Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Wave Propagation

Author : Jürgen Donnevert

Published in: Maxwell´s Equations

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The propagation in free space is determined by the type of excitation by the transmitter and its transmitting antenna. In chapter 5 of this book the solutions of Maxwell’s equations are discussed in detail. For simplicity, the wave propagation in free space was chosen with wave excitation by a Hertzian dipole. The formulas for calculating the near field and the far field are derived and the energy flux in these field areas are calculated. The procedure for calculating the field lines is given. Finally, the essential characteristic values of antennas are derived.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
[6, p. 507 ff.].
 
2
The wavelength \( \lambda \) is the distance by which a phase state (e.g., a maximum or a zero crossing) of a wave progresses or propagates within a period of time \( {T} \) (see Fig. 4.​19).
\( {\text{T}} = 1/{\text{f}} \), f = frequency, \( {\text{f}} = \frac{\omega }{{\left( {2 \cdot \pi } \right)}} , \,{\text{ i}}.{\text{e}}.,\;\omega = 2 \cdot \pi \cdot {\text{f}}, \) \( \omega = {\text{angular}}\;{\text{frequency}} \),
 
3
Why \( \sqrt {\frac{{\mu_{0} }}{{\varepsilon_{0} }}} \) is referred to as field impedance is explained in Sect. 5.1.2.
 
4
Corresponding to (5.16) \( \underline{H}_{0} \left( t \right) = \pi \cdot \underline{I} \cdot l/\lambda^{2} \).
 
5
Integral tables, e.g., in [7].
 
6
or receiving cross section
 
Metadata
Title
Wave Propagation
Author
Jürgen Donnevert
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-658-29376-5_5