Skip to main content
Top
Published in: Journal of Materials Science 2/2018

11-09-2017 | Energy materials

Yolk-shell structured Cu2O as a high-performance cathode catalyst for the rechargeable Li-O2 batteries

Authors: Xiao-yang Qiu, Shu-juan Liu, Deng-zhu Xu

Published in: Journal of Materials Science | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Developing an efficient cathode catalyst material is the most intrinsic requisite to acquire rechargeable Li-O2 batteries with long cycling life and high rate capacity. Here, yolk-shell structured Cu2O spheres were facilely synthesized using a wet-chemistry method with the PEG-500 as the surfactant. As catalyst cathode materials, yolk-shell structured Cu2O spheres show a low discharge/charge potential platform of 1.28 V with current density of 500 mA g−1. Compared with cubic-like Cu2O nanoparticles, yolk-shell structured Cu2O spheres have indicated a long and stable cycling life of 84 cycles with a high current density of 500 mA g−1, and which may be benefited to the porous structure and the large specific surface area. The introduction of Cu2O provides an effective solution to the problem of low round-trip efficiency in the Li-O2 battery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRef
2.
go back to reference Lu J, Li L, Park J-B, Sun Y-K, Wu F, Amine K (2014) Aprotic and aqueous Li–O2 batteries. Chem Rev 114:5611–5640CrossRef Lu J, Li L, Park J-B, Sun Y-K, Wu F, Amine K (2014) Aprotic and aqueous Li–O2 batteries. Chem Rev 114:5611–5640CrossRef
3.
go back to reference Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium-air battery electrolytes. Phys Chem Chem Phys 16:2801–2822CrossRef Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium-air battery electrolytes. Phys Chem Chem Phys 16:2801–2822CrossRef
4.
go back to reference Oh D, Qi J, Lu Y-C, Zhang Y, Shao-Horn Y, Belcher AM (2013) Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries. Nat Commun 4:2756CrossRef Oh D, Qi J, Lu Y-C, Zhang Y, Shao-Horn Y, Belcher AM (2013) Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries. Nat Commun 4:2756CrossRef
5.
go back to reference Lim H, Lee B, Bae Y, Park H, Ko Y, Kim H, Kim J, Kang K (2017) Reaction chemistry in rechargeable Li-O2 batteries. Chem Soc Rev 46:2873–2888CrossRef Lim H, Lee B, Bae Y, Park H, Ko Y, Kim H, Kim J, Kang K (2017) Reaction chemistry in rechargeable Li-O2 batteries. Chem Soc Rev 46:2873–2888CrossRef
6.
go back to reference Lu J, Jung Lee Y, Luo X, Chun Lau K, Asadi M, Wang H-H, Brombosz S, Wen J, Zhai D, Chen Z, Miller DJ, Sub Jeong Y, Park J-B, Zak Fang Z, Kumar B, Salehi- Khojin A, Sun Y-K, Curtiss LA, Amine K (2016) A lithium–oxygen battery based on lithium superoxide. Nature 529:377–382CrossRef Lu J, Jung Lee Y, Luo X, Chun Lau K, Asadi M, Wang H-H, Brombosz S, Wen J, Zhai D, Chen Z, Miller DJ, Sub Jeong Y, Park J-B, Zak Fang Z, Kumar B, Salehi- Khojin A, Sun Y-K, Curtiss LA, Amine K (2016) A lithium–oxygen battery based on lithium superoxide. Nature 529:377–382CrossRef
7.
go back to reference Hu X, Li Z, Chen J (2017) Flexible Li-CO2 batteries with liquid-free electrolyte. Angew Chem Int Ed 56:5785–5789CrossRef Hu X, Li Z, Chen J (2017) Flexible Li-CO2 batteries with liquid-free electrolyte. Angew Chem Int Ed 56:5785–5789CrossRef
8.
go back to reference Luo WB, Gao XW, Chou SL, Wang JZ, Liu HK (2015) Porous Ag Pd–Pd composite nanotubes as highly efficient electrocatalysts for lithium–oxygen batteries. Adv Mater 27:6862–6869CrossRef Luo WB, Gao XW, Chou SL, Wang JZ, Liu HK (2015) Porous Ag Pd–Pd composite nanotubes as highly efficient electrocatalysts for lithium–oxygen batteries. Adv Mater 27:6862–6869CrossRef
9.
go back to reference Jian Z, Liu P, Li F, He P, Guo X, Chen M, Zhou H (2014) Core–shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li–O2 Batteries. Angew Chem Int Ed 53:442–446CrossRef Jian Z, Liu P, Li F, He P, Guo X, Chen M, Zhou H (2014) Core–shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li–O2 Batteries. Angew Chem Int Ed 53:442–446CrossRef
10.
go back to reference Ma L, Luo X, Kropf AJ, Wen J, Wang X, Lee S, Myers DJ, Miller D, Wu T, Lu J, Amine K (2016) Insight into the catalytic mechanism of bimetallic platinum–copper core–shell nanostructures for nonaqueous oxygen evolution reactions. Nano Lett 16:781–785CrossRef Ma L, Luo X, Kropf AJ, Wen J, Wang X, Lee S, Myers DJ, Miller D, Wu T, Lu J, Amine K (2016) Insight into the catalytic mechanism of bimetallic platinum–copper core–shell nanostructures for nonaqueous oxygen evolution reactions. Nano Lett 16:781–785CrossRef
11.
go back to reference Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li-O2 battery. Science 337:563–566CrossRef Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li-O2 battery. Science 337:563–566CrossRef
12.
go back to reference Liu X, Dai L (2016) Carbon-based metal-free catalysts. Nat Rev Mater 1:16064CrossRef Liu X, Dai L (2016) Carbon-based metal-free catalysts. Nat Rev Mater 1:16064CrossRef
13.
go back to reference Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192CrossRef Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192CrossRef
14.
go back to reference Wang C, Zhao Y, Liu J, Gong P, Li X, Zhao Y, Yue GH, Zhou Z (2016) Highly hierarchical porous structures constructed from NiO nanosheets act as Li ion and O2 pathways in long cycle life, rechargeable Li–O2 batteries. Chem Commun 52:11772–11774CrossRef Wang C, Zhao Y, Liu J, Gong P, Li X, Zhao Y, Yue GH, Zhou Z (2016) Highly hierarchical porous structures constructed from NiO nanosheets act as Li ion and O2 pathways in long cycle life, rechargeable Li–O2 batteries. Chem Commun 52:11772–11774CrossRef
15.
go back to reference McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett 3:997–1001CrossRef McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett 3:997–1001CrossRef
16.
go back to reference Fu LJ, Gao J, Zhang T, Cao Q, Yang LC, Wu YP (2007) R. Holze b, H.Q. Wu, Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. J Power Sourc 174:1197–1200CrossRef Fu LJ, Gao J, Zhang T, Cao Q, Yang LC, Wu YP (2007) R. Holze b, H.Q. Wu, Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. J Power Sourc 174:1197–1200CrossRef
17.
go back to reference Xiang JY, Wang XL, Xia XH, Zhang L, Zhou Y, Shi SJ, Tu JP (2010) Enhanced high rate properties of ordered porous Cu2O film as anode for lithium ion batteries. Electrochim Acta 55:4921–4925CrossRef Xiang JY, Wang XL, Xia XH, Zhang L, Zhou Y, Shi SJ, Tu JP (2010) Enhanced high rate properties of ordered porous Cu2O film as anode for lithium ion batteries. Electrochim Acta 55:4921–4925CrossRef
18.
go back to reference Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to Cu2O hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21:803–807CrossRef Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to Cu2O hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21:803–807CrossRef
19.
go back to reference Yue GH, Zhang Y, Zhang XQ, Wang CG, Zhao YC, Peng DL (2015) Synthesis of Cu2O mesocrystal and its application in photocatalysis. Appl Phys A 118:763–767CrossRef Yue GH, Zhang Y, Zhang XQ, Wang CG, Zhao YC, Peng DL (2015) Synthesis of Cu2O mesocrystal and its application in photocatalysis. Appl Phys A 118:763–767CrossRef
20.
go back to reference Xu H, Wang W, Zhu W (2006) A facile strategy to porous materials: coordination-assisted heterogeneous dissolution route to the spherical Cu2O single crystallites with hierarchical pores. Micropor Mesopor Mater 95:321–328CrossRef Xu H, Wang W, Zhu W (2006) A facile strategy to porous materials: coordination-assisted heterogeneous dissolution route to the spherical Cu2O single crystallites with hierarchical pores. Micropor Mesopor Mater 95:321–328CrossRef
21.
go back to reference Kuo CH, Chu YT, Song YF, Huang MH (2011) Cu2O Nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and In-Situ transmission X-ray microscopy study. Adv Funct Mater 21:792–797CrossRef Kuo CH, Chu YT, Song YF, Huang MH (2011) Cu2O Nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and In-Situ transmission X-ray microscopy study. Adv Funct Mater 21:792–797CrossRef
22.
go back to reference Biesingera MC, Laua LWM, Gersonb AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898CrossRef Biesingera MC, Laua LWM, Gersonb AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898CrossRef
23.
go back to reference Liu L, Wang J, Hou Y, Chen J, Liu HK, Wang J, Wu Y (2015) Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small 12:602–611CrossRef Liu L, Wang J, Hou Y, Chen J, Liu HK, Wang J, Wu Y (2015) Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small 12:602–611CrossRef
24.
go back to reference Tong S, Zheng M, Lu Y, Lin Z, Li J, Zhang X, Zhou H (2015) Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O 2 batteries. J Mater Chem A 3:16177–16182CrossRef Tong S, Zheng M, Lu Y, Lin Z, Li J, Zhang X, Zhou H (2015) Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O 2 batteries. J Mater Chem A 3:16177–16182CrossRef
25.
go back to reference Liu Q, Jiang Y, Xu J, Xu D, Chang Z, Yin Y, Zhang X (2015) Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res 8:576–583CrossRef Liu Q, Jiang Y, Xu J, Xu D, Chang Z, Yin Y, Zhang X (2015) Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res 8:576–583CrossRef
26.
go back to reference Cui ZH, Fan WG, Guo XX (2013) Lithium–oxygen cells with ionic-liquid-based electrolytes and vertically aligned carbon nanotube cathodes. J Power Sourc 235:251–255CrossRef Cui ZH, Fan WG, Guo XX (2013) Lithium–oxygen cells with ionic-liquid-based electrolytes and vertically aligned carbon nanotube cathodes. J Power Sourc 235:251–255CrossRef
27.
go back to reference Park JE, Lee GH, Shim HW, Kim DW, Kang Y, Kim DW (2015) Examination of graphene nanoplatelets as cathode materials for lithium–oxygen batteries by differential electrochemical mass spectrometry. Electrochem Commun 57:39–42CrossRef Park JE, Lee GH, Shim HW, Kim DW, Kang Y, Kim DW (2015) Examination of graphene nanoplatelets as cathode materials for lithium–oxygen batteries by differential electrochemical mass spectrometry. Electrochem Commun 57:39–42CrossRef
28.
go back to reference Zhao Y, Li X, Liu J, Wang C, Zhao Y, Yue GH (2016) MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk–shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl Mater Interfaces 8:6472–6480CrossRef Zhao Y, Li X, Liu J, Wang C, Zhao Y, Yue GH (2016) MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk–shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl Mater Interfaces 8:6472–6480CrossRef
Metadata
Title
Yolk-shell structured Cu2O as a high-performance cathode catalyst for the rechargeable Li-O2 batteries
Authors
Xiao-yang Qiu
Shu-juan Liu
Deng-zhu Xu
Publication date
11-09-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 2/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1555-y

Other articles of this Issue 2/2018

Journal of Materials Science 2/2018 Go to the issue

Premium Partners