
16.
go back to reference Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331CrossRef Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331CrossRef
17.
go back to reference O Sigmund J (1998) Peterson, Numerical instabilities in topology oiptimisation: a survey on procedures dealing with checkerboards, mesh-dependancies and lcoal minima. Structl Optimis 16:68–75CrossRef O Sigmund J (1998) Peterson, Numerical instabilities in topology oiptimisation: a survey on procedures dealing with checkerboards, mesh-dependancies and lcoal minima. Structl Optimis 16:68–75CrossRef
18.
go back to reference Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATHCrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATHCrossRef
19.
go back to reference P., B.M (1989) Optimal shape design as a material distribution problem. Structural Optimisation, pp 193–202 P., B.M (1989) Optimal shape design as a material distribution problem. Structural Optimisation, pp 193–202
20.
21.
go back to reference Xie Y, Steven GP (1992) Shape and layout optimization via an evolutionary procedure. In: Proceedings of the international conference on computational engineering science Xie Y, Steven GP (1992) Shape and layout optimization via an evolutionary procedure. In: Proceedings of the international conference on computational engineering science
22.
go back to reference Querin O et al (2000) Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput Methods Appl Mech Eng 189(2):559–573MATHCrossRef Querin O et al (2000) Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput Methods Appl Mech Eng 189(2):559–573MATHCrossRef
23.
go back to reference Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048MATHCrossRef Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048MATHCrossRef
24.
go back to reference Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246MathSciNetMATHCrossRef Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246MathSciNetMATHCrossRef
25.
go back to reference Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346MathSciNetMATHCrossRef Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346MathSciNetMATHCrossRef
26.
go back to reference Gaynor AT, Meisel NA, Williams CB, Guest JK (2014) Multiple-material topology optimization of compliant mechanisms created via polyjet three-dimensional printing. J Manuf Sci Eng 136(6):061015CrossRef Gaynor AT, Meisel NA, Williams CB, Guest JK (2014) Multiple-material topology optimization of compliant mechanisms created via polyjet three-dimensional printing. J Manuf Sci Eng 136(6):061015CrossRef
27.
go back to reference Gaynor, A.T., et al. Topology optimization for additive manufacturing: considering maximum overhang constraint. in 15th AIAA/ISSMO multidisciplinary analysis and optimization conference. 2014. Gaynor, A.T., et al. Topology optimization for additive manufacturing: considering maximum overhang constraint. in 15th AIAA/ISSMO multidisciplinary analysis and optimization conference. 2014.
28.
go back to reference Wu J et al Infill Optimization for additive manufacturing--approaching bone-like porous structures. IEEE Trans Vis Comput Graph 2017 Wu J et al Infill Optimization for additive manufacturing--approaching bone-like porous structures. IEEE Trans Vis Comput Graph 2017
29.
go back to reference Qian X (2017) Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Int J Numer Methods Eng 111:247–272MathSciNetCrossRef Qian X (2017) Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Int J Numer Methods Eng 111:247–272MathSciNetCrossRef
30.
go back to reference Dumas J, Hergel J, Lefebvre S (2014) Bridging the gap: automated steady scaffoldings for 3D printing. ACM Trans Graph 33(4):98CrossRef Dumas J, Hergel J, Lefebvre S (2014) Bridging the gap: automated steady scaffoldings for 3D printing. ACM Trans Graph 33(4):98CrossRef
31.
go back to reference Mirzendehdel AM, Suresh K (2016) Support structure constrained topology optimization for additive manufacturing. Comput Aided Des 81:1–13CrossRef Mirzendehdel AM, Suresh K (2016) Support structure constrained topology optimization for additive manufacturing. Comput Aided Des 81:1–13CrossRef
32.
go back to reference Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89CrossRef Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89CrossRef
33.
go back to reference ASTM standard F2792-12a, F2792-12a. Standard terminology for additive manufacturing technologies. 2012, ASTM International: West Conshohocken, Pa ASTM standard F2792-12a, F2792-12a. Standard terminology for additive manufacturing technologies. 2012, ASTM International: West Conshohocken, Pa
34.
go back to reference Leary M, Babaee M, Brandt M, Subic A (2013) Feasible build orientations for self-supporting fused deposition manufacture: a novel approach to space-filling tesselated geometries. Adv Mater Res 633:148–168CrossRef Leary M, Babaee M, Brandt M, Subic A (2013) Feasible build orientations for self-supporting fused deposition manufacture: a novel approach to space-filling tesselated geometries. Adv Mater Res 633:148–168CrossRef
35.
go back to reference Durgun I, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20(3):228–235CrossRef Durgun I, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20(3):228–235CrossRef
36.
go back to reference Baufeld B, Biest OVd, Gault R (2010) Additive manufacturing of Ti–6Al–4 V components by shaped metal deposition: Microstructure and mechanical properties. Mater Des 31:S106–S111CrossRef Baufeld B, Biest OVd, Gault R (2010) Additive manufacturing of Ti–6Al–4 V components by shaped metal deposition: Microstructure and mechanical properties. Mater Des 31:S106–S111CrossRef
37.
go back to reference Krauss H, Zaeh M (2013) Investigations on manufacturability and process reliability of selective laser melting. Phys Procedia 41:815–822CrossRef Krauss H, Zaeh M (2013) Investigations on manufacturability and process reliability of selective laser melting. Phys Procedia 41:815–822CrossRef
38.
go back to reference Rehme O, Emmelmann C Rapid manufacturing of lattice structures with selective laser melting. Proc. of SPIE 6107, 2005. Laser-based Micropackaging Rehme O, Emmelmann C Rapid manufacturing of lattice structures with selective laser melting. Proc. of SPIE 6107, 2005. Laser-based Micropackaging
39.
go back to reference Krauss H, Eschey C, Zaeh M (2012) Thermography for monitoring the selective laser melting process. In: Proceedings of the solid freeform fabrication symposium Krauss H, Eschey C, Zaeh M (2012) Thermography for monitoring the selective laser melting process. In: Proceedings of the solid freeform fabrication symposium
40.
go back to reference Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83:127–141CrossRef Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83:127–141CrossRef
41.
go back to reference Shidid D, Leary M, Choong P, Brandt M (2016) Just-in-time design and additive manufacture of patient-specific medical implants. Phys Procedia 83:4–14CrossRef Shidid D, Leary M, Choong P, Brandt M (2016) Just-in-time design and additive manufacture of patient-specific medical implants. Phys Procedia 83:4–14CrossRef
42.
go back to reference Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357CrossRef Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357CrossRef
43.
go back to reference Gibson R (2010) Stucker, Additive manufacturing technologies - rapid prototyping to direct digital manufacturingCrossRef Gibson R (2010) Stucker, Additive manufacturing technologies - rapid prototyping to direct digital manufacturingCrossRef
44.
go back to reference Campanelli SL et al (2010) Capabilities and performances of the selective laser melting process. INTECH Open Access Publisher Campanelli SL et al (2010) Capabilities and performances of the selective laser melting process. INTECH Open Access Publisher
45.
go back to reference Mazur M et al (2016) Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). In: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, p 119 Mazur M et al (2016) Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). In: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, p 119
46.
go back to reference Calignano F (2014) Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Mater Des 64:203–213CrossRef Calignano F (2014) Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Mater Des 64:203–213CrossRef
47.
go back to reference Gan MX, Wong CH (2016) Practical support structures for selective laser melting. J Mater Process Technol 238:474–484CrossRef Gan MX, Wong CH (2016) Practical support structures for selective laser melting. J Mater Process Technol 238:474–484CrossRef
48.
go back to reference Vanek J, Galicia JAG, Benes B (2014) Clever Support: efficient support structure generation for digital fabrication. Comput Graphics Forum 33(5):117–125CrossRef Vanek J, Galicia JAG, Benes B (2014) Clever Support: efficient support structure generation for digital fabrication. Comput Graphics Forum 33(5):117–125CrossRef
49.
go back to reference Hussein A, Hao L, Yan C, Everson R, Young P (2013) Advanced lattice support structures for metal additive manufacturing. J Mater Process Technol 213(7):1019–1026CrossRef Hussein A, Hao L, Yan C, Everson R, Young P (2013) Advanced lattice support structures for metal additive manufacturing. J Mater Process Technol 213(7):1019–1026CrossRef
50.
go back to reference Strano G, Hao L, Everson RM, Evans KE (2013) A new approach to the design and optimisation of support structures in additive manufacturing. Int J Adv Manuf Technol 66(9-12):1247–1254CrossRef Strano G, Hao L, Everson RM, Evans KE (2013) A new approach to the design and optimisation of support structures in additive manufacturing. Int J Adv Manuf Technol 66(9-12):1247–1254CrossRef
51.
go back to reference Vaidya R, Anand S (2016) Optimum support structure generation for additive manufacturing using unit cell structures and support removal constraint. Procedia Manuf 5:1043–1059CrossRef Vaidya R, Anand S (2016) Optimum support structure generation for additive manufacturing using unit cell structures and support removal constraint. Procedia Manuf 5:1043–1059CrossRef
52.
go back to reference Cloots M, Spierings A, Wegener K Assessing new support minimizing strategies for the additive manufacturing technology SLM. In: Solid Freeform Fabrication Symposium (SFF), Austin, p 2013 Cloots M, Spierings A, Wegener K Assessing new support minimizing strategies for the additive manufacturing technology SLM. In: Solid Freeform Fabrication Symposium (SFF), Austin, p 2013
53.
go back to reference Turing AM (1938) On computable numbers, with an application to the Entscheidungsproblem. A correction. Proc Lond Math Soc 2(1):544–546MathSciNetMATHCrossRef Turing AM (1938) On computable numbers, with an application to the Entscheidungsproblem. A correction. Proc Lond Math Soc 2(1):544–546MathSciNetMATHCrossRef
54.
go back to reference Wolfram S (2002) A new kind of science, vol 5. Wolfram media Champaign Wolfram S (2002) A new kind of science, vol 5. Wolfram media Champaign
55.
go back to reference Nandi S, Kar B, Chaudhuri PP (1994) Theory and applications of cellular automata in cryptography. IEEE Trans Comput 43(12):1346–1357MathSciNetCrossRef Nandi S, Kar B, Chaudhuri PP (1994) Theory and applications of cellular automata in cryptography. IEEE Trans Comput 43(12):1346–1357MathSciNetCrossRef
56.
go back to reference Preston K Jr, Duff MJ (2013) Modern cellular automata: theory and applications. Springer Science & Business Media Preston K Jr, Duff MJ (2013) Modern cellular automata: theory and applications. Springer Science & Business Media
57.
go back to reference Batty M (2005) Cities and complexity: understanding cities through cellular automata, agent-based models and fractals. The MIT Press Batty M (2005) Cities and complexity: understanding cities through cellular automata, agent-based models and fractals. The MIT Press
60.
go back to reference Tovar As et al (2006) Topology optimization using a hybrid cellular automaton method with local control rules. J Mech Des 128(6):1205CrossRef Tovar As et al (2006) Topology optimization using a hybrid cellular automaton method with local control rules. J Mech Des 128(6):1205CrossRef
61.
go back to reference Patel NM, Kang BS, Renaud JE, Tovar Á (2009) Crashworthiness design using topology optimization. J Mech Des 131(6):061013CrossRef Patel NM, Kang BS, Renaud JE, Tovar Á (2009) Crashworthiness design using topology optimization. J Mech Des 131(6):061013CrossRef
63.
go back to reference Wolfram S (1986) Theory and applications of cellular automata: including selected papers 1983-1986. World scientific Wolfram S (1986) Theory and applications of cellular automata: including selected papers 1983-1986. World scientific
65.
go back to reference Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1):616–622CrossRef Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1):616–622CrossRef
66.
go back to reference Rothemund PW, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):e424CrossRef Rothemund PW, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):e424CrossRef
67.
go back to reference Galati M, Iuliano L, Salmi A, Atzeni E (2017) Modelling energy source and powder properties for the development of a thermal FE model of the EBM additive manufacturing process. Addit Manuf 14:49–59CrossRef Galati M, Iuliano L, Salmi A, Atzeni E (2017) Modelling energy source and powder properties for the development of a thermal FE model of the EBM additive manufacturing process. Addit Manuf 14:49–59CrossRef
68.
go back to reference Sedgewick R, Flajolet P (1996) In: Flajolet P (ed) An introduction to the analysis of algorithms. Analysis of algorithms. Addison-Wesley, ReadingMATH Sedgewick R, Flajolet P (1996) In: Flajolet P (ed) An introduction to the analysis of algorithms. Analysis of algorithms. Addison-Wesley, ReadingMATH
69.
go back to reference Knuth DE (2005) The art of computer programming. Addison-Wesley, Upper Saddle RiverMATH Knuth DE (2005) The art of computer programming. Addison-Wesley, Upper Saddle RiverMATH
70.
go back to reference Bobbio LD, Qin S, Dunbar A, Michaleris P, Beese AM (2017) Characterization of the strength of support structures used in powder bed fusion additive manufacturing of Ti-6Al-4 V. Addit Manuf 14:60–68CrossRef Bobbio LD, Qin S, Dunbar A, Michaleris P, Beese AM (2017) Characterization of the strength of support structures used in powder bed fusion additive manufacturing of Ti-6Al-4 V. Addit Manuf 14:60–68CrossRef
71.
go back to reference Mazur M et al (2015) Deformation and failure behaviour of Ti-6Al-4 V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol:1–21 Mazur M et al (2015) Deformation and failure behaviour of Ti-6Al-4 V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol:1–21
72.
go back to reference Adamatzky A (2010) Game of life cellular automata, vol 1. Springer Adamatzky A (2010) Game of life cellular automata, vol 1. Springer
Metadata
Title
Voxel-based support structures for additive manufacture of topologically optimal geometries
Authors
Martin Leary
Maciej Mazur
Marcus Watson
Etienne Boileau
Milan Brandt
Publication date
23-07-2019
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 1-4/2019
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-03964-z

Other articles of this Issue 1-4/2019

The International Journal of Advanced Manufacturing Technology 1-4/2019 Go to the issue

Premium Partners