Skip to main content
Top

2018 | OriginalPaper | Chapter

3. What Is the Ultimate Ancestor? Evidence from Fossils and Gene Analyses

Author : Hiromoto Nakazawa

Published in: Darwinian Evolution of Molecules

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current results of science from two research fields approaching the origin of life are reviewed. We will see how close we are to identifying the origin of life by following the biological evolutionary phylogenetic tree provided by evidence from the fossil record and the research results that suggest an “ultimate ancestor” by the analysis of biomolecules, such as genes and proteins.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Near Edge X-ray Absorption Fine Structure (NEXAFS).
 
2
Minute Portion Infrared Raman Spectroscopy.
 
3
Secondary ion mass spectrometry is a technique used to analyze the composition of solid surfaces by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions.
 
4
There are four stable isotopes in sulfur atoms, i.e., 32S, 33S, 34S, and 35S in the ratio 95.02, 0.75, 4.21, and 0.02%, respectively. Sulfur-reducing bacteria tend to ingest sulfate ions containing “light sulfur (32S)” so that pyrite formed is enriched in the light sulfur isotopes. Because the isotope ratio of “heavy sulfur” (34S) is less than 2/1000 ~ 46/1000, the pyrite is estimated to be formed after bacterial metabolism.
 
5
These are the chemoautotrophs of the chemosynthetic bacteria. They use abiotic hydrogen for their metabolism. Sulfur-reducing bacteria living presently in sludge are chemoheterotrophs since they use biotic hydrogen of bio-organic molecules. Thus, they are a different kind of “sulfur-reducing bacteria” than those described here.
 
6
Ernst Heinrich Philipp August Höckel (1834–1919).
 
Literature
go back to reference Barghoorn ES, Tyler SA (1965) Microorganism from Gunflint chert. Science 147:563–575CrossRef Barghoorn ES, Tyler SA (1965) Microorganism from Gunflint chert. Science 147:563–575CrossRef
go back to reference Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steel A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81CrossRef Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steel A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81CrossRef
go back to reference Cloud R (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–45CrossRef Cloud R (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–45CrossRef
go back to reference Dalton R (2002) Microfossils: squaring up over ancient life. Nature 417:782–784CrossRef Dalton R (2002) Microfossils: squaring up over ancient life. Nature 417:782–784CrossRef
go back to reference Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128CrossRef Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128CrossRef
go back to reference Erb TJ, Kiefer P, Hattendorf B, Günter D, Vorholt JA (2012) GFA-1 is an arsenate-resistant, phosphate-dependent organism. Science 337:467–470CrossRef Erb TJ, Kiefer P, Hattendorf B, Günter D, Vorholt JA (2012) GFA-1 is an arsenate-resistant, phosphate-dependent organism. Science 337:467–470CrossRef
go back to reference Fedo CM, Whitehouse MJ (2002) Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296:1448–1452CrossRef Fedo CM, Whitehouse MJ (2002) Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296:1448–1452CrossRef
go back to reference Garcia-Ruiz JM, Hyde ST, Carnerup AM, Christy AG, Van Kranendonk MJ, Welham NJ (2003) Self-assembled silica-carbonate structure and detection of ancient microfossils. Science 302:1194–1197CrossRef Garcia-Ruiz JM, Hyde ST, Carnerup AM, Christy AG, Van Kranendonk MJ, Welham NJ (2003) Self-assembled silica-carbonate structure and detection of ancient microfossils. Science 302:1194–1197CrossRef
go back to reference Höckel EH (1866) Generelle Morphologie der Organissmen, Allgemeine Entwickelungsgeschichte, Druck und Verlag von Georg Reimen. Berlin Höckel EH (1866) Generelle Morphologie der Organissmen, Allgemeine Entwickelungsgeschichte, Druck und Verlag von Georg Reimen. Berlin
go back to reference House CH, Oehler DZ, Sugitani K, Miura K (2013) Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans. Geology 41:651–654CrossRef House CH, Oehler DZ, Sugitani K, Miura K (2013) Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans. Geology 41:651–654CrossRef
go back to reference Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359CrossRef Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359CrossRef
go back to reference JAMSTEC Close Up (2009) 2.7 billion years ago, direct evidence that oxygen began to increase in the atmosphere (in Japanese). Blue Earth 21(1) JAMSTEC Close Up (2009) 2.7 billion years ago, direct evidence that oxygen began to increase in the atmosphere (in Japanese). Blue Earth 21(1)
go back to reference Kuroiwa T (2000) Where came from the Mitochondria (in Japanese). NHK Books, Tokyo Kuroiwa T (2000) Where came from the Mitochondria (in Japanese). NHK Books, Tokyo
go back to reference Lepot K, Benzerara K, Brown GE, Philippot P (2008) Microbially influenced formation of 2,724-million-year-old stromatolite. Nature Geosci 1:118–121CrossRef Lepot K, Benzerara K, Brown GE, Philippot P (2008) Microbially influenced formation of 2,724-million-year-old stromatolite. Nature Geosci 1:118–121CrossRef
go back to reference Lowe DR (1980) Stromatolites 3,400-Myr old from the archaean of Western Australia. Nature 284:441–443CrossRef Lowe DR (1980) Stromatolites 3,400-Myr old from the archaean of Western Australia. Nature 284:441–443CrossRef
go back to reference Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390CrossRef Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390CrossRef
go back to reference Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven
go back to reference Margulis L (1981) Symbiosis in cell evolution: life and its environment on the early earth. Freeman, San Francisco Margulis L (1981) Symbiosis in cell evolution: life and its environment on the early earth. Freeman, San Francisco
go back to reference Margulis L, Sagan D (1986) Microcosmos: for billion years of microbial evolution. Summit Books, New York Margulis L, Sagan D (1986) Microcosmos: for billion years of microbial evolution. Summit Books, New York
go back to reference Miller SL, Lazcano A (1995) The origin of life—Did it occur at high temperatures? J Mol Evol 41:689–692CrossRef Miller SL, Lazcano A (1995) The origin of life—Did it occur at high temperatures? J Mol Evol 41:689–692CrossRef
go back to reference Miyata T (ed) (1998) Molecular evolution—analytical techniques and its application (in Japanes). Kyoritsushuppan, Tokyo Miyata T (ed) (1998) Molecular evolution—analytical techniques and its application (in Japanes). Kyoritsushuppan, Tokyo
go back to reference Mojzsis SJ, Arrhenius G, McKeegan KD, Harison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59CrossRef Mojzsis SJ, Arrhenius G, McKeegan KD, Harison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59CrossRef
go back to reference Moreau JW, Sharp TG (2004) Atransmission electron microscopy study of silica and kerogen biosignatures in ~1.9 Ga Gunflint microfossils. Astrobiology 4:196–210CrossRef Moreau JW, Sharp TG (2004) Atransmission electron microscopy study of silica and kerogen biosignatures in ~1.9 Ga Gunflint microfossils. Astrobiology 4:196–210CrossRef
go back to reference Nutman AP, Bennett VC, Friend CRL, Kranendonk MJV, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538CrossRef Nutman AP, Bennett VC, Friend CRL, Kranendonk MJV, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538CrossRef
go back to reference Ohtomo Y, Kakegawa T, Ishida A, Nagase T, Rosing MT (2014) Evidence for biotic graphite in early Archean Isua metasedimentary rocks. Nature Geosci 7:25–28CrossRef Ohtomo Y, Kakegawa T, Ishida A, Nagase T, Rosing MT (2014) Evidence for biotic graphite in early Archean Isua metasedimentary rocks. Nature Geosci 7:25–28CrossRef
go back to reference Okamoto N, Inoue I (2005) A secondary symbiosis in progress? Science 310:287CrossRef Okamoto N, Inoue I (2005) A secondary symbiosis in progress? Science 310:287CrossRef
go back to reference Oshima T (1995) Life began in hhydrothermal water. Kagakudojin Ltd, Tokyo Oshima T (1995) Life began in hhydrothermal water. Kagakudojin Ltd, Tokyo
go back to reference Phillipot P, Van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early Archean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537CrossRef Phillipot P, Van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early Archean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537CrossRef
go back to reference Reaves ML, Sinha S, Rabinowitz JD, Kruglyak L, Redfield RJ (2012) Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells. Science 337:470–473CrossRef Reaves ML, Sinha S, Rabinowitz JD, Kruglyak L, Redfield RJ (2012) Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells. Science 337:470–473CrossRef
go back to reference Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155CrossRef Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155CrossRef
go back to reference Rosing MT (1999) 13C-depleted carbon microparticles in > 3,700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676CrossRef Rosing MT (1999) 13C-depleted carbon microparticles in > 3,700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676CrossRef
go back to reference Schopf JW (1993) Microfossils of the early Archean Apex chart: new evidence of the antiquity of life. Science 260:640–646CrossRef Schopf JW (1993) Microfossils of the early Archean Apex chart: new evidence of the antiquity of life. Science 260:640–646CrossRef
go back to reference Schopf JW, Packer BM (1987) Early Arcean (3.3-billion to 3.5-billion-year-old) microfossils from Warawoona Group, Australia. Science 237:70–73CrossRef Schopf JW, Packer BM (1987) Early Arcean (3.3-billion to 3.5-billion-year-old) microfossils from Warawoona Group, Australia. Science 237:70–73CrossRef
go back to reference Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature 410:77–81CrossRef Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature 410:77–81CrossRef
go back to reference Shen Y, Faquher J, Masterson A, Kaufman AJ, Buick R (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391CrossRef Shen Y, Faquher J, Masterson A, Kaufman AJ, Buick R (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391CrossRef
go back to reference The Asahi Shimbun (in Japanese), 10 Dec 2010 The Asahi Shimbun (in Japanese), 10 Dec 2010
go back to reference Ueno Y, Yurimoto H, Yoshioka H, Komiya T, Maruyama S (2002) Ion microprove analysis of graphite from c. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: relationship between metamorphism and carbon isotopic composition. Geochim Cosmochim Acta 66:1257–1268CrossRef Ueno Y, Yurimoto H, Yoshioka H, Komiya T, Maruyama S (2002) Ion microprove analysis of graphite from c. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: relationship between metamorphism and carbon isotopic composition. Geochim Cosmochim Acta 66:1257–1268CrossRef
go back to reference Ueno Y, Isozaki Y, McNamara KJ (2006) Coccoid-like microstructures in a 3.0 Ga chert from Western Australia. Inter. Geol Rev 48:78–88CrossRef Ueno Y, Isozaki Y, McNamara KJ (2006) Coccoid-like microstructures in a 3.0 Ga chert from Western Australia. Inter. Geol Rev 48:78–88CrossRef
go back to reference Ueno Y, Ono S, Rumble D, Maruyama S (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga dresser formation: new evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691CrossRef Ueno Y, Ono S, Rumble D, Maruyama S (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga dresser formation: new evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691CrossRef
go back to reference Wacey D, McLougin N, Whitehouse WJ, Kilbrn MR (2010) Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology 38:1115–1118CrossRef Wacey D, McLougin N, Whitehouse WJ, Kilbrn MR (2010) Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology 38:1115–1118CrossRef
go back to reference Wacey D, Kilburn MR, Saunders M, Criff J, Brasier MD (2011) Microfossils of Sulphur-metabolizing cells in 3.4 billion-years-old rocks of Western Australia. Nat Geosci 4:698–702CrossRef Wacey D, Kilburn MR, Saunders M, Criff J, Brasier MD (2011) Microfossils of Sulphur-metabolizing cells in 3.4 billion-years-old rocks of Western Australia. Nat Geosci 4:698–702CrossRef
go back to reference Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3400–3500 Myr old form the North Pole area Western Australia. Nature 284:443–445CrossRef Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3400–3500 Myr old form the North Pole area Western Australia. Nature 284:443–445CrossRef
go back to reference Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271 Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271
go back to reference Woese CR, Fox GE (1977) phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090CrossRef Woese CR, Fox GE (1977) phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090CrossRef
go back to reference Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579CrossRef Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579CrossRef
go back to reference Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF., Webb SM, Weber PK, Dacies PCW, Anbar AD, Oremland RS (2010) A bacterium that can grow by using arsenic instead of phosphorus. Science 332: 1163–1166, Online publication 2 Dec 2010CrossRef Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF., Webb SM, Weber PK, Dacies PCW, Anbar AD, Oremland RS (2010) A bacterium that can grow by using arsenic instead of phosphorus. Science 332: 1163–1166, Online publication 2 Dec 2010CrossRef
go back to reference Yamagishi A (2005) Origin of cell and related problems. Biol Sci Space 19:268–275CrossRef Yamagishi A (2005) Origin of cell and related problems. Biol Sci Space 19:268–275CrossRef
go back to reference Yamagishi A, Kon T, Takahashi G, Oshima T (1998) From the common ancestor of all living organisms to protoeukaryotic cell. In: Wiegel J, Adams MWW (eds) Thermophilis: the key to molecular evolution and the origin of life? Taylor and Francis Ltd, London, pp 287–295 Yamagishi A, Kon T, Takahashi G, Oshima T (1998) From the common ancestor of all living organisms to protoeukaryotic cell. In: Wiegel J, Adams MWW (eds) Thermophilis: the key to molecular evolution and the origin of life? Taylor and Francis Ltd, London, pp 287–295
Metadata
Title
What Is the Ultimate Ancestor? Evidence from Fossils and Gene Analyses
Author
Hiromoto Nakazawa
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8724-0_3