Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 5/2019

23-11-2018 | Educational Article

A 213-line topology optimization code for geometrically nonlinear structures

Authors: Qi Chen, Xianmin Zhang, Benliang Zhu

Published in: Structural and Multidisciplinary Optimization | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a 213-line MATLAB code for topology optimization of geometrically nonlinear structures. It is developed based on the density method. The code adopts the ANSYS parametric design language (APDL) that provides convenient access to advanced finite element analysis (FEA). An additive hyperelasticity technique is employed to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. The sensitivity information is obtained by extracting the increment of the element strain energy. The validity of the code is demonstrated by the minimum compliance problem and the compliant inverter problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefMATH
go back to reference Bruns T E, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237CrossRefMATH Bruns T E, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237CrossRefMATH
go back to reference Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430CrossRefMATH Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430CrossRefMATH
go back to reference Bruns T E, Sigmund Ole (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193(36-38):3973–4000MathSciNetCrossRefMATH Bruns T E, Sigmund Ole (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193(36-38):3973–4000MathSciNetCrossRefMATH
go back to reference Buhl T, Pedersen C BW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef Buhl T, Pedersen C BW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef
go back to reference Chen F, Wang Y, Wang MY, Zhang YF (2017) Topology optimization of hyperelastic structures using a level set method. J Comput Phys 351:437–454MathSciNetCrossRef Chen F, Wang Y, Wang MY, Zhang YF (2017) Topology optimization of hyperelastic structures using a level set method. J Comput Phys 351:437–454MathSciNetCrossRef
go back to reference Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement–loaded non-linear structures. Comput Methods Appl Mech Eng 192(22-24):2539–2553CrossRefMATH Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement–loaded non-linear structures. Comput Methods Appl Mech Eng 192(22-24):2539–2553CrossRefMATH
go back to reference Huang X, Xie Y M (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30(7):2057–2068CrossRef Huang X, Xie Y M (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30(7):2057–2068CrossRef
go back to reference Huang XH, Xie Y (2007) Bidirectional evolutionary topology optimization for structures with geometrical and material nonlinearities. AIAA J 45(1):308–313CrossRef Huang XH, Xie Y (2007) Bidirectional evolutionary topology optimization for structures with geometrical and material nonlinearities. AIAA J 45(1):308–313CrossRef
go back to reference Huang X, Xie Y-M (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683CrossRef Huang X, Xie Y-M (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683CrossRef
go back to reference James KA, Waisman H (2016) Layout design of a bi-stable cardiovascular stent using topology optimization. Comput Methods Appl Mech Eng 305:869–890MathSciNetCrossRef James KA, Waisman H (2016) Layout design of a bi-stable cardiovascular stent using topology optimization. Comput Methods Appl Mech Eng 305:869–890MathSciNetCrossRef
go back to reference Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47(1):37–48MathSciNetCrossRefMATH Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47(1):37–48MathSciNetCrossRefMATH
go back to reference Kuhl E, Askes H, Steinmann P (2006) An illustration of the equivalence of the loss of ellipticity conditions in spatial and material settings of hyperelasticity. Eur J Mech-A/Solids 25(2):199–214MathSciNetCrossRefMATH Kuhl E, Askes H, Steinmann P (2006) An illustration of the equivalence of the loss of ellipticity conditions in spatial and material settings of hyperelasticity. Eur J Mech-A/Solids 25(2):199–214MathSciNetCrossRefMATH
go back to reference Lahuerta RD, Simões ET, Campello EMB, Pimenta PM, Silva ECN (2013) Towards the stabilization of the low density elements in topology optimization with large deformation. Comput Mech 52(4):779–797MathSciNetCrossRefMATH Lahuerta RD, Simões ET, Campello EMB, Pimenta PM, Silva ECN (2013) Towards the stabilization of the low density elements in topology optimization with large deformation. Comput Mech 52(4):779–797MathSciNetCrossRefMATH
go back to reference Lee H-A, Park G-J (2012) Topology optimization for structures with nonlinear behavior using the equivalent static loads method. J Mech Des 134(3):031004CrossRef Lee H-A, Park G-J (2012) Topology optimization for structures with nonlinear behavior using the equivalent static loads method. J Mech Des 134(3):031004CrossRef
go back to reference Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip Optim 50(6):1175–1196MathSciNetCrossRef Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip Optim 50(6):1175–1196MathSciNetCrossRef
go back to reference Luo Y, Wang MY, Kang Z (2015) Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Comput Methods Appl Mech Eng 286:422–441MathSciNetCrossRefMATH Luo Y, Wang MY, Kang Z (2015) Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Comput Methods Appl Mech Eng 286:422–441MathSciNetCrossRefMATH
go back to reference Qi C, Zhang X, Zhu B (2018a) Design of buckling-induced mechanical metamaterials for energy absorption using topology optimization. Struct Multidiscip Optim 58(4):1395–1410MathSciNetCrossRef Qi C, Zhang X, Zhu B (2018a) Design of buckling-induced mechanical metamaterials for energy absorption using topology optimization. Struct Multidiscip Optim 58(4):1395–1410MathSciNetCrossRef
go back to reference Qi C, Zhang X, Zhu B (2018b) Topology optimization of fusiform muscles with a maximum contraction. Int J Numer Meth Biomed Engng 34:e3096MathSciNetCrossRef Qi C, Zhang X, Zhu B (2018b) Topology optimization of fusiform muscles with a maximum contraction. Int J Numer Meth Biomed Engng 34:e3096MathSciNetCrossRef
go back to reference Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21 (2):120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21 (2):120–127CrossRef
go back to reference Svanberg K (1987) The method of moving asymptotes<aa new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes<aa new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH
go back to reference Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) Polytop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45(3):329–357MathSciNetCrossRefMATH Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) Polytop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45(3):329–357MathSciNetCrossRefMATH
go back to reference Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line Matlab implementation. Struct Multidiscip Optim 49(4):621–642MathSciNetCrossRef Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line Matlab implementation. Struct Multidiscip Optim 49(4):621–642MathSciNetCrossRef
go back to reference Tran AV, Zhang X, Zhu B (2018) The development of a new piezoresistive pressure sensor for low pressures. IEEE Trans Ind Electron 65(8):6487–6496CrossRef Tran AV, Zhang X, Zhu B (2018) The development of a new piezoresistive pressure sensor for low pressures. IEEE Trans Ind Electron 65(8):6487–6496CrossRef
go back to reference van Dijk NP , Langelaar M, van Keulen F (2014) Element deformation scaling for robust geometrically nonlinear analyses in topology optimization. Struct Multidiscip Optim 50(4):537–560MathSciNetCrossRef van Dijk NP , Langelaar M, van Keulen F (2014) Element deformation scaling for robust geometrically nonlinear analyses in topology optimization. Struct Multidiscip Optim 50(4):537–560MathSciNetCrossRef
go back to reference Vivien J (2010) Challis. a discrete level-set topology optimization code written in Matlab. Struct Multidiscip Optim 41(3):453–464MathSciNetCrossRefMATH Vivien J (2010) Challis. a discrete level-set topology optimization code written in Matlab. Struct Multidiscip Optim 41(3):453–464MathSciNetCrossRefMATH
go back to reference Wallin M, Ivarsson N, Tortorelli D (2018) Stiffness optimization of non-linear elastic structures. Comput Methods Appl Mech Eng 330:292–307MathSciNetCrossRef Wallin M, Ivarsson N, Tortorelli D (2018) Stiffness optimization of non-linear elastic structures. Comput Methods Appl Mech Eng 330:292–307MathSciNetCrossRef
go back to reference Wang F, Lazarov BS, Sigmund O, Jensen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472MathSciNetCrossRefMATH Wang F, Lazarov BS, Sigmund O, Jensen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472MathSciNetCrossRefMATH
go back to reference Wang N, Guo H, Chen B, Cui C, Zhang X (2018) Design of a rotary dielectric elastomer actuator using a topology optimization method based on pairs of curves. Smart Mater Struct 27(5):055011CrossRef Wang N, Guo H, Chen B, Cui C, Zhang X (2018) Design of a rotary dielectric elastomer actuator using a topology optimization method based on pairs of curves. Smart Mater Struct 27(5):055011CrossRef
go back to reference Wei P, Li Z, Li X, Wang MY (2018) An 88-line Matlab code for the parameterized level set method based topology optimization using radial basis functions. Struct Multidiscip Optim 58(2):831–849MathSciNetCrossRef Wei P, Li Z, Li X, Wang MY (2018) An 88-line Matlab code for the parameterized level set method based topology optimization using radial basis functions. Struct Multidiscip Optim 58(2):831–849MathSciNetCrossRef
go back to reference Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009MathSciNetCrossRefMATH Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009MathSciNetCrossRefMATH
go back to reference Yoon GH, Joung YS, Kim YY (2007) Optimal layout design of three-dimensional geometrically non-linear structures using the element connectivity parameterization method. Int J Numer Methods Eng 69(6):1278–1304CrossRefMATH Yoon GH, Joung YS, Kim YY (2007) Optimal layout design of three-dimensional geometrically non-linear structures using the element connectivity parameterization method. Int J Numer Methods Eng 69(6):1278–1304CrossRefMATH
go back to reference Zhang W, Yuan J, Zhang J, Xu G (2016) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260MathSciNetCrossRef Zhang W, Yuan J, Zhang J, Xu G (2016) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260MathSciNetCrossRef
go back to reference Zhu B, Zhang X, Zhang Y, Fatikow S (2017) Design of diaphragm structure for piezoresistive pressure sensor using topology optimization. Struct Multidiscip Optim 55(1):317–329MathSciNetCrossRef Zhu B, Zhang X, Zhang Y, Fatikow S (2017) Design of diaphragm structure for piezoresistive pressure sensor using topology optimization. Struct Multidiscip Optim 55(1):317–329MathSciNetCrossRef
go back to reference Zuo ZH, Yi MX (2015) A simple and compact python code for complex 3D topology optimization. Adv Eng Softw 85:1–11CrossRef Zuo ZH, Yi MX (2015) A simple and compact python code for complex 3D topology optimization. Adv Eng Softw 85:1–11CrossRef
Metadata
Title
A 213-line topology optimization code for geometrically nonlinear structures
Authors
Qi Chen
Xianmin Zhang
Benliang Zhu
Publication date
23-11-2018
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 5/2019
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-2138-5

Other articles of this Issue 5/2019

Structural and Multidisciplinary Optimization 5/2019 Go to the issue

Premium Partners