Skip to main content
Top
Published in: Journal of Scientific Computing 1/2020

01-04-2020

A Characteristic-Featured Shock Wave Indicator for Conservation Laws Based on Training an Artificial Neuron

Authors: Yiwei Feng, Tiegang Liu, Kun Wang

Published in: Journal of Scientific Computing | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we use exact solutions of one-dimensional Burgers equation to train an artificial neuron as a shock wave detector. The expression of the artificial neuron detector is then modified into a practical form to reflect admissible jump of eigenvalues. We show the working mechanism of the practical form is consistent with compressing or intersecting of characteristic curves. In addition, we prove there is indeed a discontinuity inside the cell detected by the practical form, and smooth extrema and large gradient regions are never marked. As a result, we apply the practical form to numerical schemes as a shock wave indicator with its easy extension to multi-dimensional conservation laws. Numerical results are present to demonstrate the robustness of the present indicator under Runge–Kutta Discontinuous Galerkin framework, its performance is generally compared to TVB-based indicators more efficiently and accurately. To treat the initial inadmissible jumps, including linear contact discontinuities and those evolving into rarefaction waves, a preliminary strategy of combining a traditional indicator in the beginning with the present indicator is suggested. We believe the present indicator can be applied to unstructured mesh in the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M.: TensorFlow, Large-scale machine learning on heterogeneous systems, (2015) https://www.tensorflow.org/ Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M.: TensorFlow, Large-scale machine learning on heterogeneous systems, (2015) https://​www.​tensorflow.​org/​
2.
go back to reference Chang, T., Hsiao, L.: The Riemann problem and interaction of waves in gas dynamics. NASA STI/Recon Technical Report A 90 (1989) Chang, T., Hsiao, L.: The Riemann problem and interaction of waves in gas dynamics. NASA STI/Recon Technical Report A 90 (1989)
3.
go back to reference Cheng, J., Du, Z., Lei, X., Wang, Y., Li, J.: A two-stage fourth-order discontinuous Galerkin method based on the GRP solver for the compressible Euler equations. Comput. Fluids 181, 248–258 (2019)MathSciNetCrossRef Cheng, J., Du, Z., Lei, X., Wang, Y., Li, J.: A two-stage fourth-order discontinuous Galerkin method based on the GRP solver for the compressible Euler equations. Comput. Fluids 181, 248–258 (2019)MathSciNetCrossRef
4.
go back to reference Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)MathSciNetMATH Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)MathSciNetMATH
5.
go back to reference Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRef Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRef
6.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH
7.
go back to reference Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRef Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRef
8.
go back to reference Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2010) Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2010)
9.
go back to reference Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 544–573 (2012)MathSciNetCrossRef Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 544–573 (2012)MathSciNetCrossRef
10.
go back to reference Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRef Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRef
11.
go back to reference Gurney, K.: An Introduction to Neural Networks[M]. UCL Press, Boca Raton (1997)CrossRef Gurney, K.: An Introduction to Neural Networks[M]. UCL Press, Boca Raton (1997)CrossRef
12.
go back to reference Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)MathSciNetCrossRef Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)MathSciNetCrossRef
13.
go back to reference Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. In: Upwind and High-Resolution Schemes, pp. 187–217. Springer (1997) Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. In: Upwind and High-Resolution Schemes, pp. 187–217. Springer (1997)
14.
go back to reference Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)MATH Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)MATH
15.
go back to reference Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, In: 14th Fluid and Plasma Dynamics Conference, p. 1259 (1981) Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, In: 14th Fluid and Plasma Dynamics Conference, p. 1259 (1981)
16.
go back to reference Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRef Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRef
17.
go back to reference Lax, P.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math 7, 159–193 (1954)MathSciNetCrossRef Lax, P.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math 7, 159–193 (1954)MathSciNetCrossRef
18.
go back to reference Leveque, R.J.: Finite volume methods for hyperbolic problems. Meccanica 39, 88–89 (2004)CrossRef Leveque, R.J.: Finite volume methods for hyperbolic problems. Meccanica 39, 88–89 (2004)CrossRef
19.
go back to reference Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on International Conference on Machine Learning (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on International Conference on Machine Learning (2010)
20.
go back to reference Nasr, G.E., Badr, E.A., Joun, C.: Cross entropy error function in neural networks: forecasting gasoline demand. In: Fifteenth International Florida Artificial Intelligence Research Society Conference (2002) Nasr, G.E., Badr, E.A., Joun, C.: Cross entropy error function in neural networks: forecasting gasoline demand. In: Fifteenth International Florida Artificial Intelligence Research Society Conference (2002)
21.
go back to reference Nowlan, S.J., Hinton, G.E.: Simplifying Neural Networks by Soft Weight-Sharing. MIT Press, Cambridge (1992)CrossRef Nowlan, S.J., Hinton, G.E.: Simplifying Neural Networks by Soft Weight-Sharing. MIT Press, Cambridge (1992)CrossRef
22.
go back to reference Oh, S.H.: Error back-propagation algorithm for classification of imbalanced data. Neurocomputing 74, 1058–1061 (2011)CrossRef Oh, S.H.: Error back-propagation algorithm for classification of imbalanced data. Neurocomputing 74, 1058–1061 (2011)CrossRef
23.
go back to reference Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 52, 99–115 (1990)CrossRef Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 52, 99–115 (1990)CrossRef
24.
go back to reference Qiu, J., Shu, C.-W.: Hermite weno schemes and their application as limiters for Runge–Kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)MathSciNetCrossRef Qiu, J., Shu, C.-W.: Hermite weno schemes and their application as limiters for Runge–Kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)MathSciNetCrossRef
25.
go back to reference Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)MathSciNetCrossRef Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)MathSciNetCrossRef
26.
go back to reference Qiu, J., Shu, C.-W.: Hermite weno schemes and their application as limiters for Runge–Kutta discontinuous galerkin method ii: two dimensional case. Comput. Fluids 34, 642–663 (2005)MathSciNetCrossRef Qiu, J., Shu, C.-W.: Hermite weno schemes and their application as limiters for Runge–Kutta discontinuous galerkin method ii: two dimensional case. Comput. Fluids 34, 642–663 (2005)MathSciNetCrossRef
27.
go back to reference Qiu, J., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)MathSciNetCrossRef Qiu, J., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)MathSciNetCrossRef
28.
go back to reference Ray, D., Hesthaven, J.S.: An artificial neural network as a troubled-cell indicator. J. Comput. Phys. 367, 166–191 (2018)MathSciNetCrossRef Ray, D., Hesthaven, J.S.: An artificial neural network as a troubled-cell indicator. J. Comput. Phys. 367, 166–191 (2018)MathSciNetCrossRef
29.
go back to reference Ray, D., Hesthaven, J.S.: Detecting troubled-cells on two-dimensional unstructured grids using a neural network. J. Comput. Phys. 397, 108845 (2019) MathSciNetCrossRef Ray, D., Hesthaven, J.S.: Detecting troubled-cells on two-dimensional unstructured grids using a neural network. J. Comput. Phys. 397, 108845 (2019) MathSciNetCrossRef
30.
go back to reference Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef
31.
go back to reference Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432. Springer (1998) Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432. Springer (1998)
32.
go back to reference Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. In: Upwind and High-Resolution Schemes, pp. 328–374. Springer (1989) Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. In: Upwind and High-Resolution Schemes, pp. 328–374. Springer (1989)
33.
go back to reference Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)MathSciNetCrossRef Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)MathSciNetCrossRef
34.
go back to reference Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNetCrossRef Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNetCrossRef
35.
go back to reference Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, pp. 87–114. Springer, Berlin (2013) Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, pp. 87–114. Springer, Berlin (2013)
36.
go back to reference Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)CrossRef Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)CrossRef
37.
go back to reference Woodward, C.P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)MathSciNetCrossRef Woodward, C.P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)MathSciNetCrossRef
Metadata
Title
A Characteristic-Featured Shock Wave Indicator for Conservation Laws Based on Training an Artificial Neuron
Authors
Yiwei Feng
Tiegang Liu
Kun Wang
Publication date
01-04-2020
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2020
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01200-5

Other articles of this Issue 1/2020

Journal of Scientific Computing 1/2020 Go to the issue

Premium Partner