Skip to main content
Top

2020 | OriginalPaper | Chapter

10. Wear Characteristics of LASER Cladded Surface Coating

Author : Manidipto Mukherjee

Published in: Tribology in Materials and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Laser cladding by a powder injection technique has been widely used in industrial applications such as rapid manufacturing, parts repair, surface coating, and innovative alloy development. The capability to mix two or more types of powders and to control the feed rate of each powder flow makes laser cladding a flexible process for fabricating heterogeneous components or functionally graded materials. This technology also allows the material gradient to be designed at a microstructure level because of small localized fusion and strong mixing motion in the melt pool of laser cladding. Thus materials can be tailored for a flexible functional performance in particular applications. The inherently rapid heating and cooling rates associated with the laser-cladding process enable extended solid solubility in the metastable or non-equilibrium phases of production, offering the possibility of creating new materials with advanced properties. Laser cladding uses the same concept as arc welding methods, except that a laser is used to melt the surface of the substrate and the additional material, which can be in the form of wire, powder or strip. Laser cladding is commonly performed with CO2, Nd: YAG, and more recently fibre lasers. Laser cladding typically produces clads having low dilution, low porosity and good surface uniformity. This technique produces minimal heat input on the part, which largely eliminates distortion and the need for post-processing, and avoids the loss of alloying elements or hardening of the base material. The clad material experiences a rapid natural quench when cooling down after deposition, which results in a fine-grained microstructure. Among the different surface treatments used to improve the wear resistance of metallic materials, laser cladding is an attractive alternative to conventional techniques due to the intrinsic properties of laser radiation: high input energy, low distortion, avoidance of undesirable phase transformations and minimum dilution between the substrate and the coating. Furthermore, the advantages of laser cladding include great processing flexibility and the possibility of selectively cladding small areas. These advantages not only result in better quality products but also offer significant economic benefits. This chapter describes in details three major aspects of LASER cladding surface coating with respect to wear characteristics. The first subsection will describe different LASER cladding techniques and their effect on surface morphology. And how these surface morphologies are affecting the wear characteristics. The second subsection will provide the details on different aspects of filler metal selection for wear resistance applications. Then, the effect of process parameters on the surface morphology will be discussed thoroughly. The focus will be particularly on the effect of heat input on the wear behaviour of the cladded surface. The overall aim is to cover a broad area of LASER cladding surface coating in terms of wear characteristics and the improvement in wear resistance compared to other techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Mazumder, Laser-aided direct metal deposition of metals and alloys, in Laser Additive Manufacturing (2017), pp. 21–52 J. Mazumder, Laser-aided direct metal deposition of metals and alloys, in Laser Additive Manufacturing (2017), pp. 21–52
2.
go back to reference C. Chua, K. Leong, C. Lim, Rapid Prototyping: Principles and Applications, 2nd edn. (World Scientific, Singapore, 2003)CrossRef C. Chua, K. Leong, C. Lim, Rapid Prototyping: Principles and Applications, 2nd edn. (World Scientific, Singapore, 2003)CrossRef
3.
go back to reference L. Lu, J. Fuh, Y. Wong, Laser-Induced Materials and Processes for Rapid Prototyping (Kluwer Academic Publishers, 2001) L. Lu, J. Fuh, Y. Wong, Laser-Induced Materials and Processes for Rapid Prototyping (Kluwer Academic Publishers, 2001)
4.
go back to reference D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 38(10–11), 1257–1287 (1998)CrossRef D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 38(10–11), 1257–1287 (1998)CrossRef
5.
go back to reference J. Mazumder, J. Choi, K. Nagarathnam, J. Koch, D. Hetzner, The direct metal deposition of H13 tool steel for 3-D components. J. Miner. Metals Mater. Soc. 49(5), 55–60 (1997)CrossRef J. Mazumder, J. Choi, K. Nagarathnam, J. Koch, D. Hetzner, The direct metal deposition of H13 tool steel for 3-D components. J. Miner. Metals Mater. Soc. 49(5), 55–60 (1997)CrossRef
6.
go back to reference J. Mazumder, D. Dutta, N. Kikuchi, A. Ghosh, Closed loop direct metal deposition: art to part. Opt. Lasers Eng. 34(4–6), 397–414 (2000)CrossRef J. Mazumder, D. Dutta, N. Kikuchi, A. Ghosh, Closed loop direct metal deposition: art to part. Opt. Lasers Eng. 34(4–6), 397–414 (2000)CrossRef
7.
go back to reference M. Ma, Z. Wang, D. Wang, X. Zeng, Control of Shape and performance for direct laser fabrication of precision large-scale metal parts with 316L Stainless Steel. Opt. Laser Technol. 45, 209–216 (2013)CrossRef M. Ma, Z. Wang, D. Wang, X. Zeng, Control of Shape and performance for direct laser fabrication of precision large-scale metal parts with 316L Stainless Steel. Opt. Laser Technol. 45, 209–216 (2013)CrossRef
8.
go back to reference K. Zhang, S. Wang, W. Liu, X. Shang, Characterization of stainless steel parts by laser metal deposition shaping. Mater. Des. 55, 104–119 (2014)CrossRef K. Zhang, S. Wang, W. Liu, X. Shang, Characterization of stainless steel parts by laser metal deposition shaping. Mater. Des. 55, 104–119 (2014)CrossRef
9.
go back to reference M. Sachs, J. Cima, P. Williams, D. Brancazio, J. Cornie, Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J. Eng. Ind. Trans. ASME 114(4), 481–488 (1992)CrossRef M. Sachs, J. Cima, P. Williams, D. Brancazio, J. Cornie, Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J. Eng. Ind. Trans. ASME 114(4), 481–488 (1992)CrossRef
10.
go back to reference B. Dutta, S. Palaniswamy, J. Choi, L. Song, J. Mazumder, Direct metal deposition. Adv. Mater. Process. 5, 33–36 (2011) B. Dutta, S. Palaniswamy, J. Choi, L. Song, J. Mazumder, Direct metal deposition. Adv. Mater. Process. 5, 33–36 (2011)
11.
go back to reference H. Gedda, Laser Surface Cladding: A Literature Survey, Technical Report Lulea Tekniska Universitet, 2000. ISSN:1402-1536 H. Gedda, Laser Surface Cladding: A Literature Survey, Technical Report Lulea Tekniska Universitet, 2000. ISSN:1402-1536
12.
go back to reference U. de Oliveira, V. Ocelik, J.T.M. De Hosson, Analysis of coaxial laser cladding processing conditions. Surf. Coat. Technol, 197(2–3), 127–136 (2005)CrossRef U. de Oliveira, V. Ocelik, J.T.M. De Hosson, Analysis of coaxial laser cladding processing conditions. Surf. Coat. Technol, 197(2–3), 127–136 (2005)CrossRef
13.
go back to reference O. Milewski, G.K. Lewis, J. Fonseca, R.B. Nemec, Laser powder deposition of a near net shape injection mold core e a case study. Mater. Manuf. Process. 15(2), 247–258 (2000)CrossRef O. Milewski, G.K. Lewis, J. Fonseca, R.B. Nemec, Laser powder deposition of a near net shape injection mold core e a case study. Mater. Manuf. Process. 15(2), 247–258 (2000)CrossRef
14.
go back to reference R. Vilar, Laser alloying and laser cladding, in Lasers in Materials Science, vol. 301 (1999), pp. 229–251CrossRef R. Vilar, Laser alloying and laser cladding, in Lasers in Materials Science, vol. 301 (1999), pp. 229–251CrossRef
15.
go back to reference J. Mazumder, Laser assisted surface coatings, in Metallurgical and Ceramic Protective Coatings, ed. by K. Stern (Chapman and Hall, London, 1996), pp. 74–111CrossRef J. Mazumder, Laser assisted surface coatings, in Metallurgical and Ceramic Protective Coatings, ed. by K. Stern (Chapman and Hall, London, 1996), pp. 74–111CrossRef
16.
go back to reference J. Mazumder, O. Conde, M. Steen, R. Vilar (eds.), Laser Processing: Surface Treatment and Film Deposition, NATO ASI Series E, vol. 307 (Kluwer Academic Publishers, 1996), pp. 47–75 J. Mazumder, O. Conde, M. Steen, R. Vilar (eds.), Laser Processing: Surface Treatment and Film Deposition, NATO ASI Series E, vol. 307 (Kluwer Academic Publishers, 1996), pp. 47–75
17.
go back to reference H. Gedda, J. Powell, G. Wahlstrom, W.B. Li, H. Engstrom, C. Magnusson, Energy redistribution during CO2 laser cladding. J. Laser Appl. 14(2), 78–82 (2002)CrossRef H. Gedda, J. Powell, G. Wahlstrom, W.B. Li, H. Engstrom, C. Magnusson, Energy redistribution during CO2 laser cladding. J. Laser Appl. 14(2), 78–82 (2002)CrossRef
18.
go back to reference J. Lin, Laser attenuation of the focused powder streams in coaxial laser cladding. J. Laser Appl. 12(1), 28–33 (2000)CrossRef J. Lin, Laser attenuation of the focused powder streams in coaxial laser cladding. J. Laser Appl. 12(1), 28–33 (2000)CrossRef
19.
go back to reference J. Lin, Temperature analysis of the powder streams in coaxial laser cladding. Opt. Laser Technol. 31(8), 565–570 (1999)CrossRef J. Lin, Temperature analysis of the powder streams in coaxial laser cladding. Opt. Laser Technol. 31(8), 565–570 (1999)CrossRef
20.
go back to reference C.Y. Liu, J. Lin, Thermal processes of a powder particle in coaxial laser cladding. Opt. Laser Technol. 35(2), 81–86 (2003)CrossRef C.Y. Liu, J. Lin, Thermal processes of a powder particle in coaxial laser cladding. Opt. Laser Technol. 35(2), 81–86 (2003)CrossRef
21.
go back to reference A. Kar, J. Mazumder, One-dimensional finite-medium diffusion model for extended solid solution in laser cladding of Hf on nickel. Acta Metall. 36, 701–712 (1988)CrossRef A. Kar, J. Mazumder, One-dimensional finite-medium diffusion model for extended solid solution in laser cladding of Hf on nickel. Acta Metall. 36, 701–712 (1988)CrossRef
22.
go back to reference V.M. Weerasinghe, W.M. Steen, in Transport Phenomena in Materials Processing, ed. by M. Chen, J. Mazumder, C. Tucker (ASME, New York, NY, 1983), pp. 15–23 V.M. Weerasinghe, W.M. Steen, in Transport Phenomena in Materials Processing, ed. by M. Chen, J. Mazumder, C. Tucker (ASME, New York, NY, 1983), pp. 15–23
23.
go back to reference W.M. Steen, V.M. Weerasinghe, P. Monson, in High Power Lasers and Their Industrial Applications, vol. 650, ed. by D. Schuõcker (SPIE, Bellingham, WA, 1986), pp. 226–34 W.M. Steen, V.M. Weerasinghe, P. Monson, in High Power Lasers and Their Industrial Applications, vol. 650, ed. by D. Schuõcker (SPIE, Bellingham, WA, 1986), pp. 226–34
24.
go back to reference A.F.A. Hoadley, M. Rappaz, A thermal model of laser cladding by powder injection. Metall. Trans. B 23B, 631–642 (1992)CrossRef A.F.A. Hoadley, M. Rappaz, A thermal model of laser cladding by powder injection. Metall. Trans. B 23B, 631–642 (1992)CrossRef
25.
go back to reference M. Picasso, M. Rappaz, Laser-powder-material interactions in the laser cladding process. J. Phys. IV(C4), 27–33 (1994) M. Picasso, M. Rappaz, Laser-powder-material interactions in the laser cladding process. J. Phys. IV(C4), 27–33 (1994)
26.
go back to reference M. Picasso, A.F.A. Hoadley, Finite element simulation of laser surface treatments including convection in the melt pool. Int. J. Num. Meth. Heat Fluid Flow 4, 61–83 (1994)CrossRef M. Picasso, A.F.A. Hoadley, Finite element simulation of laser surface treatments including convection in the melt pool. Int. J. Num. Meth. Heat Fluid Flow 4, 61–83 (1994)CrossRef
27.
go back to reference E. Toyserkani, A. Khajepour, S. Corbin, in ICALEO 2002, Scottsdale, AZ, 14–17 Oct 2002 E. Toyserkani, A. Khajepour, S. Corbin, in ICALEO 2002, Scottsdale, AZ, 14–17 Oct 2002
28.
go back to reference Y. Yang, H.C. Man, Microstructure evolution of laser clad layers of W-C-Co alloy powders. Surf. Coat. Technol. 132, 130–136 (2000)CrossRef Y. Yang, H.C. Man, Microstructure evolution of laser clad layers of W-C-Co alloy powders. Surf. Coat. Technol. 132, 130–136 (2000)CrossRef
29.
go back to reference W. Ul Haq Syed, A.J. Pinkerton, Z. Liu, L. Li, Coincident wire and powder deposition by laser to form compositionally graded material. Surf. Coat. Technol. 201: 7083–7091 (2007)CrossRef W. Ul Haq Syed, A.J. Pinkerton, Z. Liu, L. Li, Coincident wire and powder deposition by laser to form compositionally graded material. Surf. Coat. Technol. 201: 7083–7091 (2007)CrossRef
30.
go back to reference B. Borges, L. Quintino, R.M. Miranda, P. Carr, Imperfections in laser cladding with powder and wire fillers. Int. J. Adv. Manuf. Technol. 50, 175–183 (2010)CrossRef B. Borges, L. Quintino, R.M. Miranda, P. Carr, Imperfections in laser cladding with powder and wire fillers. Int. J. Adv. Manuf. Technol. 50, 175–183 (2010)CrossRef
31.
go back to reference W. Ul Haq Syed, L. Li, Effects of wire feeding direction and location in multiple layer diode laser direct metal deposition. Appl. Surf. Sci. 248, 518–524 (2005)CrossRef W. Ul Haq Syed, L. Li, Effects of wire feeding direction and location in multiple layer diode laser direct metal deposition. Appl. Surf. Sci. 248, 518–524 (2005)CrossRef
33.
go back to reference S. Jianjun, Z. Ping, F. Geyan, S. Shihong, Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding. Opt. Laser Technol. 101, 341–348 (2018)CrossRef S. Jianjun, Z. Ping, F. Geyan, S. Shihong, Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding. Opt. Laser Technol. 101, 341–348 (2018)CrossRef
34.
go back to reference J.D. Kim, Y. Peng, Plunging method for Nd:YAG laser cladding with wire feeding. Opt. Lasers Eng. 33, 299–309 (2000)CrossRef J.D. Kim, Y. Peng, Plunging method for Nd:YAG laser cladding with wire feeding. Opt. Lasers Eng. 33, 299–309 (2000)CrossRef
35.
go back to reference D.S. Salehi, M. Brandt, Melt pool temperature control using LabVIEW in Nd:YAG laser blown powder cladding process. Int. J. Adv. Manuf. Technol. 29, 273–278 (2006)CrossRef D.S. Salehi, M. Brandt, Melt pool temperature control using LabVIEW in Nd:YAG laser blown powder cladding process. Int. J. Adv. Manuf. Technol. 29, 273–278 (2006)CrossRef
36.
go back to reference J.T. Hofmana, D.F. de Lange, B. Pathiraj, J. Meijer, FEM modelling and experimental verification for dilution control in laser cladding. J. Mater. Process. Technol. 211, 187–196 (2011)CrossRef J.T. Hofmana, D.F. de Lange, B. Pathiraj, J. Meijer, FEM modelling and experimental verification for dilution control in laser cladding. J. Mater. Process. Technol. 211, 187–196 (2011)CrossRef
37.
go back to reference S. Kumar, S. Roy, Development of theoretical process maps to study the role of powder preheating in laser cladding. Comput. Mater. Sci. 37, 425–433 (2006)CrossRef S. Kumar, S. Roy, Development of theoretical process maps to study the role of powder preheating in laser cladding. Comput. Mater. Sci. 37, 425–433 (2006)CrossRef
38.
go back to reference D.F. de Lange, J.T. Hofman, J. Meijer, Influence of intensity distribution on the melt pool and clad shape for laser cladding, in Proceedings of the Third International WLT Conference on Lasers in Manufacturing’05 (2005), pp. 323–327 D.F. de Lange, J.T. Hofman, J. Meijer, Influence of intensity distribution on the melt pool and clad shape for laser cladding, in Proceedings of the Third International WLT Conference on Lasers in Manufacturing’05 (2005), pp. 323–327
39.
go back to reference G.R.B.E. Römer, J. Meijer, Inverse calculation of power density for laser surface treatment. Ann. CIRP 49, 135–138 (2000)CrossRef G.R.B.E. Römer, J. Meijer, Inverse calculation of power density for laser surface treatment. Ann. CIRP 49, 135–138 (2000)CrossRef
40.
go back to reference M.H. Staia, M. Cruz, N.B. Dahotre, Microstructural and tribological characterization of an A-356 aluminum alloy superficially modified by laser alloying. Thin Solid Films 377, 665–674 (2000)CrossRef M.H. Staia, M. Cruz, N.B. Dahotre, Microstructural and tribological characterization of an A-356 aluminum alloy superficially modified by laser alloying. Thin Solid Films 377, 665–674 (2000)CrossRef
41.
go back to reference P. Kadolkar, N.B. Dahotre, Variation of structure with input energy during laser surface engineering of ceramic coatings on aluminum alloys. Appl. Surf. Sci. 199, 222–233 (2002)CrossRef P. Kadolkar, N.B. Dahotre, Variation of structure with input energy during laser surface engineering of ceramic coatings on aluminum alloys. Appl. Surf. Sci. 199, 222–233 (2002)CrossRef
42.
go back to reference P. Kadolkar, N.B. Dahotre, Effect of processing parameters on the cohesive strength of laser surface engineered ceramic coatings on aluminum alloys. Mater. Sci. Eng. A 342, 183–191 (2003)CrossRef P. Kadolkar, N.B. Dahotre, Effect of processing parameters on the cohesive strength of laser surface engineered ceramic coatings on aluminum alloys. Mater. Sci. Eng. A 342, 183–191 (2003)CrossRef
43.
go back to reference Y. Yang, J.D. Hu, Effects of laser power density on the microstructure and micro- hardness of Ni–Al alloyed layer by pulsed laser irradiation. Opt. Laser Technol. 43, 138–142 (2011)CrossRef Y. Yang, J.D. Hu, Effects of laser power density on the microstructure and micro- hardness of Ni–Al alloyed layer by pulsed laser irradiation. Opt. Laser Technol. 43, 138–142 (2011)CrossRef
44.
go back to reference S. Nath, S. Pityana, J.D. Majumdar, Laser surface alloying of aluminium with WC + Co + NiCr for improved wear resistance. Surf. Coat. Technol. 206, 3333–3341 (2012)CrossRef S. Nath, S. Pityana, J.D. Majumdar, Laser surface alloying of aluminium with WC + Co + NiCr for improved wear resistance. Surf. Coat. Technol. 206, 3333–3341 (2012)CrossRef
45.
go back to reference S.A. Vaziri, H.R. Shahverdi, M.J. Torkamany, S.G. Shabestari, Effect of laser parameters on properties of surface-alloyed Al substrate with Ni. Opt. Laser Eng. 47, 971–975 (2009)CrossRef S.A. Vaziri, H.R. Shahverdi, M.J. Torkamany, S.G. Shabestari, Effect of laser parameters on properties of surface-alloyed Al substrate with Ni. Opt. Laser Eng. 47, 971–975 (2009)CrossRef
46.
go back to reference A. Riquelme, P. Rodrigo, M.D. Escalera-Rodríguez, J. Rams, Analysis and optimization of process parameters in Al–SiCp laser cladding. Opt. Lasers Eng. 78, 165–173 (2016)CrossRef A. Riquelme, P. Rodrigo, M.D. Escalera-Rodríguez, J. Rams, Analysis and optimization of process parameters in Al–SiCp laser cladding. Opt. Lasers Eng. 78, 165–173 (2016)CrossRef
47.
go back to reference D. Bergström, J. Powell, A.F.H. Kaplan, The absorptance of steels to Nd:YLF and Nd:YAG laser light at room temperature. Appl. Surf. Sci. 253, 5017–5028 (2007)CrossRef D. Bergström, J. Powell, A.F.H. Kaplan, The absorptance of steels to Nd:YLF and Nd:YAG laser light at room temperature. Appl. Surf. Sci. 253, 5017–5028 (2007)CrossRef
48.
go back to reference S. Ignat, P. Sallamand, D. Grevey, M. Lambertin, Magnesium alloys (WE43 and ZE41) characterisation for laser applications. Appl. Surf. Sci. 233, 382–391 (2004)CrossRef S. Ignat, P. Sallamand, D. Grevey, M. Lambertin, Magnesium alloys (WE43 and ZE41) characterisation for laser applications. Appl. Surf. Sci. 233, 382–391 (2004)CrossRef
49.
go back to reference X.L. Zhou, X.Z. Li, S.H. Yang, H.Q. Hu, Properties of interface between laser cladding ceramic layer and metal matrix. Laser Technol. 20(2), 91–94 (1996) X.L. Zhou, X.Z. Li, S.H. Yang, H.Q. Hu, Properties of interface between laser cladding ceramic layer and metal matrix. Laser Technol. 20(2), 91–94 (1996)
50.
go back to reference J.F. Archard, Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)CrossRef J.F. Archard, Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)CrossRef
51.
go back to reference I. Hemmati, V. Ocelik, J.T.M. De Hosson, The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings. Surf. Coat. Technol. 205(21–22), 5235–5239 (2011)CrossRef I. Hemmati, V. Ocelik, J.T.M. De Hosson, The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings. Surf. Coat. Technol. 205(21–22), 5235–5239 (2011)CrossRef
52.
go back to reference K. Rutherford, I. Hutchings, A micro-abrasive wear test, with particular application to coated systems. Surf. Coat. Technol. 79(1–3), 231–239 (1996)CrossRef K. Rutherford, I. Hutchings, A micro-abrasive wear test, with particular application to coated systems. Surf. Coat. Technol. 79(1–3), 231–239 (1996)CrossRef
53.
go back to reference H. Halfa, Thermodynamic calculation for silicon modified AISI M2 high speed tool steel. J. Miner. Mater. Charact. Eng. 5, 1–14 (2013) H. Halfa, Thermodynamic calculation for silicon modified AISI M2 high speed tool steel. J. Miner. Mater. Charact. Eng. 5, 1–14 (2013)
54.
go back to reference N. Ur Rahman, M.B. de Rooij, D.T.A. Matthews, G. Walmag, M. Sinnaeve, G.R.B.E. Römer, Wear characterization of multilayer laser cladded high speed steels. Tribol. Int. 130, 52–62 (2019)CrossRef N. Ur Rahman, M.B. de Rooij, D.T.A. Matthews, G. Walmag, M. Sinnaeve, G.R.B.E. Römer, Wear characterization of multilayer laser cladded high speed steels. Tribol. Int. 130, 52–62 (2019)CrossRef
55.
go back to reference S. Ilo, A. Tomala, E. Badisch, Oxidative wear kinetics in unlubricated steel sliding contact. Tribol. Int. 44(10), 1208–1215 (2011)CrossRef S. Ilo, A. Tomala, E. Badisch, Oxidative wear kinetics in unlubricated steel sliding contact. Tribol. Int. 44(10), 1208–1215 (2011)CrossRef
56.
go back to reference Y.P. Ji, S.J. Wu, L.J. Xu, Y. Li, S.Z. Wei, Effect of carbon contents on dry sliding wear behavior of high vanadium high speed steel. Wear 294–295, 239–245 (2012)CrossRef Y.P. Ji, S.J. Wu, L.J. Xu, Y. Li, S.Z. Wei, Effect of carbon contents on dry sliding wear behavior of high vanadium high speed steel. Wear 294–295, 239–245 (2012)CrossRef
57.
go back to reference N. Hashemi, A. Mertens, H.M. Montrieux, J.T. Tchuindjang, O. Dedry, R. Carrus et al., Oxidative wear behaviour of laser clad High Speed Steel thick deposits: influence of sliding speed, carbide type and morphology. Surf. Coat. Technol. 315, 519–529 (2017)CrossRef N. Hashemi, A. Mertens, H.M. Montrieux, J.T. Tchuindjang, O. Dedry, R. Carrus et al., Oxidative wear behaviour of laser clad High Speed Steel thick deposits: influence of sliding speed, carbide type and morphology. Surf. Coat. Technol. 315, 519–529 (2017)CrossRef
58.
go back to reference D.S. Shim, G.Y. Baek, S.B. Lee, J.H. Yu, Y.S. Choi, S.H. Park, Influence of heat treatment on wear behavior and impact toughness of AISI M4 coated by laser melting deposition. Surf. Coat. Technol. 328, 219–230 (2017)CrossRef D.S. Shim, G.Y. Baek, S.B. Lee, J.H. Yu, Y.S. Choi, S.H. Park, Influence of heat treatment on wear behavior and impact toughness of AISI M4 coated by laser melting deposition. Surf. Coat. Technol. 328, 219–230 (2017)CrossRef
59.
go back to reference P.A. Molian, L. Hualun, Laser cladding of Ti–6Al–4V with BN for improved wear performance. Wear 130, 337–352 (1989)CrossRef P.A. Molian, L. Hualun, Laser cladding of Ti–6Al–4V with BN for improved wear performance. Wear 130, 337–352 (1989)CrossRef
60.
go back to reference Y.S. Tian, C.Z. Chen, Microstructures and wear properties of in situ formed composite coatings produced by laser alloying technique. Mater. Lett. 61, 635–638 (2007)CrossRef Y.S. Tian, C.Z. Chen, Microstructures and wear properties of in situ formed composite coatings produced by laser alloying technique. Mater. Lett. 61, 635–638 (2007)CrossRef
61.
go back to reference V. Ocelík, D. Matthews, J.T.M. De Hosson, Sliding wear resistance of metal matrix composite layers prepared by high power laser. Surf. Coat. Technol. 197, 303–315 (2005)CrossRef V. Ocelík, D. Matthews, J.T.M. De Hosson, Sliding wear resistance of metal matrix composite layers prepared by high power laser. Surf. Coat. Technol. 197, 303–315 (2005)CrossRef
62.
go back to reference Y.J. Dong, H.M. Wang, Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating. Surf. Coat. Technol. 204, 731–735 (2009)CrossRef Y.J. Dong, H.M. Wang, Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating. Surf. Coat. Technol. 204, 731–735 (2009)CrossRef
63.
go back to reference T.B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, Binary Alloys Phase Diagrams 3 (ASM International, Materials Park, OH, 1990) T.B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, Binary Alloys Phase Diagrams 3 (ASM International, Materials Park, OH, 1990)
64.
go back to reference B. Carcel, J. Sampedro, A. Ruescas, X. Toneu, Corrosion and wear resistance improvement of magnesium alloys by laser cladding with Al–Si. Phys. Procedia 12(Part A), 353–363 (2011)CrossRef B. Carcel, J. Sampedro, A. Ruescas, X. Toneu, Corrosion and wear resistance improvement of magnesium alloys by laser cladding with Al–Si. Phys. Procedia 12(Part A), 353–363 (2011)CrossRef
65.
go back to reference Y. Yang, H. Wu, Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al–Si powders. Mater. Lett. 63, 19–21 (2009)CrossRef Y. Yang, H. Wu, Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al–Si powders. Mater. Lett. 63, 19–21 (2009)CrossRef
66.
go back to reference A. Fabre, J.E. Masse, Friction behavior of laser cladding magnesium alloy against AISI 52100 steel. Tribol. Int. 46, 247–253 (2012)CrossRef A. Fabre, J.E. Masse, Friction behavior of laser cladding magnesium alloy against AISI 52100 steel. Tribol. Int. 46, 247–253 (2012)CrossRef
67.
go back to reference Y. Gao, C. Wang, H. Pang, H. Liu, M. Yao, Broad–beam laser cladding of Al–Cu alloy coating on AZ91HP magnesium alloy. Appl. Surf. Sci. 253, 4917–4922 (2007)CrossRef Y. Gao, C. Wang, H. Pang, H. Liu, M. Yao, Broad–beam laser cladding of Al–Cu alloy coating on AZ91HP magnesium alloy. Appl. Surf. Sci. 253, 4917–4922 (2007)CrossRef
68.
go back to reference Q. Zhu, X. Wang, S. Qu, Z. Zou, Amorphization of Fe38Ni30Si16B14V2 surface layers by laser cladding. Trans. Nonferrous Met. Soc. China 18, 270–273 (2008)CrossRef Q. Zhu, X. Wang, S. Qu, Z. Zou, Amorphization of Fe38Ni30Si16B14V2 surface layers by laser cladding. Trans. Nonferrous Met. Soc. China 18, 270–273 (2008)CrossRef
69.
go back to reference T.M. Yue, Y.P. Su, H.O. Yang, Laser cladding of Zr65Al7.5Ni10Cu17.5 amorphous alloy on magnesium. Mater. Lett. 61, 209–212 (2007)CrossRef T.M. Yue, Y.P. Su, H.O. Yang, Laser cladding of Zr65Al7.5Ni10Cu17.5 amorphous alloy on magnesium. Mater. Lett. 61, 209–212 (2007)CrossRef
70.
go back to reference T.M. Yue, Y.P. Su, Laser cladding of SiC reinforced Zr65Al7.5Ni10Cu17.5 amorphous coating on magnesium substrate. Appl. Surf. Sci. 255, 1692–1698 (2008)CrossRef T.M. Yue, Y.P. Su, Laser cladding of SiC reinforced Zr65Al7.5Ni10Cu17.5 amorphous coating on magnesium substrate. Appl. Surf. Sci. 255, 1692–1698 (2008)CrossRef
71.
go back to reference F.Y. Hu, J.L. Wen, M.C. Wang, Laser surface alloying of cast aluminum alloy with Ni–Cr–Si–Nb–B powder mixture. J. Northeast. Univ. Nat. Sci. 23, 964–967 (2002) F.Y. Hu, J.L. Wen, M.C. Wang, Laser surface alloying of cast aluminum alloy with Ni–Cr–Si–Nb–B powder mixture. J. Northeast. Univ. Nat. Sci. 23, 964–967 (2002)
72.
go back to reference C.S. Liu, B. Zhang, Z. Li, Q.K. Cai, Laser surface alloying of 2024 Aluminum alloy with Ni, Fe and Cu. J. Northeast. Univ. 18, 34–36 (1997) C.S. Liu, B. Zhang, Z. Li, Q.K. Cai, Laser surface alloying of 2024 Aluminum alloy with Ni, Fe and Cu. J. Northeast. Univ. 18, 34–36 (1997)
73.
go back to reference E. Feldshtein, M. Kardapolava, O. Dyachenko, On the effectiveness of multi-component laser modifying of Fe-based self-fluxing coating with hard particulates. Surf. Coat. Technol. 307, 254–261 (2016)CrossRef E. Feldshtein, M. Kardapolava, O. Dyachenko, On the effectiveness of multi-component laser modifying of Fe-based self-fluxing coating with hard particulates. Surf. Coat. Technol. 307, 254–261 (2016)CrossRef
74.
go back to reference H.C. Man, S. Zhang, F.T. Cheng, Improving the wear resistance of AA 6061 by laser surface alloying with NiTi. Mater. Lett. 61, 4058–4061 (2007)CrossRef H.C. Man, S. Zhang, F.T. Cheng, Improving the wear resistance of AA 6061 by laser surface alloying with NiTi. Mater. Lett. 61, 4058–4061 (2007)CrossRef
75.
go back to reference S. Tomida, K. Nakata, Fe–Al composite layers on aluminum alloy formed by laser surface alloying with iron powder. Surf. Coat. Technol. 174–175, 559–563 (2003)CrossRef S. Tomida, K. Nakata, Fe–Al composite layers on aluminum alloy formed by laser surface alloying with iron powder. Surf. Coat. Technol. 174–175, 559–563 (2003)CrossRef
76.
go back to reference Z. Li, C.Y. Ma, Q.K. Cai, G.D. Wang, B.J.A. Aleem, Laser alloying on the 2024 (LY12) surface. Aerosp. Mater. Technol. 29, 20–24 (1999) Z. Li, C.Y. Ma, Q.K. Cai, G.D. Wang, B.J.A. Aleem, Laser alloying on the 2024 (LY12) surface. Aerosp. Mater. Technol. 29, 20–24 (1999)
77.
go back to reference L. Dubourg, H. Pelletier, D. Vaissiere, F. Hlawka, A. Cornet, Mechanical characterisation of laser surface alloyed aluminium–copper systems. Wear 253, 1077–1085 (2002)CrossRef L. Dubourg, H. Pelletier, D. Vaissiere, F. Hlawka, A. Cornet, Mechanical characterisation of laser surface alloyed aluminium–copper systems. Wear 253, 1077–1085 (2002)CrossRef
78.
go back to reference R.S. Rajamure, H.D. Vora, N. Gupta, S. Karewar, S.G. Srinivasan, N.B. Dahotre, Laser surface alloying of molybdenum on aluminum for enhanced wear resistance. Surf. Coat. Technol. 258, 337–342 (2014)CrossRef R.S. Rajamure, H.D. Vora, N. Gupta, S. Karewar, S.G. Srinivasan, N.B. Dahotre, Laser surface alloying of molybdenum on aluminum for enhanced wear resistance. Surf. Coat. Technol. 258, 337–342 (2014)CrossRef
79.
go back to reference A. Almeida, F. Carvalho, P.A. Carvalho, R. Vilar, Laser developed Al–Mo surface alloys: microstructure, mechanical and wear behaviour. Surf. Coat. Technol. 200, 4782–4790 (2006)CrossRef A. Almeida, F. Carvalho, P.A. Carvalho, R. Vilar, Laser developed Al–Mo surface alloys: microstructure, mechanical and wear behaviour. Surf. Coat. Technol. 200, 4782–4790 (2006)CrossRef
80.
go back to reference B.S. Yilbas, C. Karatas, H. Karakoc, B.J.A. Aleem, S. Khan, N. Al-Aqeeli, Laser surface treatment of aluminum based composite mixed with B4C particles. Opt. Laser Technol. 66, 129–137 (2015)CrossRef B.S. Yilbas, C. Karatas, H. Karakoc, B.J.A. Aleem, S. Khan, N. Al-Aqeeli, Laser surface treatment of aluminum based composite mixed with B4C particles. Opt. Laser Technol. 66, 129–137 (2015)CrossRef
81.
go back to reference L.R. Katipelli, A. Agarwal, N.B. Dahotre, Interfacial strength of laser surface engineered TiC coating on 6061 Al using four-point bend test. Mater. Sci. Eng. A 289, 34–40 (2000)CrossRef L.R. Katipelli, A. Agarwal, N.B. Dahotre, Interfacial strength of laser surface engineered TiC coating on 6061 Al using four-point bend test. Mater. Sci. Eng. A 289, 34–40 (2000)CrossRef
82.
go back to reference D. Ravnikar, N.B. Dahotre, J. Grum, Laser coating of aluminum alloy EN AW 6082-T651 with TiB2 and TiC: microstructure and mechanical properties. Appl. Surf. Sci. 282, 914–922 (2013)CrossRef D. Ravnikar, N.B. Dahotre, J. Grum, Laser coating of aluminum alloy EN AW 6082-T651 with TiB2 and TiC: microstructure and mechanical properties. Appl. Surf. Sci. 282, 914–922 (2013)CrossRef
83.
go back to reference J. Xu, W.J. Liu, Y.D. Kan, M.L. Zhong, Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy. Mater. Des. 27, 405–410 (2006)CrossRef J. Xu, W.J. Liu, Y.D. Kan, M.L. Zhong, Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy. Mater. Des. 27, 405–410 (2006)CrossRef
84.
go back to reference S. Ignat, P. Sallamand, D. Grevey, M. Lambertin, Magnesium alloys laser (Nd: YAG) cladding and alloying with side injection of aluminium powder. Appl. Surf. Sci. 225, 124–134 (2004)CrossRef S. Ignat, P. Sallamand, D. Grevey, M. Lambertin, Magnesium alloys laser (Nd: YAG) cladding and alloying with side injection of aluminium powder. Appl. Surf. Sci. 225, 124–134 (2004)CrossRef
85.
go back to reference Y. Jun, G.P. Sun, H. Wang, S.Q. Jia, S.S. Jia, Laser (Nd: YAG) cladding of AZ91D magnesium alloys with Al + Si + Al2O3. J. Alloy. Compd. 407, 201–207 (2006)CrossRef Y. Jun, G.P. Sun, H. Wang, S.Q. Jia, S.S. Jia, Laser (Nd: YAG) cladding of AZ91D magnesium alloys with Al + Si + Al2O3. J. Alloy. Compd. 407, 201–207 (2006)CrossRef
86.
go back to reference R. Galun, A. Weisheit, B.L. Mordike, Laser surface alloying of magnesium base alloys. J. Laser Appl. 8, 299–305 (1996)CrossRef R. Galun, A. Weisheit, B.L. Mordike, Laser surface alloying of magnesium base alloys. J. Laser Appl. 8, 299–305 (1996)CrossRef
87.
go back to reference A.F.H. Kaplan, Local absorptivity modulation of a 1 μm–laser beam through surface waviness. Appl. Surf. Sci. 258, 9732–9736 (2012)CrossRef A.F.H. Kaplan, Local absorptivity modulation of a 1 μm–laser beam through surface waviness. Appl. Surf. Sci. 258, 9732–9736 (2012)CrossRef
88.
go back to reference J. Chen, Q.L. Zhang, J.H. Yao, J.B. Fu, Study on laser absorptivity of metal material. J. Appl. Opt. 29, 793–798 (2008) J. Chen, Q.L. Zhang, J.H. Yao, J.B. Fu, Study on laser absorptivity of metal material. J. Appl. Opt. 29, 793–798 (2008)
89.
go back to reference C. Taltavull, B. Torres, A.J. Lopez, P. Rodrigo, E. Otero, A. Atrens, J. Rams, Corrosion behaviour of laser surface melted magnesium alloy AZ91D. Mater. Des. 57, 40–50 (2014)CrossRef C. Taltavull, B. Torres, A.J. Lopez, P. Rodrigo, E. Otero, A. Atrens, J. Rams, Corrosion behaviour of laser surface melted magnesium alloy AZ91D. Mater. Des. 57, 40–50 (2014)CrossRef
90.
go back to reference J. Liu, H. Yu, C. Chen, F. Weng, J. Dai, Research and development status of laser cladding on magnesium alloys: a review. Opt. Lasers Eng. 93, 195–210 (2017)CrossRef J. Liu, H. Yu, C. Chen, F. Weng, J. Dai, Research and development status of laser cladding on magnesium alloys: a review. Opt. Lasers Eng. 93, 195–210 (2017)CrossRef
91.
go back to reference H. Zhang, Y. Pan, Y. He, H. Jiao, Microstructure and properties of 6FeNiCoSiCrAlTi high–entropy alloy coating prepared by laser cladding. Appl. Surf. Sci. 257, 2259–2263 (2011)CrossRef H. Zhang, Y. Pan, Y. He, H. Jiao, Microstructure and properties of 6FeNiCoSiCrAlTi high–entropy alloy coating prepared by laser cladding. Appl. Surf. Sci. 257, 2259–2263 (2011)CrossRef
92.
go back to reference R. Zhu, Z. Li, X. Li, Q. Sun, Microstructure and properties of the low–power–laser clad coatings on magnesium alloy with different amount of rare earth addition. Appl. Surf. Sci. 353, 405–413 (2015)CrossRef R. Zhu, Z. Li, X. Li, Q. Sun, Microstructure and properties of the low–power–laser clad coatings on magnesium alloy with different amount of rare earth addition. Appl. Surf. Sci. 353, 405–413 (2015)CrossRef
93.
go back to reference A.H. Wang, H.B. Xia, W.Y. Wang, Z.K. Bai, X.C. Zhu, C.S. Xie, YAG laser cladding of homogenous coating onto magnesium alloy. Mater. Lett. 60, 850–853 (2006)CrossRef A.H. Wang, H.B. Xia, W.Y. Wang, Z.K. Bai, X.C. Zhu, C.S. Xie, YAG laser cladding of homogenous coating onto magnesium alloy. Mater. Lett. 60, 850–853 (2006)CrossRef
94.
go back to reference Z. Cui, H. Shi, W. Wang, B. Xu, Laser surface melting AZ31B magnesium alloy with liquid nitrogen–assisted cooling. Trans. Nonferrous Met. Soc. China 25, 1446–1453 (2015)CrossRef Z. Cui, H. Shi, W. Wang, B. Xu, Laser surface melting AZ31B magnesium alloy with liquid nitrogen–assisted cooling. Trans. Nonferrous Met. Soc. China 25, 1446–1453 (2015)CrossRef
95.
go back to reference J. Qian, Y. Yin, T. Li, X. Hu, C. Wang, S. Li, Structure, micro–hardness and corrosion behaviour of the Al–Si/Al2O3 coatings prepared by laser plasma hybrid spraying on magnesium alloy. Vacuum 117, 55–59 (2015)CrossRef J. Qian, Y. Yin, T. Li, X. Hu, C. Wang, S. Li, Structure, micro–hardness and corrosion behaviour of the Al–Si/Al2O3 coatings prepared by laser plasma hybrid spraying on magnesium alloy. Vacuum 117, 55–59 (2015)CrossRef
96.
go back to reference N. Serres, F. Hlawka, S. Costil, C. Langlade, F. Machi, Microstructures and mechanical properties of metallic NiCrBSi and composite NiCrBSi–WC layers manufactured via hybrid plasma/laser process. Appl. Surf. Sci. 257, 5132–5137 (2011)CrossRef N. Serres, F. Hlawka, S. Costil, C. Langlade, F. Machi, Microstructures and mechanical properties of metallic NiCrBSi and composite NiCrBSi–WC layers manufactured via hybrid plasma/laser process. Appl. Surf. Sci. 257, 5132–5137 (2011)CrossRef
97.
go back to reference Y. Qian, H. Zhang, G. Wang, Research of rapid and direct thick coatings deposition by hybrid plasma–laser. Appl. Surf. Sci. 252, 6173–6178 (2006)CrossRef Y. Qian, H. Zhang, G. Wang, Research of rapid and direct thick coatings deposition by hybrid plasma–laser. Appl. Surf. Sci. 252, 6173–6178 (2006)CrossRef
98.
go back to reference X. Pei, J. Wang, Q. Wan, L. Kang, M. Xiao, H. Bao, Functionally graded carbon nanotubes/hydroxyapatite composite coating by laser cladding. Surf. Coat. Technol. 205, 4380–4387 (2011)CrossRef X. Pei, J. Wang, Q. Wan, L. Kang, M. Xiao, H. Bao, Functionally graded carbon nanotubes/hydroxyapatite composite coating by laser cladding. Surf. Coat. Technol. 205, 4380–4387 (2011)CrossRef
99.
go back to reference J.M. Amado, J. Montero, M.J. Tobar, A. Yáñez, Ni–based metal matrix composite functionally graded coatings. Phys. Procedia 39, 362–367 (2012)CrossRef J.M. Amado, J. Montero, M.J. Tobar, A. Yáñez, Ni–based metal matrix composite functionally graded coatings. Phys. Procedia 39, 362–367 (2012)CrossRef
Metadata
Title
Wear Characteristics of LASER Cladded Surface Coating
Author
Manidipto Mukherjee
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-47451-5_10

Premium Partners