Skip to main content
Top

2022 | OriginalPaper | Chapter

5. Weight Functions for Edge Crack in Simply Connected Region

Authors : Xue-Ren Wu, Wu Xu

Published in: Weight Function Methods in Fracture Mechanics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, standardized analytical weight functions (WFs) for a large variety of edge crack geometries in simply connected region are derived. The derived WFs are verified based on the Green’s functions obtained by using the highly accurate numerical method of “weight function complex Taylor series expansion (WCTSE)”. Closed-form expressions of stress intensity factors (SIFs) for three basic crack line stresses, including point force, power stress and constant stress segment, are derived. Calculated non-dimensional SIFs and crack mouth opening displacements (CMODs) for power stresses are given in tables, allowing rapid determination of SIFs and CMODs for crack line polynomial stresses. Many application examples are presented. Comparisons are made to the available literature data wherever possible. A large amount of accurate SIF solutions for edge crack geometries in simply connected region associated with various load cases are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu XR, Carlsson AJ (1991) Weight functions and stress intensity factor solutions. Pergamon press Oxford Wu XR, Carlsson AJ (1991) Weight functions and stress intensity factor solutions. Pergamon press Oxford
2.
go back to reference Gregory RD (1977) A circular disc containing a radial edge crack opened by a constant internal pressure. In: Mathematical proceedings of the Cambridge philosophical society. Cambridge University Press Gregory RD (1977) A circular disc containing a radial edge crack opened by a constant internal pressure. In: Mathematical proceedings of the Cambridge philosophical society. Cambridge University Press
3.
go back to reference Gregory RD (1989) The spinning circular disc with a radial edge crack; an exact solution. Int J Fract 41(1):39–50CrossRef Gregory RD (1989) The spinning circular disc with a radial edge crack; an exact solution. Int J Fract 41(1):39–50CrossRef
4.
go back to reference Benthem JP, Koiter WT (1973) Asymptotic approximations to crack problems//Methods of analysis and solutions of crack problems. Springer, pp 131–178 Benthem JP, Koiter WT (1973) Asymptotic approximations to crack problems//Methods of analysis and solutions of crack problems. Springer, pp 131–178
5.
go back to reference Wu XR, Tong DH (2018) Evaluation of various analytical weight function methods base on exact K-solutions of an edge-cracked circular disc. Eng Fract Mech 189:64–80CrossRef Wu XR, Tong DH (2018) Evaluation of various analytical weight function methods base on exact K-solutions of an edge-cracked circular disc. Eng Fract Mech 189:64–80CrossRef
6.
go back to reference Wu XR, Tong DH, Zhao XC et al (2018) Review and evaluation of weight functions and stress intensity factors for edge-cracked finite-width plate. Eng Fract Mech 195:200–221CrossRef Wu XR, Tong DH, Zhao XC et al (2018) Review and evaluation of weight functions and stress intensity factors for edge-cracked finite-width plate. Eng Fract Mech 195:200–221CrossRef
7.
go back to reference Jing Z, Wu XR (2015) Wide-range weight functions and stress intensity factors for arbitrarily shaped crack geometries using complex Taylor series expansion method. Eng Fract Mech 138:215–232 Jing Z, Wu XR (2015) Wide-range weight functions and stress intensity factors for arbitrarily shaped crack geometries using complex Taylor series expansion method. Eng Fract Mech 138:215–232
8.
go back to reference Tong DH, Wu XR, Zhao XC, Hu BR (2017) Weight function methods and assessment for an edge crack in a semi-infinite plate. Chin J Theor Appl Mech 49(4):848–857 Tong DH, Wu XR, Zhao XC, Hu BR (2017) Weight function methods and assessment for an edge crack in a semi-infinite plate. Chin J Theor Appl Mech 49(4):848–857
11.
go back to reference Glinka G, Shen G (1991) Universal features of weight functions for cracks in mode I. Eng Fract Mech 40(6):1135–1146 Glinka G, Shen G (1991) Universal features of weight functions for cracks in mode I. Eng Fract Mech 40(6):1135–1146
12.
go back to reference Fett T, Munz D (1997) Stress intensity factors and weight functions. Comput Mech Fett T, Munz D (1997) Stress intensity factors and weight functions. Comput Mech
13.
go back to reference Petroski HJ, Achenbach JD (1978) Computation of the weight function from a stress intensity factor. Eng Fract Mech 10(2):257–266CrossRef Petroski HJ, Achenbach JD (1978) Computation of the weight function from a stress intensity factor. Eng Fract Mech 10(2):257–266CrossRef
14.
go back to reference Bueckner HF (1971) Weight functions for the notched bar. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 51(2):97–109MathSciNetCrossRef Bueckner HF (1971) Weight functions for the notched bar. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 51(2):97–109MathSciNetCrossRef
15.
go back to reference Hartranft RJ, Sih GC (1973) Alternating method applied to edge and surface crack problems//Methods of analysis and solutions of crack problems. Springer, pp 179–238 Hartranft RJ, Sih GC (1973) Alternating method applied to edge and surface crack problems//Methods of analysis and solutions of crack problems. Springer, pp 179–238
16.
go back to reference Tada H, Paris P, Irwin G (2000) The analysis of cracks handbook. ASME Press, New York Tada H, Paris P, Irwin G (2000) The analysis of cracks handbook. ASME Press, New York
17.
go back to reference Timoshenko SP, Goodier JN (1951) Theory of elasticity. 2nd Edition, McGraw-Hill, New YorkCrossRef Timoshenko SP, Goodier JN (1951) Theory of elasticity. 2nd Edition, McGraw-Hill, New YorkCrossRef
18.
go back to reference Yu J (1988) Stress-intensity factors for an edge crack in a stiffened sheet. In: Fracture mechanics: eighteenth symposium, ASTM STP 945 Yu J (1988) Stress-intensity factors for an edge crack in a stiffened sheet. In: Fracture mechanics: eighteenth symposium, ASTM STP 945
19.
go back to reference Kaya AC, Erdogan F (1978) Stress intensity factor in orthotropic strip under general loading conditions. Technical Report, NASA Grant 39-007-011. Lehigh University Kaya AC, Erdogan F (1978) Stress intensity factor in orthotropic strip under general loading conditions. Technical Report, NASA Grant 39-007-011. Lehigh University
20.
go back to reference Kaya AC, Erdogan F (1980) Stress intensity factors and COD in an orthotropic strip. Int J Fract 16(2):171–190CrossRef Kaya AC, Erdogan F (1980) Stress intensity factors and COD in an orthotropic strip. Int J Fract 16(2):171–190CrossRef
21.
go back to reference Joseph PF, Erdogan F (1989) Surface crack problems in plates. Int J Fract 41(2):105–131 Joseph PF, Erdogan F (1989) Surface crack problems in plates. Int J Fract 41(2):105–131
22.
go back to reference Dempsey JP, Mu Z (2014) Weight function for an edge-cracked rectangular plate. Eng Fract Mech 132:93–103CrossRef Dempsey JP, Mu Z (2014) Weight function for an edge-cracked rectangular plate. Eng Fract Mech 132:93–103CrossRef
23.
go back to reference Wu XR (1984) Approximate weight functions for center and edge cracks in finite bodies. Eng Fract Mech 20(1):35–49 Wu XR (1984) Approximate weight functions for center and edge cracks in finite bodies. Eng Fract Mech 20(1):35–49
24.
go back to reference Bakker AD (1995) Evaluation of elastic fracture mechanics parameters for bend specimens. Int J Fract 71(4):323–343CrossRef Bakker AD (1995) Evaluation of elastic fracture mechanics parameters for bend specimens. Int J Fract 71(4):323–343CrossRef
25.
go back to reference Freese CE, Baratta FI (2006) Single edge-crack stress intensity factor solutions. Eng Fract Mech 73(5):616–625CrossRef Freese CE, Baratta FI (2006) Single edge-crack stress intensity factor solutions. Eng Fract Mech 73(5):616–625CrossRef
26.
go back to reference Guinea GV, Pastor JY, Planas J et al (1998) Stress intensity factor, compliance and CMOD for a general three-point-bend beam. Int J Fract 89(2):103–116CrossRef Guinea GV, Pastor JY, Planas J et al (1998) Stress intensity factor, compliance and CMOD for a general three-point-bend beam. Int J Fract 89(2):103–116CrossRef
27.
go back to reference Xu SL, Reinhardt HW (1999) Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: analytical evaluating and practical measuring methods for three-point bending notched beams. Int J Fract 98(2):151–177CrossRef Xu SL, Reinhardt HW (1999) Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: analytical evaluating and practical measuring methods for three-point bending notched beams. Int J Fract 98(2):151–177CrossRef
28.
go back to reference Kumar S, Barai SV (2010) Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function. Fatigue Fract Eng Mater Struct 33(10):645–660 Kumar S, Barai SV (2010) Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function. Fatigue Fract Eng Mater Struct 33(10):645–660
29.
go back to reference Kumar S, Barai SV (2009) Weight function approach for determining crack extension resistance based on the cohesive stress distribution in concrete. Eng Fract Mech 76(8):1131–1148CrossRef Kumar S, Barai SV (2009) Weight function approach for determining crack extension resistance based on the cohesive stress distribution in concrete. Eng Fract Mech 76(8):1131–1148CrossRef
30.
go back to reference Zhang XF, Xu SL (2011) A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis. Eng Fract Mech 78(10):2115–2138 Zhang XF, Xu SL (2011) A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis. Eng Fract Mech 78(10):2115–2138
31.
go back to reference Ince R (2012) Determination of the fracture parameters of the double-K model using weight functions of split-tension specimens. Eng Fract Mech 96:416–432CrossRef Ince R (2012) Determination of the fracture parameters of the double-K model using weight functions of split-tension specimens. Eng Fract Mech 96:416–432CrossRef
32.
go back to reference Tada H, Paris PC, Irwin GR (1973) The stress analysis of cracks handbook. Del Research Corp. Hellertown, Pa Tada H, Paris PC, Irwin GR (1973) The stress analysis of cracks handbook. Del Research Corp. Hellertown, Pa
33.
go back to reference Tada H, Paris PC, Irwin GR (1985) The stress analysis of cracks handbook. Paris Productions. Inc., St. Louis Tada H, Paris PC, Irwin GR (1985) The stress analysis of cracks handbook. Paris Productions. Inc., St. Louis
34.
go back to reference Srawley JE (1976) Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int J Fract 12(3):475–476 Srawley JE (1976) Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int J Fract 12(3):475–476
35.
go back to reference Filon LNGIV (1903) On an approximate solution for the bending of a beam of rectangular cross-section under any system of load, with special reference to points of concentrated or discontinuous loading. Proc R Soc Lond 201(331–345):63–155MATH Filon LNGIV (1903) On an approximate solution for the bending of a beam of rectangular cross-section under any system of load, with special reference to points of concentrated or discontinuous loading. Proc R Soc Lond 201(331–345):63–155MATH
36.
go back to reference Fett T (1991) An analysis of the three-point bending bar by use of the weight function method. Eng Fract Mech 40(3):683–686CrossRef Fett T (1991) An analysis of the three-point bending bar by use of the weight function method. Eng Fract Mech 40(3):683–686CrossRef
37.
go back to reference Bakker A (1990) Compatible compliance and stress intensity expressions for the standard three-point bend specimen. Fatigue Fract Eng Mater Struct 13(2):145–154 Bakker A (1990) Compatible compliance and stress intensity expressions for the standard three-point bend specimen. Fatigue Fract Eng Mater Struct 13(2):145–154
38.
go back to reference Standard Test Method for Linear-elastic Plane-strain Fracture Toughness KIc of Metallic Materials. ASTM International, 2013 Standard Test Method for Linear-elastic Plane-strain Fracture Toughness KIc of Metallic Materials. ASTM International, 2013
39.
go back to reference Standard A (2002) E647, Standard test method for measurement of fatigue crack growth rates. In: Annual Book of ASTM Standards, Section Three: Metals Test Methods and Analytical Procedures, vol 3, pp 628–670 Standard A (2002) E647, Standard test method for measurement of fatigue crack growth rates. In: Annual Book of ASTM Standards, Section Three: Metals Test Methods and Analytical Procedures, vol 3, pp 628–670
40.
go back to reference Piascik RS, Newman JC (1995) An extended compact tension specimen for fatigue crack growth and fracture testing. Int J Fract 76(3):R43–R48CrossRef Piascik RS, Newman JC (1995) An extended compact tension specimen for fatigue crack growth and fracture testing. Int J Fract 76(3):R43–R48CrossRef
41.
go back to reference Piascik RS, Newman JC Jr, Underwood JH (1997) The extended compact tension specimen. Fatigue Fract Eng Mater Struct 20(4):559–563CrossRef Piascik RS, Newman JC Jr, Underwood JH (1997) The extended compact tension specimen. Fatigue Fract Eng Mater Struct 20(4):559–563CrossRef
42.
go back to reference John R, Kaldon SG, Johnson DA et al (1995) Weight function for a single edge cracked geometry with clamped ends. Int J Fract 72(2):145–158 John R, Kaldon SG, Johnson DA et al (1995) Weight function for a single edge cracked geometry with clamped ends. Int J Fract 72(2):145–158
43.
go back to reference John R, Rigling B (1998) Effect of height to width ratio on K and CMOD solutions for a single edge cracked geometry with clamped ends. Eng Fract Mech 60(2):147–156CrossRef John R, Rigling B (1998) Effect of height to width ratio on K and CMOD solutions for a single edge cracked geometry with clamped ends. Eng Fract Mech 60(2):147–156CrossRef
44.
go back to reference Blatt D, John R, Coker D (1994) Stress intensity factor and compliance solutions for a single edge notched specimen with clamped ends. Eng Fract Mech 47(4):521–532CrossRef Blatt D, John R, Coker D (1994) Stress intensity factor and compliance solutions for a single edge notched specimen with clamped ends. Eng Fract Mech 47(4):521–532CrossRef
45.
go back to reference Zhu XK (2017) Full-range stress intensity factor solutions for clamped SENT specimens. Int J Press Vessels Pip 149:1–13CrossRef Zhu XK (2017) Full-range stress intensity factor solutions for clamped SENT specimens. Int J Press Vessels Pip 149:1–13CrossRef
46.
go back to reference Zhu XK (2016) Corrected stress intensity factor solution for a British standard single edge notched tension (SENT) specimen. Fatigue Fract Eng Mater Struct 39(1):120–131CrossRef Zhu XK (2016) Corrected stress intensity factor solution for a British standard single edge notched tension (SENT) specimen. Fatigue Fract Eng Mater Struct 39(1):120–131CrossRef
47.
go back to reference Bassindale C, Wang X, Tyson WR et al (2018) Numerical verification of stress intensity factor solution for clamped single edge notched tension (SENT) specimens. Fatigue Fract Eng Mater Struct 41(2):494–499CrossRef Bassindale C, Wang X, Tyson WR et al (2018) Numerical verification of stress intensity factor solution for clamped single edge notched tension (SENT) specimens. Fatigue Fract Eng Mater Struct 41(2):494–499CrossRef
48.
go back to reference Jones IS (1998) A wide range weight function for a single edge cracked geometry with clamped ends. Int J Fract 89(1):1–18CrossRef Jones IS (1998) A wide range weight function for a single edge cracked geometry with clamped ends. Int J Fract 89(1):1–18CrossRef
49.
go back to reference Gregory RD (1979) The edge-cracked circular disc under symmetric pin-loading. In: Mathematical proceedings of the Cambridge philosophical society. Cambridge University Press Gregory RD (1979) The edge-cracked circular disc under symmetric pin-loading. In: Mathematical proceedings of the Cambridge philosophical society. Cambridge University Press
50.
go back to reference Wu XR (1991) The arbitrarily loaded single-edge cracked circular disc; accurate weight function solutions. Int J Fract 49:239–256CrossRef Wu XR (1991) The arbitrarily loaded single-edge cracked circular disc; accurate weight function solutions. Int J Fract 49:239–256CrossRef
51.
go back to reference Muskelishvili NI (1953) Some basic problems of the mathematical theory of elasticity (Translated by Rodak JRM). Noordhoff, Croningen, Netherlands, p 218 Muskelishvili NI (1953) Some basic problems of the mathematical theory of elasticity (Translated by Rodak JRM). Noordhoff, Croningen, Netherlands, p 218
52.
go back to reference Adamson RM, Dempsey JP, Mulmule SV (1996) Fracture analysis of semi-circular and semi-circular-bend geometries. Int J Fract 77(3):213–222CrossRef Adamson RM, Dempsey JP, Mulmule SV (1996) Fracture analysis of semi-circular and semi-circular-bend geometries. Int J Fract 77(3):213–222CrossRef
53.
go back to reference Xu SL, Malik MA, Li QH et al (2016) Determination of double-K fracture parameters using semi-circular bend test specimens. Eng Fract Mech 152:58–71CrossRef Xu SL, Malik MA, Li QH et al (2016) Determination of double-K fracture parameters using semi-circular bend test specimens. Eng Fract Mech 152:58–71CrossRef
54.
go back to reference Surendra K, Simha K (2013) Synthesis and application of weight function for edge cracked semicircular disk (ECSD). Eng Fract Mech 107:61–79CrossRef Surendra K, Simha K (2013) Synthesis and application of weight function for edge cracked semicircular disk (ECSD). Eng Fract Mech 107:61–79CrossRef
55.
go back to reference Dempsey JP, Adamson RM, DeFranco SJ (1995) Fracture analysis of base-edge-cracked reverse-tapered plates. Int J Fract 69(4):281–294CrossRef Dempsey JP, Adamson RM, DeFranco SJ (1995) Fracture analysis of base-edge-cracked reverse-tapered plates. Int J Fract 69(4):281–294CrossRef
56.
go back to reference Newman Jr JC, Yamada Y, James MA (2010) Stress-intensity-factor equations for compact specimen subjected to concentrated forces. Eng Fract Mech 77(6):1025–1029 Newman Jr JC, Yamada Y, James MA (2010) Stress-intensity-factor equations for compact specimen subjected to concentrated forces. Eng Fract Mech 77(6):1025–1029
57.
go back to reference Kapp JA, Newman JC, Underwood JH (1980) A wide range stress intensity factor expression for the C-shaped specimen. J Test Eval 8(6):314–317CrossRef Kapp JA, Newman JC, Underwood JH (1980) A wide range stress intensity factor expression for the C-shaped specimen. J Test Eval 8(6):314–317CrossRef
58.
go back to reference Newman JC Jr, Wu XR, Venneri SL, Li CG (1994) Small-crack effects in high-strength aluminum alloys. NASA RP-1309; also: Wu XR, Newman JC Jr, Li CG, Venneri SL (1994) Selected papers in scientific and technical international cooperative program, 5. Chinese Aeronautical Establishment (in Chinese) Newman JC Jr, Wu XR, Venneri SL, Li CG (1994) Small-crack effects in high-strength aluminum alloys. NASA RP-1309; also: Wu XR, Newman JC Jr, Li CG, Venneri SL (1994) Selected papers in scientific and technical international cooperative program, 5. Chinese Aeronautical Establishment (in Chinese)
59.
go back to reference Wu XR, Newman JC Jr, Zhao W et al (1998) Small-crack growth and fatigue life predictions for high-strength aluminum alloys. Part I: experimental and fracture mechanics analysis. Fatigue Fract Eng Mater Struct 21(1):1289–1306 Wu XR, Newman JC Jr, Zhao W et al (1998) Small-crack growth and fatigue life predictions for high-strength aluminum alloys. Part I: experimental and fracture mechanics analysis. Fatigue Fract Eng Mater Struct 21(1):1289–1306
60.
go back to reference Noda NA, Nisitani HN (1987) Stress concentration of a strip with a single edge notch. Eng Fract Mech 28(2):223–238CrossRef Noda NA, Nisitani HN (1987) Stress concentration of a strip with a single edge notch. Eng Fract Mech 28(2):223–238CrossRef
61.
go back to reference Maunsell FG (1936) Stresses in a notched plate under tension. London Edinburgh Dublin Philos Mag J Sci 21, series 7:765–773 Maunsell FG (1936) Stresses in a notched plate under tension. London Edinburgh Dublin Philos Mag J Sci 21, series 7:765–773
62.
go back to reference Newman JC, Shaw JW, Annigeri BS et al (2013) Fatigue and crack growth in 7050-T7451 aluminum alloy under constant-and variable-amplitude loading. J Eng Gas Turbines Power 135(2):22101CrossRef Newman JC, Shaw JW, Annigeri BS et al (2013) Fatigue and crack growth in 7050-T7451 aluminum alloy under constant-and variable-amplitude loading. J Eng Gas Turbines Power 135(2):22101CrossRef
63.
go back to reference Ziegler BM (2011) Fatigue and fracture testing and analysis on four engineering materials. Mississippi State University Ziegler BM (2011) Fatigue and fracture testing and analysis on four engineering materials. Mississippi State University
64.
go back to reference Zhao XC, Wu XR, Tong DH (2015) Weight functions and stress intensity factors for pin loaded singl edge notch bend specimen. Fatigue Fract Eng Mater Struct 38(12):1519–1528CrossRef Zhao XC, Wu XR, Tong DH (2015) Weight functions and stress intensity factors for pin loaded singl edge notch bend specimen. Fatigue Fract Eng Mater Struct 38(12):1519–1528CrossRef
65.
go back to reference Shah SP, Carpinteri A (1991) Fracture mechanics test methods for concrete. Chapman & Hall, London. Report of RILEM FMT-89 Shah SP, Carpinteri A (1991) Fracture mechanics test methods for concrete. Chapman & Hall, London. Report of RILEM FMT-89
66.
go back to reference Xu SL (2011) Concrete fracture mechanics (in Chinese). Science Press, Beijing Xu SL (2011) Concrete fracture mechanics (in Chinese). Science Press, Beijing
67.
go back to reference Xu SL et al (2006) An experimental study on double-K fracture parameters of concrete for dam construction with various grading aggregates (in Chinese). Chin Civil Eng J 39(11):50–62 Xu SL et al (2006) An experimental study on double-K fracture parameters of concrete for dam construction with various grading aggregates (in Chinese). Chin Civil Eng J 39(11):50–62
68.
go back to reference DL/T 5332-2005 (2006) Norm for fracture test of hydraulic concrete. CEPP, Beijing DL/T 5332-2005 (2006) Norm for fracture test of hydraulic concrete. CEPP, Beijing
69.
go back to reference Kumar S, Barai SV (2011) Concrete fracture models and applications. Springer Kumar S, Barai SV (2011) Concrete fracture models and applications. Springer
Metadata
Title
Weight Functions for Edge Crack in Simply Connected Region
Authors
Xue-Ren Wu
Wu Xu
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8961-1_5

Premium Partners