Skip to main content
Top

2020 | OriginalPaper | Chapter

A Brief Overview of Crystal Plasticity Approach for Computational Materials Modeling

Authors : Lakhwinder Singh, Sanjay Vohra, Manu Sharma

Published in: Advances in Materials Science and Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article presents an overview of crystal plasticity (CP)-based modeling and simulation. A typical CP approach includes the kinematics and constitutive laws to determine the mechanical response of polycrystalline materials. Constitutive laws can be phenomenological or microstructure-based. The latter allows incorporating different deformation mechanisms responsible for deforming the material plastically. For solving the equilibrium and compatibility equations, the types of numerical solvers used are also discussed. For modeling the inhomogeneity in the polycrystalline and multiphase material systems, homogenization techniques are used in CP for the flow of information from single crystal to polycrystalline scale.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Helm, D., Butz, A., Raabe, D., Gumbsch, P.: Microstructure-based description of the deformation of metals: theory and application. JOM 63, 26–33 (2011)CrossRef Helm, D., Butz, A., Raabe, D., Gumbsch, P.: Microstructure-based description of the deformation of metals: theory and application. JOM 63, 26–33 (2011)CrossRef
2.
go back to reference Sachtleber, M., Zhao, Z., Raabe, D.: Experimental investigation of plastic grain interaction. Mater. Sci. Eng. 336, 1–87 (2002)CrossRef Sachtleber, M., Zhao, Z., Raabe, D.: Experimental investigation of plastic grain interaction. Mater. Sci. Eng. 336, 1–87 (2002)CrossRef
3.
go back to reference Wang, L., Barabash, R.I., Yang, Y., Bieler, T.R., Crimp, M.A., Eisenlohr, P.: Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline α–Ti. Metall. Mater. Trans. A 42A, 626–635 (2010) Wang, L., Barabash, R.I., Yang, Y., Bieler, T.R., Crimp, M.A., Eisenlohr, P.: Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline α–Ti. Metall. Mater. Trans. A 42A, 626–635 (2010)
4.
go back to reference Pokharel, R., Lind, J., Anand, K., Lebenson, R.A., Li, S.F., Kenesei, P., Suter, R.M., Rollet, A.D.: Polycrystal plasticity: comparison between grain-scale observations of deformation and simulations. Annu. Rev. Condens. Matter Phys 317–346 (2014)CrossRef Pokharel, R., Lind, J., Anand, K., Lebenson, R.A., Li, S.F., Kenesei, P., Suter, R.M., Rollet, A.D.: Polycrystal plasticity: comparison between grain-scale observations of deformation and simulations. Annu. Rev. Condens. Matter Phys 317–346 (2014)CrossRef
5.
go back to reference Xie, H., Zhengyi, J., Zhao, J.: Microfroming technology. Academic Press (2017) Xie, H., Zhengyi, J., Zhao, J.: Microfroming technology. Academic Press (2017)
6.
go back to reference Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRef Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRef
7.
go back to reference Lebensohn, R.A.: N-site modeling of a 3D viscoplastic polycrystal using fast fourier transform. Acta Mater. 49, 2723–2737 (2001)CrossRef Lebensohn, R.A.: N-site modeling of a 3D viscoplastic polycrystal using fast fourier transform. Acta Mater. 49, 2723–2737 (2001)CrossRef
8.
go back to reference Eisenlohr, P., Diehl, M., Lebenson, R.A., Roters, F.: A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int. J. Plast 46, 37–53 (2013)CrossRef Eisenlohr, P., Diehl, M., Lebenson, R.A., Roters, F.: A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int. J. Plast 46, 37–53 (2013)CrossRef
9.
go back to reference Roters, F., Eisenlohr, P., Bieler, T.R.: Crystal plasticity finite element methods in materials science and engineering. Wiley-VCH (2010) Roters, F., Eisenlohr, P., Bieler, T.R.: Crystal plasticity finite element methods in materials science and engineering. Wiley-VCH (2010)
10.
go back to reference Kalidindi, S.R., Bronkhorst, C.A., Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40, 537–569 (1992)CrossRef Kalidindi, S.R., Bronkhorst, C.A., Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40, 537–569 (1992)CrossRef
11.
go back to reference Kalidindi, S.R., Bachu, V.: On the accuracy of the predictions of texture evolutions by the finite element technique for FCC polycrystals. Mater. Sci. Eng. 257(1), 108–117 (1998)CrossRef Kalidindi, S.R., Bachu, V.: On the accuracy of the predictions of texture evolutions by the finite element technique for FCC polycrystals. Mater. Sci. Eng. 257(1), 108–117 (1998)CrossRef
12.
go back to reference Kalidindi, S.R., Anand, L: Macroscopic shape change and evolution of crystallographic texture in pre-textured FCC metals. J. Mech. Phys. Solids. 42, 459–490 (1994)CrossRef Kalidindi, S.R., Anand, L: Macroscopic shape change and evolution of crystallographic texture in pre-textured FCC metals. J. Mech. Phys. Solids. 42, 459–490 (1994)CrossRef
13.
go back to reference Chakraborty, A., Eisenlohr, P.: Chemo-thermo-mechanically coupled crystal plasticity simulation of stress evolution in thermally strained β-Sn films. J. Electron. Mater. 27(9), 1409–1431 (2018) Chakraborty, A., Eisenlohr, P.: Chemo-thermo-mechanically coupled crystal plasticity simulation of stress evolution in thermally strained β-Sn films. J. Electron. Mater. 27(9), 1409–1431 (2018)
14.
go back to reference Ma, A., Roters, F., Raabe, D.: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 54, 2169–2179 (2006)CrossRef Ma, A., Roters, F., Raabe, D.: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 54, 2169–2179 (2006)CrossRef
15.
go back to reference Alankar, A., Eisenlohr, P., Raabe, D.: A dislocation density-based crystal plasticity constitutive model for prismatic slip in α-titanium. Acta Mater. 59, 7003–7009 (2011)CrossRef Alankar, A., Eisenlohr, P., Raabe, D.: A dislocation density-based crystal plasticity constitutive model for prismatic slip in α-titanium. Acta Mater. 59, 7003–7009 (2011)CrossRef
16.
go back to reference Reuber, C., Eisenlohr, P., Roters, F., Raabe, D.: Dislocation density distribution around an indent in single-crystalline nickel: comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Mater. 71, 333–348 (2014)CrossRef Reuber, C., Eisenlohr, P., Roters, F., Raabe, D.: Dislocation density distribution around an indent in single-crystalline nickel: comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Mater. 71, 333–348 (2014)CrossRef
17.
go back to reference Ma, A., Roters, F.: A constitutive model for FCC single crystals based on dislocation densities and its application to uniaxial compression for aluminium single crystals. Acta Mater. 52, 3603–3612 (2004)CrossRef Ma, A., Roters, F.: A constitutive model for FCC single crystals based on dislocation densities and its application to uniaxial compression for aluminium single crystals. Acta Mater. 52, 3603–3612 (2004)CrossRef
18.
go back to reference Ma, A., Roters, F., Raabe, D.: On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling—theory, experiments, and simulations. Acta Mater. 54, 2181–2194 (2006)CrossRef Ma, A., Roters, F., Raabe, D.: On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling—theory, experiments, and simulations. Acta Mater. 54, 2181–2194 (2006)CrossRef
19.
go back to reference Roters, F., Diehl, M., Shantharaj, P., Eisenlohr, P., Reuber, C., Wong, S.L., Maiti, T., Ebrahimi, A., Hochrainer, T., Fabritius, H., Niklov, S., Friak, M., Fujita, N., Grilli, N.: DAMASK—the düsseldorf advanced material simulation Kit for modelling mutliphysics crystal plasticity, thermal, and damage phenomena from the singal crystal up to the component scale. Comut. Mater. Sci. 158, 420–478 (2019)CrossRef Roters, F., Diehl, M., Shantharaj, P., Eisenlohr, P., Reuber, C., Wong, S.L., Maiti, T., Ebrahimi, A., Hochrainer, T., Fabritius, H., Niklov, S., Friak, M., Fujita, N., Grilli, N.: DAMASK—the düsseldorf advanced material simulation Kit for modelling mutliphysics crystal plasticity, thermal, and damage phenomena from the singal crystal up to the component scale. Comut. Mater. Sci. 158, 420–478 (2019)CrossRef
20.
go back to reference Maiti, T., Eisenlohr, P.: Fourier-based spectral method solution to finite strain crystal plasticity with free surfaces. Scr. Mater. 145, 37–40 (2018)CrossRef Maiti, T., Eisenlohr, P.: Fourier-based spectral method solution to finite strain crystal plasticity with free surfaces. Scr. Mater. 145, 37–40 (2018)CrossRef
21.
go back to reference Shanthraj, P., Eisenlohr, P., Diehl, M., Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int. J. Plast 66, 31–45 (2015)CrossRef Shanthraj, P., Eisenlohr, P., Diehl, M., Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int. J. Plast 66, 31–45 (2015)CrossRef
22.
go back to reference Diehl, M.: A spectral method using fast Fourier transform to solve elastoviscoplastic mechanical boundary value problems (Thesis). Max-Planck-Institut fur Eisenforsch, GmbH (2010) Diehl, M.: A spectral method using fast Fourier transform to solve elastoviscoplastic mechanical boundary value problems (Thesis). Max-Planck-Institut fur Eisenforsch, GmbH (2010)
23.
go back to reference Lebenson, R.A., Kanjarla, A.K., Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transform for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast 32–33, 59–69 (2012)CrossRef Lebenson, R.A., Kanjarla, A.K., Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transform for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast 32–33, 59–69 (2012)CrossRef
25.
go back to reference Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D.D., Diehl, M., Raabe, D.: DAMASK: the düsseldorf advanced material simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012)CrossRef Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D.D., Diehl, M., Raabe, D.: DAMASK: the düsseldorf advanced material simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012)CrossRef
27.
go back to reference Aagesen, L.K., Adams, J.F., Allison, J.E., Andrews, W.B., Berman, T., Chen, Z., Daly, S., Das, S., Dewitt, S., Ganesan, S., Garikapati, K., Gavini, V., Githens, A., Hedstrom, M., Huang, Z., Jagadish, H.V., Motamarri, P., Murphy, A.D., Natarajan, A.R., Panwar, S.: PRSIMS: an integarted, open-source framework for accelerating predictive structural materials science. Miner. Met. Mater. Soc. 70, 2298–2314 (2018)CrossRef Aagesen, L.K., Adams, J.F., Allison, J.E., Andrews, W.B., Berman, T., Chen, Z., Daly, S., Das, S., Dewitt, S., Ganesan, S., Garikapati, K., Gavini, V., Githens, A., Hedstrom, M., Huang, Z., Jagadish, H.V., Motamarri, P., Murphy, A.D., Natarajan, A.R., Panwar, S.: PRSIMS: an integarted, open-source framework for accelerating predictive structural materials science. Miner. Met. Mater. Soc. 70, 2298–2314 (2018)CrossRef
30.
go back to reference Groeber, M.A., Jackson, M.A.: DREAM.3D : a digital representation environment for the analysis of microstructure in 3D. Integr. Mat. Manuf. Innov. 3(1), 56–72 (2014) Groeber, M.A., Jackson, M.A.: DREAM.3D : a digital representation environment for the analysis of microstructure in 3D. Integr. Mat. Manuf. Innov. 3(1), 56–72 (2014)
33.
go back to reference Eisenlohr, P., Roters, F., Tjahjanto, D.: A novel grain cluster-based homogenization scheme. Model. Simul. Mater. Sci. Eng. 18(1), 1–21 (2010) Eisenlohr, P., Roters, F., Tjahjanto, D.: A novel grain cluster-based homogenization scheme. Model. Simul. Mater. Sci. Eng. 18(1), 1–21 (2010)
Metadata
Title
A Brief Overview of Crystal Plasticity Approach for Computational Materials Modeling
Authors
Lakhwinder Singh
Sanjay Vohra
Manu Sharma
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4059-2_5

Premium Partners